

ADI Analog Dialogue

相控阵天线方向图—— 第1部分:线性阵列波束 特性和阵列因子

技术主管Peter Delos、工程总监Bob Broughton以及 高级现场应用工程师Jon Kraft

简介

虽然数字相控阵在商业以及航空航天和防务应用中不断增长, 但许多设计工程师对相控阵天线并不算了解。相控阵天线设计 并非新生事物,经过数十年的发展,这一理论已经相当成熟, 但是,大多数文献仅适合精通电磁数学的天线工程师。随着相 控阵开始包含更多混合信号和数字内容,许多工程师可以从更 直观的相控阵天线方向图说明中获益。事实证明,相控阵天线 行为与混合信号和数字工程师每天处理的离散时间采样系统之 间有许多相似之处。

本系列文章的目的并非培养天线设计工程师, 而是向使用相控 阵子系统或器件的工程师展现他们的工作对相控阵天线方向图 的影响。

波束方向

首先, 让我们来看看一个直观的相控阵波束转向示例。图1是 一个简单的图示, 描绘了波前从两个不同方向射向四个天线元 件。在接收路径上的每个天线元件后面都会产生延时, 之后所 有四个信号再汇总到一起。在图1a中, 该延时与波前到达每个 元件的时间差一致。在本例中, 产生的延时会导致四个信号 同相到达合并点。这种一致的合并会增强组合器输出的信号。 在图1b中, 产生的延时相同, 但在本例中, 波前与天线元件垂 直。现在产生的延时与四个信号的相位不一致, 因此组合器输 出会被大幅削弱。

图1.理解转向角度。

在相控阵中,延时是波束转向所需的可量化变量。但也可以 通过相移来仿真延时,这在许多实现中是十分常见且实用的 做法。我们将在介绍波束斜视的部分讨论延时与相移的影 响,但目前我们先来了解相移实现,然后推导相应相移的波 束转向计算。

图2所示为使用移相器而非延时的相控阵排列。请注意,我们将 瞄准线方向(θ = 0°)定义为垂直于天线正面。瞄准线右侧定义为 正角θ,瞄准线左侧定义为负角。

图2.使用RF移相器的相控阵概念。

要显示波束转向所需的相移,可以在相邻元件之间绘制一组 直角三角形,如图3所示。其中,ΔΦ表示这些相邻元件之间的 相移。

图3.相移ΔΦ与波束转向角度的推导。

图3a定义了这些元件之间的三角恒等式, 各元件之间相隔距离 用(d)表示。波束指向与瞄准线相距 θ 的方向, 波束距离视平线的 角度为 φ 。在图3b中, 我们看到 θ 与 φ 的和为 90° 。这样我们就可 以计算L, 因为L = dsin(θ), L表示波传播的变量距离。波束转向所 需的延时等于波前遍历该距离L所用的时间。如果将L视作波长 的分数,则相位延迟可以用该延时替代。 $\Delta \Phi$ 等式可以定义为相 对于 θ , 如图3c所示以及等式1中的重复计算。

$$\Delta \Phi = \frac{2\pi dsin\theta}{\lambda} \tag{1}$$

如果元件间隔正好等于信号波长的一半,则可以进一步简化为:

$$\Delta \Phi = \pi \sin \theta, \text{ for } d = \frac{\lambda}{2}$$
⁽²⁾

我们以具体示例来计算这些等式。假设两个天线元件间隔 15 mm。如果一个10.6 GHz的波前以距离机械瞄准线30°的角度到 达,那么这两个元件之间的最佳相移是多少?

- $\theta = 30^{\circ} = 0.52 \text{ rad}$
- $\lambda = c/f = (3 \times 108 \text{ m/s})/10.6 \text{ GHz} = 0.0283 \text{ m}$
- $\Delta \Phi = (2\pi \times d \times \sin\theta)/\lambda = 2\pi \times 0.015 \times \sin(0.52)/0.0283 \text{ m} = 1.67 \text{ rad} = 95^{\circ}$

所以,如果波前以θ=30°到达,并将相邻元件的相位移动95°, 则可以使两个元件各自的信号实现一致叠加。这样就可以使该 方向的天线增益达到最大值。

为深入理解相移如何随着波束方向(θ)而变,图4以图形方式绘制 了不同条件下的这些等式图解。从这些图形中可以观察到一些有 趣的现象。比如,d=N2时,瞄准线附近的斜率约为3:1,即等式2 中的乘数π。这种情况还展示出,元件之间达到180°完整相移会使 波束方向达到理论相移90°。实际上,在真实的元件方向图中, 这是不可能实现的,但等式的确显示出理论上的理想值。需要注 意的是,d>N2时,不存在能够提供完整波束位移的相移。在后 面的文章中,我们将会介绍该情况会导致天线方向图中的栅瓣, 该图形是第一次表明,d>N2情况下的行为有所不同。

图4. 三种d/λ情况下,元件之间的相移ΔΦ与波束方向(θ)之间的关系。

等间隔线性阵列

上文推导的等式仅适用于两个元件。但实际的相控阵可能在两 个维度上包含数千个间隔开的元件。但出于本文用途,我们仅 考虑一个维度:线性阵列。

线性阵列为单元件宽度,其中包含N个元件。不同线性阵列,间 隔可能各有不同,但同一线性阵列通常是等间隔。因此,在本 文中,我们将各个元件之间的间隔设为统一距离d(图5)。该 等间隔线性阵列模型虽然是简化版,但基本介绍了天线方向图 如何形成以及各种不同的条件。我们可以进一步运用线性阵列 原理来理解二维阵列。

图5. 等间隔线性阵列(N=4)。

近场与远场

如何将上文针对N=2的线性阵列推导的公式运用到N=10,000的线 性阵列呢?现在,似乎每个天线元件都以稍微不同的角度指向 球形波前,如图6所示。

如果RF源较近,则每个元件的入射角不同。这种情况称为近场。我们可以算出所有这些角度,有时需要这么做是为了进行 天线测试和校准,因为我们的测试装置只能这么大。但如果RF 源较远,则就是图7所示的情况。

如果RF源较远,则球形波前的大半径会导致大致平行的波传播 路径。因此,所有波束角均相等,每个相邻元件的路径长度(L= d×sinθ)均超过隔壁元件。这样简化了数学计算,意味着我们推 导出来的双元件等式可以应用到数千个元件,但前提是这些元 件间隔相同。

但在什么情况下可以做出远场假设?远场有多远?虽然稍显主 观,但通常而言,远场定义是超过:

Far Field > 2 D^2/λ (3)

其中, D表示天线直径(对于等间隔线性阵列为(N-1)×d)

图7.RF信号源与线性阵列相隔较远。

对于小型阵列(D值小)或低频(λ值大),远场距离较小。但 对于大型阵列(或高频),远场距离可能长达数千米!这样测 试和校准阵列就十分困难。对于这类情况,可以使用更为详细 的近场模型,然后再按比例扩展到真实世界使用的远场阵列。

天线增益、方向性和孔径

在继续深入之前,先了解天线增益、方向性和孔径的定义十分 有用。首先介绍增益与方向性,因为这两个概念经常互换使 用。天线增益和方向性是相较于各向同性天线而言,各向同性 天线是所有方向均匀辐射的理想天线。方向性是指在特定方向 上测得的最大功率P_{max}与所有方向辐射的平均功率P_{ax}的比值。如 果没有定义方向,则方向性通过等式4确定。

$$D = \frac{P_{max}}{P_{av}} \tag{4}$$

在比较天线时,方向性是一个有用指标,因为它定义了集中辐射能量的能力。增益与方向性的方向图相同,但增益包含天线损耗。

Gain =
$$G = kD$$
, where $k = \frac{P_{rad}}{P_{in}}$ (5)

Prad是总辐射功率,Pin是输入到天线的功率,k表示天线辐射过程中的损耗。

接下来,我们将天线方向图视为三维方向的函数,将方向性视 为波束宽度的函数。

图8.投射到球体的面积的三维视图。

球体的总表面积是4π², 球体上的面积以球面度为单位定义, 等于球体中的4π球面度。因此, 来自各向同性辐射体的功率密 度为

$$\frac{P_{rad}}{4\pi r^2} \tag{6}$$

采用的单位为(W/m²)。

球体上的一块面积有两个角方向。在雷达系统中,这两个角方 向通常称作方位角和俯仰角。波束宽度可以描述为每个角方向 的函数(θ₁和θ₂):该组合会在球体上形成一块面积Ω₄。

DA是以球面度为单位表示的波束宽度,可以近似为 $D_A \approx \theta_1 \times \theta_2$ 。

确认04为球体上的面积后,方向性可以表示为

$$D = \frac{4\pi}{\Omega_A} \approx \frac{4\pi}{\theta_1 \theta_2} \tag{7}$$

我们将要考虑的第三个天线术语是孔径。天线孔径表示用于接 收电磁波的有效面积,包含相对于波长的函数。各向同性天线 的孔径为

$$A_isotropic = \frac{\lambda^2}{4\pi}$$
(8)

增益是相对于各向同性天线而言,产生的有效天线孔径为

$$A_e = \frac{G\lambda^2}{4\pi} \tag{9}$$

综合三个术语来看,可以将增益视作用于定义辐射方向图的角 的函数,表示天线中的效率(或损耗)。

线性阵列的阵列因子

目前,我们能够预测元件之间的最佳时间(或相位)变量来实现最大天线方向性。但我们非常需要了解和操作完整的天线增益方向图。这分为两个主要方面。首先,阵列的每个独立元件 (或许是贴片)都存在增益,称为元件因子(G_t)。其次,通过阵 列波束成型会产生增益影响,称为阵列因子(G₄)。全阵列天线增 益方向图是这两个因子的组合,如等式10所示。

$$G(\theta) = G_E(\theta) + G_A(\theta)$$
, in dB (10)

图9. 元件因子和阵列因子。

元件因子6_t表示阵列中单个元件的辐射方向图。其定义取决于 天线的几何形状和构造,而不是在运行中会发生变化的因素。 知道这一点很重要,因为这会限制总阵列的增益——尤其是靠 近视平线时。但由于我们不采用电子控制,因此可以将它保持 固定不变,作为总相控阵增益等式的影响因子。在本文中,我 们假设所有独立元件都有相同的元件因子。 接下来重点介绍阵列因子G_A。阵列因子的计算基于阵列几何结构(d表示等间隔线性阵列)和波束权重(幅度和相位)。推导等间隔线性阵列的阵列因子十分简单,但本文末尾引用的参考 文献中详细介绍了相关内容。

文献中使用的等式各有不同,具体取决于线性阵列参数的定义 方式。我们使用本文中的等式,以便与图2和图3中的定义保持 一致。由于主要问题在于增益如何变化,因此绘制相对于单位 增益的标准化阵列因子通常更具指导意义。标准化阵列因子可 以写为等式11。

$$AF[\theta] = \frac{\sin\left(\frac{N\pi d}{\lambda}\left[\sin(\theta) - \sin\left(\theta_{0}\right)\right]\right)}{N\sin\left(\frac{\pi d}{\lambda}\left[\sin(\theta) - \sin\left(\theta_{0}\right)\right]\right)}$$
(11)

$\theta_0 = beam \ angle$

我们已将波束角度θ₀定义为元件之间的相移的函数ΔΦ;因此, 我们也可以将标准化天线因子写为等式12。

$$AF[\theta, \Delta\Phi] = \frac{\sin\left(N\left[\frac{\pi d}{\lambda}\sin(\theta) - \frac{\Delta\Phi}{2}\right]\right)}{N\sin\left(\frac{\pi d}{\lambda}\sin(\theta) - \frac{\Delta\Phi}{2}\right)}$$
(12)

阵列因子等式中假设的条件包括:

- 元件间距相等。
- ▶ 元件之间的相移相同。
- ▶ 所有元件的幅度相同。

接下来,我们利用这些等式绘制多种阵列尺寸的阵列因子。

图10. 位于线性阵列瞄准线的标准化阵列因子,其中元件间隔为d = λ/2, 元件数量分别为8、16和32。

图11. 处于多种波束角度的32元件线性阵列的标准化阵列因子,其中元件 间隔为d=λ/2。

从这些数据中可以观察到以下几点:

- ▶ 第一个旁瓣位于-13 dBc,与元件数量无关。这是由阵列因子 等式中的sinc函数决定的。旁瓣可以通过逐渐减少元件中的 增益来改善,这一主题将在本系列后续内容中探讨。
- ▶ 波束宽度随着元件数量而减小。
- 扫描的波束离瞄准线越远,波束宽度会随之变宽。
- 零点的数量随着元件数量的增加而增多。

波束宽度

波束宽度是天线角度分辨率的一个指标。最常见的是通过半功率 波束宽度(HPBW)或主瓣的零点到零点的间隔(FNBW)定义波束宽度。 要找到HPBW,从峰值向下移动3 dB,并测量角距,如图12所示。

图12. 天线波束宽度的定义(所示线性阵列为N=8, d=λ/2, θ=30°)。

利用我们的标准化阵列因子等式,可以通过将等式3设为等于半 功率级别(3 dB或11/2) 来解算该HPBW。我们假设机械瞄准线(θ= 0°)、N=8且d=λ/2。

$$1/\sqrt{2} = \frac{\sin\left(8\left[\frac{\pi\lambda}{2\lambda}\sin(\theta) - \frac{\Delta\Phi}{2}\right]\right)}{8\sin\left(\frac{\pi\lambda}{2\lambda}\sin(\theta) - \frac{\Delta\Phi}{2}\right)}$$
(13)

然后解算ΔΦ得出0.35 rad。利用等式1并解算θ:

$$0.35 = \frac{2\pi\lambda \sin\theta}{2\lambda} \to \theta = 0.11 \text{ rad} = 6.4^{\circ}$$
(14)

该θ是到达3 dB点(即HPBW的一半)的峰值。因此,我们只需要 将它乘以2即可获得3 dB点之间的角距。这会得出12.8°的HPBW。

我们可以对等于0的阵列因子重复这个计算,并获得在前文所述 条件下的第一个零点到零点的间隔角度FNBW 28.5°。

对于等间隔线性阵列,等式15可计算出HPBW [1,2]的近似值。

$$\theta_B \sim \frac{0.886\lambda}{Ndcos\theta} \tag{15}$$

图13绘制了在*N*2元件间隔条件下多种元件数量的波束宽度与波 束角。

图13. 元件数量为16、32和100时, 元件间隔为1/2的波束宽度与波束角。

在此图中,值得注意的是与业界正在开发的阵列尺寸相关的一 些观察结果。

- 1°波束精度要求存在100个元件。如果方位角和俯仰角都有 此要求,则会产生包含10,000个元件的阵列。1°精度只会出 现在近乎理想条件下的瞄准线处。在现场阵列中,若要在 多种扫描角中保持1°精度,将会进一步增加元件数量。这 一观察结果会为超大阵列设定波束宽度的实际限制。
- ▶ 1000个元件的阵列是业界常见阵列。如果每个方向32个元件,则总共拥有1024个元件,靠近瞄准线处会产生小于4°的波束精度。
- ▶ 256个元件的阵列可以低成本量产,并且仍具有小于10°的波 束指向精度。这或许是许多应用能够接受的理想选择。
- 另外还需注意的是,对于上述任何情况,波束宽度在60°偏 移处将会翻倍。这是因为分母中有cosθ,受阵列投影缩减 的影响,即,从某个角度观察时,阵列看起来像是缩小的 交叉部分。

组合元件因子和阵列因子

上一节仅考虑了阵列因子。但为了找出总天线增益,还需要元件因子。图14描述了一个示例。在该示例中,我们使用一个简单的余弦形状作为元件因子,或标准化元件增益G_t(θ)。余弦滚降在相控阵分析中十分常见,如果考虑的是平面,则可以将它显示出来。在宽边,有一个最大面积。随着角度远离宽边,可见面积会随着余弦函数而减小。

在上文的λ/2间隔、均匀辐射方向图、含16个元件的线性阵列中 使用了阵列因子6_λ(θ)。总方向图是元件因子和阵列因子的线性 乘积,因此采用dB刻度,可以将它们相加。

图14. 元件因子和阵列因子组合形成总天线方向图。

随着波束远离瞄准线的一些观察结果:

- ▶ 主波束的幅值按照元件因子的速率衰减。
- ▶ 瞄准线上的旁瓣没有幅度损失。
- ▶ 在原理瞄准线时总体阵列的旁瓣性能下降。

天线绘图: 笛卡尔与极坐标

目前使用的天线方向图绘图一直采用笛卡尔坐标。但采用极坐 标绘制天线方向图也很常见,因为它们更容易表示从天线向外 部空间辐射的能量。图15是图12的重绘版本,但使用的是极坐 标。请注意,采用的数据完全相同,只是以极坐标系统重新绘 制。能够以任一表示方法呈现天线方向图是十分有意义的,因 为这两种系统在文献中均会使用。在本系列的大部分内容中, 我们将使用笛卡尔坐标,因为该表示方法更容易比较波束宽度 和旁瓣性能。

Amplitude (dB)

图15. N=8, d=λ/2, θ=30°的极坐标天线方向性绘图。

阵列相互作用

截至目前,所有图解和文字均描述的是阵列接收的信号。那么 对于发射阵列会有何不同呢?幸运的是,大多数天线性阵列存 在相互作用关系。因此,接收天线的所有图解、等式和术语与 发射天线相同。有时将波束视为由阵列接收会更容易理解。而 有时,比如就栅瓣而言,或许将阵列视为发射波束更为直观。 在本文中,我们通常将阵列描述为接收信号。但如果对您而言 难以想象,也可以从发射角度思考相同的概念。

小结

本系列第1部分至此结束。本文介绍了关于相控阵波束转向的概 念。推导并以图形方式展示了用来计算波束转向的阵列相移的 等式。然后通过观察元件数量、元件间隔和波束角对天线响应 的影响,定义了阵列因子和元件因子。最后,展示了以笛卡尔 与极坐标表示的天线方向图对比。

在本系列后续文章中,将进一步探讨相控阵天线方向图和减损。我们将研究天线变窄如何导致旁瓣缩小,栅瓣是如何形成的,以及在宽带系统中相移与延时的影响。本系列最后将对延迟块的有限分辨率进行分析,介绍它如何形成量化旁瓣并降低 波束分辨率。

参考文献

Balanis, Constantine A. *"天线理论:分析与设计"*。第三版, Wiley, 2005年。

Mailloux, Robert J. *"相控阵天线手册"*。第二版, Artech House, 2005年。

O'Donnell, Robert M. "雷达系统工程:简介"。IEEE, 2012年6月。

Skolnik, Merrill. "雷达手册"。第三版, McGraw-Hill, 2008年。

作者简介

Peter Delos是ADI公司航空航天和防务部的技术主管,在美国北卡罗莱纳州格林斯博罗工作。他于1990年 获得美国弗吉尼亚理工大学电气工程学士学位,并于2004年获得美国新泽西理工学院电气工程硕士学 位。Peter拥有超过25年的行业经验。其职业生涯的大部分时间花在高级RF/模拟系统的架构、PWB和IC设 计上。他目前专注于面向相控阵应用的高性能接收器、波形发生器和频率合成器设计的小型化工作。 联系方式: peter.delos@analog.com。

作者简介

Bob Broughton于1993年开始在ADI公司工作,历任产品工程师和IC设计工程师等职位,目前担任航空航天和防务部的工程总监。加入ADI之前,Bob曾在Raytheon担任RF设计工程师并在Peregrine Semiconductor担任RFIC设计师。Bob于1984年毕业于西弗吉尼亚大学,获电气工程学士学位。联系方式:<u>bob.broughton@analog.com</u>。

作者简介

Jon Kraft是高级现场应用工程师,工作地点在科罗拉多州,已在ADI公司工作了13年。他主要致力于 软件定义无线电和航空航天相控阵雷达应用。他拥有罗斯豪曼理工学院电子工程学士学位和亚利桑 那州立大学电子工程硕士学位。他拥有九项专利,六项与ADI相关,一项正在申请中。联系方式: jon.kraft@analog.com。

如需了解区域总部、销售和分销商,或联系客户服务和 技术支持,请访问<u>analog.com/cn/contact</u>。

向我们的ADI技术专家提出棘手问题、浏览常见问题解答,或参与EngineerZone在线支持社区讨论。 请访问<u>ez.analog.com/cn</u>。 ©2020 Analog Devices, Inc. 保留所有权利。 商标和注册商标属各自所有人所有。

"超越一切可能"是ADI公司的商标。

请访问analog.com/cn