

ADI AnalogDialogue

使用LTspice分析 状态监控系统中的 振动数据

Simon Bramble 现场应用工程师

摘要

本文介绍如何使用LTspice[®]分析状态监控系统中振动数据的频 谱。以便能够在工业机械电机故障的早期发出预警。同时 介绍如何从Microsoft Excel[®]电子表格中提取X、Y和Z平面数据, 并将其转化为可以通过LTspice进行傅里叶变换的格式,以生 成振动数据的谐波量图。

简介

数字技术的进步没有丝毫放缓的迹象,已渗透到我们生活的方 方面面。为机器提供智能并非奥威尔式的反乌托邦。由于自动 化反馈环路有助于减少直接维护时间,因此可提高工厂自动化 的效率。

工业4.0描述了将大数据的优势带入工厂车间的概念。装有传感 器的机器可监控自身的性能并相互通信,从而共同分担整个工 作载荷,同时向后台提供重要的诊断信息,而且无论在同一座 建筑物里还是在不同的大陆都可以实现。

对ADI产品进行的一项快速调查显示。ADI公司主要致力于为工业 物联网(IIOT)提供解决方案,即从传感器到云的各种稳定可靠的 高性能信号链组件。

在工业自动化中的一个应用领域就是状态监控(CbM),通过仔细 校准机器的标称工作特性,然后使用本地传感器密切监控机器 本身的状态。偏离标称信号的状态即表示机器需要维护。因 此, 配备状态监控系统的机器可根据实际需要进行维护, 而不 是相对随意地安排维修计划。

确定电机运行状态的一种比较好的方法是检查其振动特征。ADI 的MEMS技术可用于持续监控电机的振动特征,并与已知无故障 电机的特征比较,由此判断电机的运行状况。事实上,每种电 机故障都有其自己的独特谐波特征。通过查看振动模式的谐波 成分,可以检测轴承、内环和外环,甚至齿轮箱齿中的故障。

在LTspice中分析振动数据

为了产生用于在LTspice中进行傅里叶分析的数据,将三个ADXL1002 加速度计连接到电机,如图1所示,以测量侧向、垂向和纵向 (分别为X、Y和Z) 振动。

Outer Race Inner Race Ball Spin 12 lb. Load

Processor Board

to Measure Actual RPM

图1.分别在侧向、垂向和纵向测得X、Y和Z通道的振动。

My/nalog in 请访问: analog.com/cn ez

将振动数据下载并保存到Microsoft Excel电子表格中。在500 kSPS速率下进行数据采样,通过一秒振动数据得到三列Microsoft Excel数据,每列数据长500,000行。X、Y和Z数据样本如图2所示。

	Α	В	С	
1	35403	34899	35171	
2	35411	34900	35180	
3	35403	34910	35184	
4	35404	34912	35181	
5	35412	34921	35185	
6	35404	34913	35174	
7	35401	34915	35177	
8	35388	34917	35181	
9	35399	34927	35181	
10	35399	34924	35178	

图2.提取X、Y和Z数据。

现在可检查此数据的谐波成分,以确定电机的运行状况。傅里 叶分析是从波形中提取分量频谱的数学过程。纯正弦波的频谱 中仅包含一个频率,称为基波频率。如果正弦波失真,将出现 除基波频率之外的其他频率。通过分析电机振动模式的频谱, 可精确地诊断其运行状况。

由于能够执行傅里叶分析的硬件和软件通常价格很高,所以这 里我们介绍一种可以对MEMS数据进行傅里叶分析的方法,基本 上无需任何成本。

LTspice是一款功能强大、可免费使用的电路仿真器,它可以使 用从状态监控系统的MEMS传感器中获取的振动数据,通过傅里 叶分析绘制任何波形的频谱。

通过图3所示的数据格式,LTspice能够生成傅里叶分析图,其中 每个振动数据点都与其相应的时间戳配对。

	A	В
1	time1	value1
2	time2	value2
3	time3	value3
4		
5		
6		•
7		
8		

图3. 时间和电压实例的格式。

使用Microsoft Excel将数据转换成这种格式相对比较容易。过程如下。

首先,将图2中的数据列分成Excel文件中的三个工作表,命名为 X、Y和Z,如图4所示。

11	35396	
12	35405	
13	35391	
14	35406	
15	35407	
16	35409	
17	35418	
18	35406	
19	35422	
20	35423	
21	35430	
4	X	Y Z (+)

图4. 创建三个工作表后,将X、Y和Z数据复制到相应的工作表中。

在数据左侧插入一列——此列为每个数据值的时间戳。

由于在一秒内提取了500,000个数据样本,每个数据点间隔2 µs。 因此,在新列的第一个单元格中,输入

2E-6

代表2µs处的第一个时间戳。

填充其余时间戳列数值的最简单方式是使用Series命令。在 Microsoft Excel的**搜索**框中, 键入 "Series" 以显示图5所示的菜单 选项。

从下拉菜单中选择**填充系列**或**模式(Fill Series** or **Pattern)**, 然后选 择**系列...(Series...)**。

√iew	Help	, O series	×		
		Fill Series or Pattern	×	Down	
	200	Insert Combo Chart	•		580
	—	Math & Trig	•	T Up	fill F
		Find in Document		← Left	
	5	C "series"		Across Worksheets	0
		Help		Ecoss monsmeets.	_
		⑦ Get Help on *series"	E.	Series	
1	н	Smart Lookup on "series"		Justify	Ρ
				Elash Fill	

图5. 如何在Microsoft Excel中填充多个单元格。

此时出现图6所示的对话框,选中**列(Columns)**和**线性(Linear)**单选 按钮。在**步进值(Step value)**中输入2E-6,在**停止值(Stop value)**中 输入1。

Series		?	×
Series in	Туре	Date u	nit
O <u>R</u> ows	() Linear	O Da	y
() <u>C</u> olumns	O <u>G</u> rowth	⊖ w	eekday
	O <u>D</u> ate	Ом	onth
	O Auto <u>E</u> ill	⊖ Ye	ar
Irend tep value: 2E-	6 St <u>o</u> p va	alue: 1	
	OK	Ca	ncel

图6. 使用线性扩展数据集填充单元格。

点击**确定(0K)**填充左列数据时间戳,从2 µs递增到1秒。先填充前 几个值,然后将光标一直拖到数据范围末尾的底部单元格,也 可达到同样的目的——但对于500,000行数据,需要拖得很长。

现在就得到LTspice可以处理的数据格式,如图7所示。

1	A	В	С
1	2.00E-06	35403	
2	4.00E-06	35411	
3	6.00E-06	35403	
4	8.00E-06	35404	
5	1.00E-05	35412	
6	1.20E-05	35404	
7	1.40E-05	35401	
8	1.60E-05	35388	
9	1.80E-05	35399	
10	2.00E-05	35399	
11	2.20E-05	35396	
12	2.40E-05	35405	
13	2.60E-05	35391	
14	2.80E-05	35406	
15	3.00E-05	35407	
16	3.20E-05	35409	
17	3.40E-05	35418	
18	3.60E-05	35406	
19	3.80E-05	35422	
20	4.00E-05	35423	

图7.显示时间戳和相应数据样本的列。

如果数据集很大,采样间隔短,则Microsoft Excel可能会将时间戳 四舍五入为不恰当的小数位数。如果出现这种情况,则突出显示 第一列,然后选择**格式化(Format) > 格式化单元格(Format Cells)**, 如图8所示。

图8. 重新选择单元格的格式以去除所有舍入误差。

选择合适的小数位数,如图9所示。

ormat Ce	lls				
Number <u>C</u> ategory:	Alignment	Font	Border	Fill	P
General Number Currency	^	9.999	le 976E-01		
Accountin Date Time Percentag Fraction	ng Je	<u>D</u> ecima	al places: 5	* *	
Scientific Text Special Custom					

图9.将时间戳分辨率增加到小数点后5位。

在填充时间戳列并扩展有效位数后,将每个工作表的两列复制 到记事本或其他文本编辑器文件中,如图10所示。 Vibration x fault_10Hz.txt - Notepad

File Edit Format	View	Help
2.00000E-06		35403
4.00000E-06		35411
6.0000E-06		35403
8.00000E-06		35404
1.00000E-05		35412
1.20000E-05		35404
1.40000E-05		35401
1.60000E-05		35388
1.80000E-05		35399
2.00000E-05		35399
2.20000E-05		35396
2.40000E-05		35405
2.60000E-05		35391
2.80000E-05		35406
3.00000E-05		35407
3.20000E-05		35409
3.40000E-05		35418
3.60000E-05		35406
3.80000E-05		35422
4.00000E-05		35423
4.20000E-05		35430
4.40000E-05		35439
4.60000E-05		35436
4.80000E-05		35438
F 00000F 0F		25420

LTspice命令

.options plotwinsize=0 numdgt=15

去除了LTspice中的默认压缩设置,有时会产生更清晰的结果。 如果忽略此行,仿真运行速度会更快,但产生的结果可能不太 精确。

完成原理图后,右键单击每个电压源,选择**高级(Advanced)**按 钮,选中PWL文件(PWL File)单选按钮,然后输入包含振动数据的 相应文本文件的文件名,如图12所示。这将创建一个分段线性 电压源,其中包含一系列电压及其相应的时间实例。如果这些 文本文件与LTspice文件存储在同一目录中,则操作会更简单。

Independent Voltage Source - V1

	Functions	
(none)		
O PULSE(V1	/2 Tdelay Trise Tfall Ton Period N	lcycles)
O SINE(Voffse	t Vamp Freq Td Theta Phi Ncycle	s)
O EXP(V1 V2	Td1 Tau1 Td2 Tau2)	
SFFM(Voff	/amp Fcar MDI Fsig)	
O PWL(t1 v1 t	2 v2)	
PWL FILE:	"Vibration x fault_10Hz.txt"	Browse

图12. 根据振动数据创建分段线性电压源。

然后应使用以下命令进行配置,在原始振动测试过程中运行瞬 态分析

.tran 1

最后运行仿真。仿真可能需要一段时间才能完成,具体取决于 数据点和瞬态分析时长。

故障电机和非故障电机的仿真结果如图13所示。该实验在一台 转速为587.3 rpm的电机上进行,电机的轴承出现故障,外环未对 准,负载为12磅。图中还显示了同一转速下无故障电机的振动 模式。显然,与非故障电机相比,故障电机的振动特征幅度明 显更高。

图13. 故障和非故障电机振动数据的时域结果。

突出显示**波形(Waveform)**窗口,然后从菜单栏中选择**查看(View)>** FFT。这将基于瞬态数据计算FFT。

图10.包含时间和振动数据的文本文件。

总共应该有三个文本文件,其中包含状态监控系统中X、Y和Z轴的振动数据。

现在,可将此数据直接读入LTspice中。

按照图11所示在LTspice中构建原理图。在该设计中,有六个电压 源分别对应于故障和非故障的X,Y,Z轴的数据。这样就可以对 新电机的振动数据执行傅里叶分析,并将分析结果与疑似故障 电机数据的傅里叶分析进行比较。此方法的一大优势是新(非 故障)电机的频率图可以叠加在疑似故障电机的频率图上,因 此,性能差异一目了然。

图11.显示故障电机和非故障电机振动数据电压输出的LTspice原理图。

从图2中的数据可以看到,在35,000 V这样如此高的失调电压上, 我们通过数字只能看到很小的变化。在LTspice中进行仿真时, 这些数据会转换成一个35,000 V的直流失调电压,并在此失调电 压上还会叠加一个交流波形。

在傅里叶分析图中,此失调电压在频谱位置的直流点上表现为 很大的一个尖刺,因此,当LTspice自动缩放Y轴时,相关谐波比 例极小。右键单击X轴,指定高于直流电压的频率范围,由此可 忽略直流失调电压——5Hz至1kHz应该足够。

右键单击Y轴,选择**线性(Linear)**单选按钮以查看谐波,如图14 所示。

图14. 去除直流杂散在线性坐标系中显示的傅里叶图。

在图形区单击鼠标右键,可添加额外的绘图窗格,即可将振动频谱成分以X、Y和Z图分别呈现,如图15所示。

图15.X、Y和Z振动图分离。

可以清楚地看到电机的10 Hz旋转频率,以及60 Hz、142 Hz和172 Hz 处存在明显的谐波。虽然本文不会分析电机内部的哪些组件导 致了这些谐波,但毫无疑问,振动模式因电机磨损而改变。

结论

ADI的MEMS加速度计系列能够提供关键数据,进而在早期检测出 电机故障,但这只是解决方案的一半。必须通过傅里叶分析仔 细研究这些数据。遗憾的是,能够执行傅里叶分析的设备或软 件通常很昂贵。而LTspice能够免费精确分析CbM数据,从而实现 早期检测和诊断机器故障。

作者简介

Simon Bramble于1991年毕业于伦敦布鲁内尔大学,拥有电气工程和电子学学位,专门从事模拟电子器件和电源工作。他的职业生涯主要从事模拟电子器件工作,就职于凌力尔特(现为ADI公司的一部分)。 联系方式:<u>simon.bramble@analog.com</u>。

如需了解区域总部、销售和分销商,或联系客户服务和 技术支持,请访问<u>analog.com/cn/contact</u>。

向我们的ADI技术专家提出棘手问题、浏览常见问题解答,或参与EngineerZone在线支持社区讨论。 请访问ez.analog.com/cn。 ©2020 Analog Devices, Inc. 保留所有权利。 商标和注册商标属各自所有人所有。

"超越一切可能"是ADI公司的商标。

