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Phase Relations in Active Filters
By Hank Zumbahlen [hank.zumbahlen@analog.com]

In applications that use f ilters, the amplitude response is 
generally of greater interest than the phase response. But in some 
applications, the phase response of the filter is important. An 
example of this might be where a filter is an element of a process 
control loop. Here the total phase shift is of concern, since it may 
affect loop stability. Whether the topology used to build the filter 
produces a sign inversion at some frequencies can be important.

It might be useful to visualize the active filter as two cascaded 
filters. One is the ideal filter, embodying the transfer equation; 
the other is the amplifier used to build the filter. This is illustrated 
in Figure 1. An amplifier used in a closed negative-feedback loop 
can be considered as a simple low-pass filter with a first-order 
response. The gain rolls off with frequency above a certain 
breakpoint. In addition, there will be, in effect, an additional 
180° phase shift at all frequencies if the amplifier is used in the 
inverting configuration. 
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Figure 1. Filter as cascade of two transfer functions.

Filter design is a two-step process. First, the filter response is 
chosen; then, a circuit topology is selected to implement it. The 
filter response refers to the shape of the attenuation curve. Often, 
this is one of the classical responses such as Butterworth, Bessel, 
or some form of Chebyshev. Although these response curves are 
usually chosen to affect the amplitude response, they will also 
affect the shape of the phase response. For the purpose of the 
comparisons in this discussion, the amplitude response will be 
ignored and considered essentially constant.

Filter complexity is typically defined by the filter “order,” which is 
related to the number of energy storage elements (inductors and 
capacitors). The order of the filter transfer function’s denominator 
defines the attenuation rate as frequency increases. The asymptotic 
filter rolloff rate is –6n dB/octave or –20n dB/decade, where n 
is the number of poles. An octave is a doubling or halving of the 
frequency; a decade is a tenfold increase or decrease of frequency. So 
a first-order (or single-pole) filter has a rolloff rate of –6 dB/octave 
or –20 dB/decade. Similarly, a second-order (or 2-pole) filter has a 
rolloff rate of –12 dB/octave or –40 dB/decade. Higher-order filters 
are usually built up of cascaded first- and second-order blocks. It is, 
of course, possible to build third- and, even, fourth-order sections 
with a single active stage, but sensitivities to component values 
and the effects of interactions among the components on the 
frequency response increase dramatically, making these choices 
less attractive.

The Transfer Equation
First, we will take a look at the phase response of the transfer 
equations. The phase shift of the transfer function will be the 
same for all filter options of the same order.

For the single-pole, low-pass case, the transfer function has a 
phase shift, ϕ, given by

	 	

(1)

where:		  ω = frequency (radians per second)
		  ω0 = center frequency (radians per second)
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Frequency in radians per second is equal to 2π times frequency 
in Hz ( f ), since there are 2π radians in a 360° cycle. Because the 
expression is a dimensionless ratio, either f or ω could be used.

The center frequency can also be referred to as the cutoff 
frequency (the frequency at which the amplitude response of 
the single-pole, low-pass filter is down by 3 dB—about 30%). 
In terms of phase, the center frequency will be at the point at 
which the phase shift is 50% of its ultimate value of –90° (in this 
case). Figure 2, a semi-log plot, evaluates Equation 1 from two 
decades below to two decades above the center frequency. The 
center frequency (=1) has a phase shift of –45°. 
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Figure 2. Phase response of a single-pole, low-pass filter 
about the center frequency (in-phase response, left axis; 
inverted response, right axis). 

Similarly, the phase response of a single-pole, high-pass filter is 
given by:

	 	

(2)

Figure 3 evaluates Equation 2 from two decades below to two 
decades above the center frequency. The normalized center 
frequency (=1) has a phase shift of +45°. 

It is evident that the high-pass and the low-pass phase responses 
are similar, only shifted by 90° (π/2 radians).
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Figure 3. Phase response of a single-pole, high-pass filter 
with a center frequency of 1 (in-phase response, left axis; 
inverted response, right axis).
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For the second-order, low-pass case, the transfer function has a 
phase shift that can be approximated by

	
(3)

where α is the damping ratio of the filter. It will determine the 
peaking in the amplitude response and the sharpness of the 
phase transition. It is the inverse of the Q of the circuit, which 
also determines the steepness of the amplitude rolloff or phase 
shift. The Butterworth has an α of 1.414 (Q of 0.707), producing 
a maximally flat response. Lower values of α will cause peaking 
in the amplitude response.

0

–90

–45

–135

–180

180

90

135

45

0
0.01 0.1 1 10 100

PH
A

SE
 A

N
G

LE
 (I

N
-P

H
A

SE
)

NORMALIZED FREQUENCY

PH
A

SE
 A

N
G

LE
 (I

N
VE

R
TE

D
)

Figure 4. Phase response of a 2-pole, low-pass filter with 
a center frequency of 1 (in-phase response, left axis; 
inverted response, right axis).

Figure 4 evaluates this equation (using α = 1.414) from two decades 
below to two decades above the center frequency. Here the center 
frequency (=1) shows a phase shift of –90°.

The phase response of a 2-pole, high-pass f ilter can be 
approximated by

	
(4)

In Figure 5 this equation is evaluated (again using α = 1.414), from 
two decades below to two decades above the center frequency (=1), 
which shows a phase shift of –90°.

180

90

135

45

0

0

–90

–45

–135

–180
0.01 0.1 1 10 100

PH
A

SE
 A

N
G

LE
 (I

N
-P

H
A

SE
)

NORMALIZED FREQUENCY

PH
A

SE
 A

N
G

LE
 (I

N
VE

R
TE

D
)

Figure 5. Phase response of a 2-pole, high-pass filter 
with a center frequency of 1 (in-phase response, left axis; 
inverted response, right axis). 

Again, it is evident that the high-pass and low-pass phase responses 
are similar, just shifted by 180° (π radians).

In higher-order filters, the phase response of each additional 
section is cumulative, adding to the total. This will be discussed in 
greater detail later. In keeping with common practice, the displayed 
phase shift is limited to the range of ±180°. For example, –181° is 
really the same as +179°, 360° is the same as 0°, and so on.

First-Order Filter Sections
First-order sections can be built in a variety of ways. The most 
straightforward way is illustrated in Figure 6, simply using a 
passive R-C configuration. The center frequency of this filter 
is 1/(2πRC). It is commonly followed by a noninverting buffer 
amplifier to prevent loading by the circuit following the filter, 
which could alter the filter response. In addition, the buffer can 
provide some drive capability. The phase will vary with frequency 
as shown in Figure 2, with 45° phase shift at the center frequency, 
exactly as predicted by the transfer equation, since there are no 
extra components to modify the phase shift. That response will be 
referred to as the in-phase, first-order, low-pass response. The buffer 
will add no phase shift, as long as its bandwidth is significantly 
greater than that of the filter.
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Figure 6. Passive, low-pass filter.

Remember that the frequency in these plots is normalized, i.e., 
the ratio to the center frequency. If, for example, the center 
frequency were 5 kHz, the plot would provide the phase response 
to frequencies from 50 Hz to 500 kHz. 

An alternative structure is shown in Figure 7. This circuit, 
which adds resistance in parallel to continuously discharge an 
integrating capacitor, is basically a lossy integrator. The center 
frequency is again 1/(2πRC). Because the amplifier is used in 
the inverting mode, the inversion introduces an additional 
180° of phase shift. The input-to-output phase variation with 
frequency, including the amplifier’s phase inversion, is shown 
in Figure 2 (right axis). This response will be referred to as the 
inverted, first-order, low-pass response.
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Figure 7. Active, single-pole, low-pass filter using 
an op amp in the inverting mode.

The c i rcu it s shown above, wh ich at tenuate the h igh 
frequencies and pass the low frequencies, are low-pass filters. 
Similar circuits also exist to pass high frequencies. The passive 
configuration for a first-order, high-pass filter is shown in 
Figure 8; and its phase variation with normalized frequency 
is shown in Figure 3 (in-phase response). 
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Figure 8. Passive, high-pass filter.
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The plot in Figure 3 (left axis) will be referred to as the in phase, 
first-order, high-pass response. The active configuration of the 
high-pass filter is shown in Figure 9. The phase variation with 
frequency is shown in Figure 3 (right axis). This will be referred 
to as the inverted, first-order, high-pass response.
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Figure 9. Active, single-pole, high-pass filter. 

Second-Order Sections
A variety of circuit topologies exists for building second-order 
sections. To be discussed here are the Sallen-Key, the multiple-
feedback, the state-variable, and its close cousin, the biquad. They 
are the most common and are relevant here. More complete 
information on the various topologies is given in the References.

Sallen-Key, Low-Pass Filter
The widely used Sallen-Key configuration, also known as a 
voltage-controlled voltage source (VCVS), was first introduced 
in 1955 by R. P. Sallen and E. L. Key of MIT’s Lincoln Labs 
(see Reference 3). Figure 10 is a schematic of a Sallen-Key, 
second-order, low-pass filter. One reason for this configuration’s 
popularity is that its performance is essentially independent of 
the op amp’s performance because the amplifier is used primarily 
as a buffer. Since the follower-connected op amp is not used for 
voltage gain in the basic Sallen-Key circuit, its gain-bandwidth 
requirements are not of great importance. This implies that, for a 
given op amp bandwidth, a higher-frequency filter can be designed 
using this fixed (unity) gain, as compared to other topologies 
that involve the amplifier’s dynamics in a variable feedback loop. 
The signal phase is maintained through the filter (noninverting 
configuration). A phase shift-vs.-frequency plot for a Sallen-Key, 
low-pass filter with Q = 0.707 (or a damping ratio, α = 1/Q of 
1.414—Butterworth response) is shown in Figure 4 (left axis). To 
simplify comparisons, this will be the standard performance for 
the second-order sections to be considered here.
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Figure 10. 2-pole, Sallen-Key, low-pass filter.

The Sallen-Key, High-Pass Filter
To transform the Sallen-Key low-pass into a high-pass 
conf igurat ion, the capacitors and the resistors in the 
frequency-determining network are interchanged, as shown 
in Figure 11, again using a unity-gain buffer. The phase 
shift vs. frequency is shown in Figure 5 (left axis). This is 
the in-phase, second-order, high-pass response. 
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Figure 11. 2-pole, Sallen-Key, high-pass filter.

The amplifier gain in Sallen-Key filters can be increased by 
connecting a resistive attenuator in the feedback path to the 
inverting input of the op amp. However, changing the gain will 
affect the equations for the frequency-determining network, 
and the component values will have to be recalculated. Also, the 
amplifier’s dynamics are more likely to need scrutiny, since they 
introduce gain into the loop.

The Multiple-Feedback (MFB), Low-Pass Filter
The multiple feedback filter is a single-amplifier configuration 
based on an op amp as an integrator (an inverting configuration) 
inside a feedback loop (see Figure 12). Therefore, the dependence 
of the transfer function on the op amp parameters is greater than 
in the Sallen-Key realization. It is hard to generate high-Q, 
high-frequency sections because of the limited open-loop gain of 
the op amp at high frequencies. A guideline is that the open-loop 
gain of the op amp should be at least 20 dB (i.e., ×10) above the 
amplitude response at the resonant (or cutoff) frequency, including 
the peaking caused by the Q of the filter. The peaking due to Q 
will have an amplitude of magnitude A0:

	 	 (5)

where H is the gain of the circuit. 
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Figure 12. 2-pole, multiple-feedback (MFB), low-pass filter.

The multiple-feedback filter inverts the phase of the signal. This is 
equivalent to adding 180° to the phase shift of the filter itself. The 
variation of phase vs. frequency is shown in Figure 4 (right axis). This 
will be referred to as the inverted, second-order, low-pass response. 
Of interest, the difference between highest- and lowest-value 
components to achieve a given response is higher in the multiple-
feedback case than in the Sallen-Key realization. 

The Multiple-Feedback (MFB), High-Pass Filter
Comments made about the multiple-feedback, low-pass case apply 
to the high-pass case as well. The schematic of a multiple-feedback, 
high-pass filter is shown in Figure 13, and its ideal phase shift vs. 
frequency is shown in Figure 5 (right axis). This was referred to 
as the inverted, second-order, high-pass response.
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Figure 13. 2-pole, multiple-feedback (MFB), high-pass filter.

This type of filter may be more difficult to implement stably at 
high frequencies because it is based on a differentiator, which, 
like all differentiator circuits, maintains greater closed-loop gain 
at higher frequencies and tends to amplify noise.
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State-Variable
A state-variable realization is shown in Figure 14. This 
configuration offers the most flexible and precise implementation, 
at the expense of many more circuit elements, including three 
op amps. All three major parameters (gain, Q, and ω0) can be 
adjusted independently; and low-pass, high-pass, and band-pass 
outputs are available simultaneously. The gain of the filter is also 
independently variable.

Since all parameters of the state variable filter can be adjusted 
independently, component spread can be minimized. Also, 
mismatches due to temperature and component tolerances are 
minimized. The op amps used in the integrator sections will have 
the same limitations on op amp gain-bandwidth as described in 
the multiple-feedback section.
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Figure 14. 2-pole, state-variable filter.

The phase shift vs. frequency of the low-pass section will be an 
inverted second-order response (see Figure 4, right axis) and 
the high-pass section will have the inverted high-pass response 
(see Figure 5, right axis).

Biquadratic (Biquad)
A close cousin of the state-variable filter is the biquad (see Figure 15). 
The name of this circuit, first used by J. Tow in 1968 (see Reference 6), 
and later by L. C. Thomas in 1971 (see Reference 5), is based on the 
fact that the transfer function is a ratio of two quadratic terms. This 
circuit is a slightly different form of a state-variable circuit. In this 
configuration, a separate high-pass output is not available. However, 
there are two low-pass outputs, one in-phase (LOWPASS1) and one 
out-of-phase (LOWPASS2). 
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Figure 15. Standard biquad, 2-pole section.

With the addition of a fourth amplifier section, high-pass, notch 
(low-pass, standard, and high-pass), and all-pass filters can be 
realized. A schematic for a biquad with a high-pass section is 
shown in Figure 16.
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Figure 16. 2-pole biquad filter (with a high-pass section).

The phase shift vs. frequency of the LOWPASS1 section will be 
the in-phase, second-order, low-pass response (see Figure 4, left 
axis). The LOWPASS2 section will have the inverted second-
order response (see Figure 4, right axis). The HIGHPASS section 
has a phase shift that inverts (see Figure 5, right axis).

CONCLUSION
We have seen that the topology used to build a filter will have 
an effect on its actual phase response. This may be one of the 
factors used in determining the topology used. Table 1 compares 
the phase-shift ranges for the various low-pass filter topologies 
discussed in this article. 

Table 1. Low-pass-filter topology phase-shift ranges.

LOW-PASS FILTERS

FILTER TOPOLOGY
SINGLE 
PHASE

PHASE 
VARIATION

Single-Pole, Passive In-Phase 0° to –90°

Single-Pole, Active Inverted 180° to 90°

2-Pole, Sallen-Key In-Phase 0° to –180°

2-Pole, Multiple Feedback Inverted 180° to 0°

2-Pole, State Variable Inverted 180° to 0°

2-Pole, Biquad Lowpass1 In-Phase 0° to –180°

2-Pole, Biquad Lowpass2 Inverted 180° to 0°

Similarly, the various high-pass topologies are compared in 
Table 2.

Table 2. High-pass-filter topology phase-shift ranges.

HIGH-PASS FILTERS

FILTER TOPOLOGY
SINGLE 
PHASE

PHASE 
VARIATION

Single-Pole, Passive In-Phase 90° to 0°

Single-Pole, Active Inverted –90° to –180°

2-Pole, Sallen-Key In-Phase 180° to 0°

2-Pole, Multiple Feedback Inverted 0° to –180°

2-Pole, State Variable Inverted 0° to –180°

2-Pole, Biquad Inverted 0° to –180°

The Variation of Phase Shift with Q
The second-order responses above have all used a Q of 0.707. 
Figure 17 shows the effect on phase response of a low-pass filter 
(the results for high-pass are similar) as Q is varied. The phase 
responses for values of Q = 0.1, 0.5, 0.707, 1, 2, 5, 10, and 20 are 
plotted. It’s worth noting that the phase can start to change well 
below the cutoff frequency at low values of Q.
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Figure 17. Variation of phase shift as Q is varied. 
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Although not the subject of this article, the variation of amplitude 
response with Q may also be of interest. Figure 18 shows the 
amplitude response of a second-order section as Q is varied over 
above range.

The peaking that occurs in high-Q sections may be of interest 
when high-Q sections are used in multistage filters. While in 
theory it doesn’t make any difference in which order the sections 
are cascaded, in practice it is typically better to place low-Q 
sections ahead of high-Q sections so that the peaking will not 
cause the dynamic range of the filter to be exceeded. Although 
this plot is for low-pass sections, high-pass responses will show 
similar peaking.
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Figure 18. Amplitude peaking in 2-pole filter as Q is varied.

Higher-Order Filters
Transfer functions can be cascaded to form higher-order responses. 
When filter responses are cascaded, dB gains (and attenuations) 
add, and phase angles add, at any frequency. As noted earlier, 
multipole filters are typically built with cascaded second-order 
sections, plus an additional first-order section for odd-order filters. 
Two cascaded first-order sections do not provide the wide range 
of Q available with a single second-order section. 

A fourth-order filter cascade of transfer functions is shown in 
Figure 19. Here we see that the filter is built of two second-
order sections.

FILTER 1 AMPLIFIER 1 FILTER 2 AMPLIFIER 2

Figure 19. Cascaded transfer functions for a 4-pole filter. 

Figure 20 shows the effect on phase response of building a 
fourth-order filter in three different ways. The first is built with 
two Sallen-Key (SK) Butterworth sections. The second consists 
of two multiple-feedback (MFB) Butterworth sections. The 
third is built with one SK section and one MFB section. But just 
as two cascaded first-order sections don’t make a second-order 
section, two cascaded second-order Butterworth sections do not 
equal a fourth-order Butterworth section. The first section of a 
Butterworth filter has an f0 of 1 and a Q of 0.5412 (α = 1.8477). The 
second section has an f0 of 1 and a Q of 1.3065 (α = 0.7654).

As noted earlier, the SK section is noninverting, while the MFB 
section inverts. Figure 20 compares the phase shifts of these three 
fourth-order sections. The SK and the MFB filters have the same 
response because two inverting sections yield an in-phase response 
(–1 × –1 = +1). The filter built with mixed topologies (SK and 
MFB) yields a response shifted by 180° (+1 × –1 = –1).
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Figure 20. Fourth-order phase response with 
various topologies.

Note that the total phase shift is twice that of a second-order 
section (360° vs. 180°), as expected. High-pass filters would have 
similar phase responses, shifted by 180°.

This cascading idea can be carried out for higher-order filters, but 
anything over eighth-order is difficult to assemble in practice.

Future articles will examine phase relationships in band-, notch- 
(band-reject), and all-pass filters.
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