

ADALM2000实验。 变压器耦合放大器

Antoniu Miclaus, 系统应用工程师, Doug Mercer, 顾问研究员

目标

本次实验旨在带您熟悉变压器耦合放大器的阻抗匹配操作。

背景知识

升降压变压器的基本定义是一种将输入的交流电压转换为比原 电压更高 (升压) 或更低 (降压) 的器件。此外还有可用于将 电路与地隔离的变压器,这种变压器被称为隔离变压器。本文 将侧重讨论变压器的另一种用途, 即用于匹配电路阻抗以实现 最大功率传输。

请看图1所示的电路。该电路是变压器耦合型A类功率放大器,它 类似于普通的放大器电路、但与集电极负载中的变压器相连。

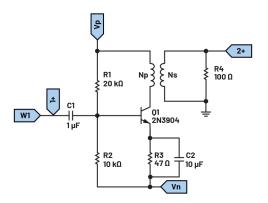


图1. 变压器耦合型A类功率放大器

在此设置中, R1和R2建立分压偏置, 而发射极电阻器R3用于稳定 偏置。发射极旁路电容C2用于防止发射极电路内发生负反馈。

仅当放大器输出阻抗等于负载阻抗R(R4)时,从功率放大器传输 到负载的功率才是最大的。这符合最大功率传输定理。让放大 器的输出阻抗与输出器件的阻抗相匹配很有必要,能够尽可能 放大其传输到输出器件的功率。这可利用具有适当匝数比的降 压变压器来实现。

变压器输入和输出电阻之比就等于变压器匝数比的平方:

$$\frac{R_{LP}}{R_L} = \left(\frac{N_P}{N_s}\right)^2 = n^2 \tag{1}$$

由此得出计算反射阻抗的方程,

$$R_{LP} = \begin{pmatrix} n^2 \end{pmatrix} \times R_L$$
 (2)

- ▶ n为降压变压器的初级与次级匝数之比
- ▶ R_□为初级中的反射阻抗

A类功率放大器的效率约为30%; 而采用变压器耦合型A类功率放 大器,效率可提高到50%。除了更高效率之外,变压器耦合型A 类功率放大器还有其他优点.

- ▶ 基极或集电极电阻中无信号功率损失。
- 可实现出色的阻抗匹配。
- 高增益。
- 提供直流隔离。

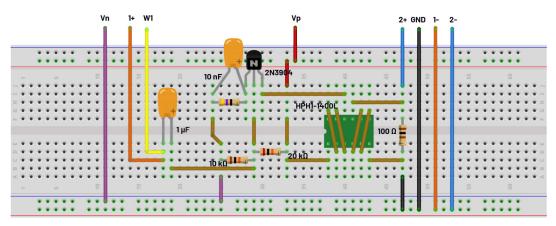


图2. 变压器耦合型A类功率放大器

但这种配置并不完美, 其缺点如下:

- ▶ 相对而言,对低频信号的放大较弱。
- ▶ 变压器会引入嗡嗡声。
- ▶ 变压器体积庞大, 价格昂贵。
- ▶ 频率响应较差。

材料

- ▶ ADALM2000主动学习模块
- ▶ 无焊试验板和跳线套件
- ▶ 一个NPN晶体管(2N3904)
- ▶ 一个10 kΩ电阻
- ▶ 一个20 kΩ电阻
- ▶ 一个100 0电阻
- ▶ 一个10 µF电容
- ▶ 一个1µF电容
- ▶ 一台HPH1-0190L/1400L六绕组变压器

硬件设置

构建图1所示的电路;参考图2。使用ADALM2000提供的+5 V和-5 V电源。

程序步骤

设置信号发生器通道1产生500 mV、100 Hz正弦波 (0 V偏置)。在示波器上监视两个通道。结果应与图3类似。



图3. 变压器耦合型A类功率放大器的输入与输出电压

问题

在上述实验中,我们使用了匝数比为1:1的变压器。如果尝试将变压器的匝数比改为2:1,会发生什么?

您可以在学子专区论坛上找到问题答案。

作者简介

Antoniu Miclaus现为ADI公司的系统应用工程师,从事ADI教学项目工作,同时为Circuits from the Lab®、QA自动化和流程管理开发嵌入式软件。他于2017年2月在罗马尼亚克卢日-纳波卡加入的ADI公司,目前拥有贝碧思鲍耶大学软件工程硕士学位,以及克卢日-纳波卡科技大学电子与电信工程学士学位。

作者简介

Doug Mercer于1977年毕业于伦斯勒理工学院(RPI), 获电子工程学士学位。自1977年加入ADI公司以来, 他对 30多款数据转换器产品做出了直接或间接贡献, 并拥有13项专利。他于1995年被任命为ADI研究员。2009年, 他从全职工作转型, 并继续以名誉研究员身份担任ADI顾问, 为"主动学习计划"撰稿。2016年, 他被任命为RPI ECSE系的驻校工程师。

