

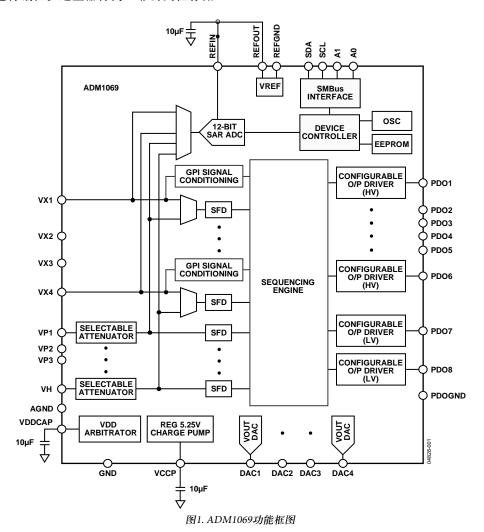
AN-721 应用笔记

One Technology Way • P.O. Box 9106 • Norwood, MA 02062-9106, U.S.A. • Tel: 781.329.4700 • Fax: 781.461.3113 • www.analog.com

ADM1068/ADM1069/ADM1168/ADM1169的配置寄存器

作者: Peter Canty、Michael Bradley

简介


ADM1068/ADM1069/ADM1168/ADM1169系列是完全可编程的电源时序控制器和监控器,可以为采用多个电压源的系统提供完整的电源管理解决方案,其应用包括电信基础设施设备(中央交换局和基站)中的线路卡以及服务器中的刀片卡等。

ADM1068/ADM1069/ADM1168/ADM1169的所有特性都可以通过SMBus接口进行编程。这些器件内置非易失性存储

器(EEPROM), 其特性的配置可以存储在片内, 并在每次 上电时下载。

本应用笔记简要介绍这些器件的功能,并详细说明配置器 件所需的寄存器。

有关ADM1068/ADM1069/ADM1168/ADM1169的特性和功能的更多信息,请参阅相关数据手册。

Rev. A | Page 1 of 36

目录

间介	1
修订历史	2
更新存储器、使能块擦除、下载EEPROM	3
输入	4
输出	12
时序控制引擎	17
配置时序控制引擎状态以写入ADM1168/ADM116	69的黑盒
EEPROM	22
EEPROM	22

ADM1069/ADM1169 ADC	24
ADM1069/ADM1169 DAC	27
报警、故障、状态	
报警	
故障/状态报告	
ADM1168/ADM1169的黑盒状态寄存器和故障记录	
REVID寄存器的使用	

修订历史

2010年12月—修订版0至修订版A

增加ADM1168和ADM1169近	£篇
更改"简介"部分	1
删除图2、图4、图5、图7至图10;图号重新排序	£篇
表6分解为表6和表7;表格编号重新排序	20
增加表9和表11	21
表12分解为表12和表21	24
增加"ADM1168/ADM1169的黑盒状态寄存器和故目	章 记
큣"	. 31
增加"REVID寄存器的使用"部分	31

2006年2月—修订版0:初始版

更新存储器、使能块擦除、下载EEPROM

ADM1068/ADM1069/ADM1168/ADM1169的配置寄存器可以通过SMBus接口更新。必须将这些器件明确设置为允许更新配置寄存器。关于如何配置这些器件,详见表1。

这些器件内置易失性和非易失性存储器,必须正确访问以妥善更新对器件配置所做的任何更改。器件的易失性存储器采用双缓冲锁存结构。有关这种结构的详情,请参阅相关器件的数据手册。请注意,ADM1069/ADM1169的任何ADC回读功能都不是双缓冲式。

表1中的寄存器/位映射详情显示下列操作所需的位:

- 实时更新易失性存储器。
- 离线更新易失性存储器, 然后一次更新全部内容。
- 使能块擦除。
- EEPROM内容下载到RAM。

ADM1068/ADM1069/ADM1168/ADM1169有1024字节的 EEPROM, EEPROM分配如下:

- 256字节用于器件配置
- 256字节用作暂存区(例如, 电路板版本号)
- 512字节用于时序引擎配置

256字节的器件配置EEPROM分为8页,每页32个字节,这些字节位于寄存器0xF800到寄存器0xF8FF。

对于前5页,EEPROM寄存器与本数据手册所述的易失性 RAM寄存器之间直接一一对应。例如,如果VP1的过压阈 值位于RAM中的寄存器0x00,则它存储在EEPROM中的寄 存器0xF800。

其它3页保留用于器件的出厂校准,用户无法访问。如果尝试读写寄存器0xF8A0至寄存器0xF8FF,ADM1068/ADM1069/ADM1168/ADM1169将产生NACK(无应答)。

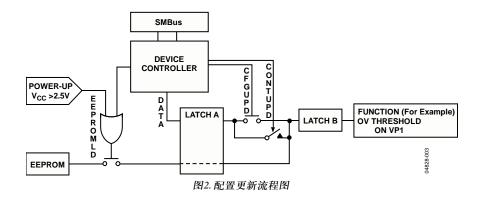


表1.

寄存器	寄存器名称	位号	名称	R/W	描述
0x90	UPDCFG	7:3	不适用		无法使用。
		2	EEBLKERS	R/W	使能配置EEPROM块擦除。
		1	CFGUPD	W	利用保持寄存器更新配置寄存器(自清零)。
		0	CONTUPD	R/W	使能配置寄存器的连续更新。
0xD8	UDOWNLD	7:1	不适用		无法使用。
		0	EEDWNLD	W	从EEPROM下载配置数据。此操作在上电时也会自动发生。完成时自清零。
0xF4	MANID	7:0	MANID	R	制造商ID,返回0x41。可用来验证与器件的通信。

输入

ADM1068/ADM1069/ADM1168/ADM1169具有8路输入,其中4路是专用电源故障检测器、高度可编程的复位发生器,其输入可以检测过压、欠压或窗外故障。利用这4路输入,可以监控0.573 V至14.4 V范围内的电压。欠压和过压阈值能以8位分辨率进行编程。用于检测输入故障的比较器具有数字可编程的迟滞,以便消除电源反弹的影响。每路输入还具有毛刺滤波器,其超时可在100 μs范围内进行编程。

其他4路输入具有双重功能,既可以用作模拟输入,也可以用作通用逻辑输入。作为模拟输入,这些通道的功能与上述通道完全相同。区别主要在于这些输入没有内部衰减电阻,而是向输入引脚提供真正的高阻抗。其输入范围限于0.573 V至1.375 V,但高阻抗意味着可以利用外部电阻分压网络将任何超范围电源电压分压至范围内的值。因此,借助适当的外部电阻网络,这些通道便可监控+48 V、+24 V、-5 V和-12 V电源。

作为数字输入,这些引脚兼容TTL和CMOS,可用来检测使能信号(如PWRGD和POWRON)。在这种工作模式下,这些引脚的模拟电路可以映射到专用模拟输入引脚之一(VP1至VP3和VH)。因此,VX1可以用作VP1上的第二检测器,VX2可以与VP2一起使用,VX3可以与VP3一起使用,VX4可以与VH一起使用。利用第二检测器,用户可以设置报警和故障功能。

如果数字输入悬空, ADM1068/ADM1069/ADM1168/ADM1169将在各引脚上提供一个内部吸电流, 使得各引脚可以被拉至GND, 从而处于已知状态。

表2详细列出了用来配置输入以执行本部分所述功能的所有寄存器。

表2. 用来配置输入的寄存器

数字	水华· 用:	木癿旦棚へ				1								
VP1	输入	寄存器	寄存器名称	位	位的名称	R/W	描述							
OxOD														
R/W					011 7 211									
OxOA PSIUVHYST 7.5		OXOS	1310111131		HV4至HV0	R/W			重 U PS	10VTH减丰的5位记费				
OxOB		0.00	DC111V/TLI											
OxOC					00/至000	Ft/ VV			的OUX	子祖。				
OxOC		OXOR	PSTUVHYST						# DV L :	THE CALL OF THE AT A STATE OF				
A:2									需增加:	到PSIUVIH的5位迟滞。				
Note		0x0C	SFDV1CFG							Lada				
Description				4:2	GF2至GF0	R/W				7				
Page							_							
Note							-	0						
Note							-	1	0					
Note							0	1	1	20				
Decomposition Part							1	0	0	30				
Description Part							1	0	1	50				
Description Part							1	1	0	75				
OxOD SFDV1SEL 7.2 1:0 SEL1至SEL0 R/W 1 1 大安市 大法使用。							1	1	1	100				
OxOD SFDV1SEL 7:2 1:0 SEL1至SEL0 R/W				1:0	FLT1至FLT0	R/W	FLT1	FLT0	故障	类型选择				
None							0	0	OV					
None							0	1	UV或	₹OV				
None							1	0						
DX10							1	1						
Page		0x0D	SEDV1SEI	7.2				i 用	7414					
VP2		0,000	0.01.022		SFI 1至SFI 0	R/W			0 3	方国选择				
VP2					022. 2020	1.0,11	-	_						
VP2							_							
VP2							-							
VP2							1	1						
Ox11	\/D2	0×10	PS2OVTH	7:0	OV7至OV0	R/M	VP2的							
Ox12	VIZ				007至000	11/ VV			りの正数	丁 但。				
Ox12		OXII	1 320 111131		UVAZUVO	D/M			∉ U DC	20八八日末土的5份、汨洲				
Dx13		0.12	DCOLIVITU											
Ox14 SFDV2CFG 7:5 4:2 GF2至GF0 R/W GF2 GF1 GF0 延迟(μs) R/W GF2 GF1 GF0 延迟(μs) O O O O O O O O O O O O O O O O O O O					00/至000	K/VV			的8世级	子徂。				
Ox14		UX 13	PSZUVHYSI						æ 1₩ 1	ZIDCAUVTUALE (CANT)				
A:2 GF2至GF0 R/W GF2 GF1 GF0 延迟(μs) 0		0.14	CED VOCEC						清潤川	到PSZUVIH的S位及滞。				
1:0 FLT1至FLTO R/W FLT1 FLT0 故障类型选择 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0X14	SFDV2CFG		CE375CE0	D // A/			CEO	77.107				
1:0 FLT1至FLT0 R/W FLT1 FLT0 故障类型选择 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				4:2	UFZ至UFU	K/W								
1:0 FLT1至FLT0 R/W									_					
1:0 FLT1至FLT0 R/W														
1:0 FLT1至FLT0 R/W 1 0 0 30 1 50 1 1 1 1 1 1 1 1 1														
1:0 FLT1至FLT0 R/W														
1:0 FLT1至FLT0 R/W								1						
1:0 FLT1至FLT0 R/W 1 1 1 100							1	0	1					
1:0 FLT1至FLT0 R/W FLT1 FLT0 故障类型选择 0 0 OV 0 1 UV或OV 1 0 UV							1	1	0					
0 0 OV 0 1 UV或OV 1 0 UV														
0 1 UV或OV 1 0 UV				1:0	FLT1至FLT0	R/W	FLT1	FLT0		类型选择				
1 0 UV							0	0						
							0	1		OV				
_							1	0						
							1	1	关闭					

输入	寄存器 编号	寄存器名称	位	位的名称	R/W	描述				
1017	0x15	SFDV2SEL	7:2	E13 E19	1 1 1 1	无法任	#用.			
		0.012022	1:0	SEL1至SEL0	R/W	SEL1	SEL	0 范	围选择	
				221. 7.222	1.0,11	0	0		<u>国起开</u> 间范围(2.5	V至6 V)
						0	1		范围(1.25 V	
						1	0			73 V至1.375 V)
						1	1			73 V至1.375 V)
VP3	0x18	PS3OVTH	7:0	OV7至OV0	R/W	<u> </u>	10八倒/		立数字值。	75 (至1.575 ()
VIJ	0x10	PS3OVHYST	7:5	007至000	10,00	无法(団はつい	业双于 ഥ。	
	UXIS	1 330 11131	4:0	HY4至HY0	R/W			- 重儿	I PS3OVTH)	减去的5位迟滞。
	0x1A	PS3UVTH	7:0	UV7至UV0	R/W	1			公数字值。	吸入1930年21年。
	0x1A 0x1B	PS3UVHYST	7:5	00/至000	11/ VV	无法化		耳れる匠	业奴于但。	
	OXID	1 330 VIII 31	4:0					- 重福	数十m系liDC311	VTH的5位迟滞。
	0x1C	SFDV3CFG	7:5			ヨロV		,而华	ョ川判1230	VIII的3位公佈。
	OXIC	3i DV3Ci G	4:2	CESECEO	R/W	GF2	_{定円。} GF	1	GF0	ZT 20(c)
			4.2	GF2至GF0	Ft/ VV			1		延迟(μs)
						0	0		0	0
						0	0		1	5
						0	1		0	10
						0	1		1	20
						1	0		0	30
						1	0		1	50
						1	1		0	75
			1.0	FIT1本FIT0	D/M	1	1	<u> </u>	1 +4-10-2-24-24	100
			1:0	FLT1至FLT0	R/W	FLT1	FL	10	故障类型	2. 选择
						0	0		VO	
						0	1		UV或OV	
						1	0		UV CH	
	0.45	CED) (SCE)				1	1		关闭	
	0x1D	SFDV3SEL	7:2	CEL 4 T CEL 0	D 444	无法位			******	. 177
			1:0	SEL1至SEL0	R/W	SEL1		LO	范围选	
						0	0			.围(2.5 V至6 V)
						0	1			(1.25 V至3 V)
						1	0			.围(0.573 V至1.375 V)
						1	1			.围(0.573 V至1.375 V)
VH	0x20	PSVHOVTH	7:0	OV7至OV0	R/W			值的8位	数字值。	
	0x21	PSVHOVHYST	7:5			无法位				
			4:0	HY4至HY0	R/W					H减去的5位迟滞。
	0x22	PSVHUVTH	7:0	UV7至UV0	R/W	1		的8位	数字值。	
	0x23	PSVHUVHYST	7:5			无法位				
			4:0					,需增	曾加到PSVH	IUVTH的5位迟滞。
	0x24	SFDVHCFG	7:5			无法位				
			4:2	GF2至GF0	R/W	GF2	GF1	GF0)
						0	0	0	0	
						0	0	1	5	
						0	1	0	10	
						0	1	1	20	
						1	0	0	30	
						1	0	1	50	
						1	1	0	75	
						1	1	1	100	

输入	寄存器 编号	寄存器名称	位	位的名称	R/W	描述				
			1:0	FLT1至FLT0	R/W	FLT1	FLT0	故	位类型选择	
						0	0	0	V	
						0	1	U	V或OV	
						1	0	U	V	
						1	1	关	於闭	
	0x25	SFDVHSEL	7:1			无法使	用。			
			0	SEL0	R/W	SEL0	范围证	先择		
						0	高范围	围(6.0	0 V至14.4 V)	
						1			(2.5 V至6.0 V)
VX1	0x30	X10VTH	7:0	OV7至OV0	R/W			内8位	拉数字值。	
	0x31	X10VHYST	7:5			无法使				
			4:0	HY4至HY0	R/W					会的5位迟滞。
	0x32	X1UVTH	7:0	UV7至UV0	R/W			内8位	放字值。	
	0x33	X1UVHYST	7:5			无法使				
			4:0					需增	加到X1UVTF	l的5位迟滞。
	0x34	SFDX1CFG	7:5	CE2.7.CE2	5.044	无法使				
			4:2	GF2至GF0	R/W	GF2	GF1		GF0	延迟(µs)
						0	0		0	0
						0	0		1	5
						0	1		0	10
						0	1		1	20
						1 1	0		0 1	30 50
						1	1		0	75
						1	1		1	100
			1:0	FLT1至FLT0	R/W	FLT1	FLT0	-	<u>'</u> 故障类型选	
			1.0	121121210	10,00	0	0	-	OV	37
						0	1		UV或OV	
						1	0		UV	
						1	1		关闭	
	0x35	SFDX1SEL	7:2			无法使	用。		, , , ,	
			1:0	SEL1至SEL0	R/W	SEL1	SELO)	功能选择	
						0	0		仅SFD(故障	·)
						0	1		仅GPI(故障)	
						1	0		GPI(故障)+绿	第二VP1 SFD(报警)
						1	1		无功能(输入	、仍可用作ADC输入)
	0x36	XGPI1CFG	7			无法使	用。			
			6	INVIN	R/W	如为高	6电平,	则输	入反相。	
			5	INTYP	R/W	确定引	脚上检	测到	电平还是边沟	元 日。
						INTYP	电平/	边沿	ī	
						0	检测时	电平		
						1	检测i			
			4:3	PULS1至 PULS0	R/W	输入上	:检测到;	力沿[时,脉冲输出	出的长度。
						PULS1	PUL	S0	脉冲长度(μs)
						0	0		10	
						0	1		100	
						1	0		1000	
						1	1		10,000	

输入	寄存器 编号	寄存器名称	位	位的名称	R/W	描述					
			2:0	GF2至GF0	R/W	毛刺滤波器,忽略该时间长度内的脉冲。					
						GF2	GF1	GF0	延迟(µs)		
						0	0	0	0		
						0	0	1	5		
						0	1	0	10		
						0	1	1	20		
						1	0	0	30		
						1	0	1	50		
						1	1	0	75		
						1	1		100		
'X2	0x38	X2OVTH	7:0	OV7至OV0	R/W		<u>L'</u> OV阈值				
ΛZ	0x39	X2OVHYST	7:5	007至000	10,00	无法使		ило пу	X 丁		
	0,39	AZOVIIISI	4:0	HY4至HY0	R/W			∉Ⅱ ✓	2OVTH减去的5位迟滞。		
	0x3A	X2UVTH	7:0	UV7至UV0	R/W						
		_		00/至000	F/VV		UV阈值	的0世多	又子徂。		
	0x3B	X2UVHYST	7:5			无法使		as IW to	· Zilvalivatidas Pariti		
	0.26	CEDVO CE C	4:0					需增加	n到X2UVTH的5位迟滞。		
	0x3C	SFDX2CFG	7:5			无法使			I		
			4:2	GF2至GF0	R/W	GF2	GF1	GF0	延迟(µs)		
						0	0	0	0		
						0	0	1	5		
						0	1	0	10		
						0	1	1	20		
						1	0	0	30		
						1	0	1	50		
						1	1	0	75		
						1	1	1	100		
			1:0	FLT1至FLT0	R/W	FLT1	FLT0	故障			
						0	0	OV			
						0	1	UV或	OV		
						1	0	UV			
						1	1	关闭			
	0x3D	SFDX2SEL	7:2			无法使	見用。	1			
			1:0	SEL1至SEL0	R/W	SEL1	SEL0	功能	选择		
						0	0		D(故障)		
						0	1		出(故障)		
						1	0		汝障)+第二VP2 SFD(报警)		
						1	1	-	能(输入仍可用作ADC输入)		
	0x3E	XGPI2CFG	7			无法侵		76-971	RE(相)()		
	UXJL	AGF12CI G	6	INVIN	R/W			1 4 1 1m	C-141		
			5	INTYP			5电平,				
			5	INTTP	R/W			测判电	平还是边沿。		
						INTYP			电平/边沿		
						0			检测电平		
						1			检测边沿		
			4:3	PULS1至 PULS0	R/W	输入上	上检测到	边沿时	,脉冲输出的长度。		
						PULS1	PU	LS0	脉冲长度(μs)		
	1					0	0		10		
						0	1		100		
						0	1 0		100 1000		

输入	寄存器 编号	寄存器名称	位	位的名称	R/W	描述								
			2:0	GF2至GF0	R/W	毛刺湖	毛刺滤波器,忽罩			略该时间长度内的脉冲。				
						GF2	GF1	GF0		<u>ζ</u> (μs)				
						0	0	0	0					
						0	0	1	5					
						0	1	0	10					
						0	1	1	20					
						1	0	0	30					
						1	0	1	50					
						1	1	0	75					
						1	1	1	100					
VX3	0x40	X3OVTH	7:0	OV7至OV0	R/W		 OV阈值	_						
VAS	0x40 0x41	X3OVHYST	7:5	007至000	10,00	无法使		.н.јо ш.з	奴丁旧	1.0				
	UX-11	ASSVIIISI	4:0	HY4至HY0	R/W			重 ll x	(30\/T	H减去的5位迟滞。				
	0x42	X3UVTH	7:0	UV7至UV0	R/W		UV阈值							
	0x42 0x43	X3UVHYST	7:5	007至000	IT/ VV	- VA3円		'μλο.Ω <u>γ</u> 3	奴子但	L _o				
	0,43	ASOVITIST	4:0					金粉	mぶiVつ	BUVTH的5位迟滞。				
	0x44	SFDX3CFG	7:5					而归从	川刊へつ	001日的3位还带。				
	0.44	SFDASCEG	4:2	GF2至GF0	R/W	无法使 GF2	GF1	GF	^	延迟(µs)				
			4.2	GF2 <u>±</u> GF0	IT/ VV	0	0	0	0	<u>変変(</u> μs)				
						0	0	1		5				
								1						
						0	1	0		10				
						0	1	1		20				
						1	0	0		30				
						1	0	1		50				
						1	1	0		75				
					5 444	1	1	1		100				
			1:0	FLT1至FLT0	R/W	FLT1	FLT0	_	章类型	!选择				
						0	0	OV						
						0	1		或OV					
						1	0	UV						
						1	1	关	闭					
	0x45	SFDX3SEL	7:2			无法使	1	1						
			1:0	SEL1至SEL0	R/W	SEL1	SEL0		选择					
						0	0		D(故障					
						0	1		PI(故障					
						1	0			-第二VP3 SFD(报警)				
						1	1	无功	能(输)	入仍可用作ADC输入)				
	0x46	XGPI3CFG	7			无法使								
			6	INVIN	R/W	如为高	5电平,	则输入	人反相	•				
			5	INTYP	R/W	确定引	脚上枢	测到电	1平还	是边沿。				
						INTYP	电平	/边沿						
						0	检测	电平						
						1	检测	边沿						
			4:3	PULS1至 PULS0	R/W	输入上	:检测到	边沿时	十,脉 7	中输出的长度。				
						PULS1	PUL	SO J	脉冲长	· 度(μs)				
						0	0		10					
						0	1		100					
						1	0		1000					
						1	1		10,000					
		I	1	1	1	<u> </u>			-,,,,,,					

输入	寄存器 编号	寄存器名称	位	位的名称	R/W	描述					
			2:0	GF2至GF0	R/W	毛刺滤波器,忽略该时间长度内的脉冲。					
						GF2	GF1	GF0	延迟(µs)		
						0	0	0	0		
						0	0	1	5		
						0	1	0	10		
						0	1	1	20		
						1	0	0	30		
						1	0	1	50		
						1	1	0	75		
						1	1	1	100		
VX4	0x48	X4OVTH	7:0	OV7至OV0	R/W		' OV阈值	' 的8位数			
7.7.4	0x49	X4OVHYST	7:5	007至000	10,00	无法使		HJO III S O	(于匪。		
	0,49	X40VIII31	4:0	HY4至HY0	R/W	1		乗日又 /	4OVTH减去的5位迟滞。		
	0.44	X4UVTH									
	0x4A	_	7:0	UV7至UV0	R/W			的8位数	(子徂。		
	0x4B	X4UVHYST	7:5			无法使		== 136 L	The americal of the party of th		
			4:0			1		需增加	到X4UVTH的5位迟滞。		
	0x4C	SFDX4CFG	7:5			无法使					
			4:2	GF2至GF0	R/W	GF2	GF1	GF0	延迟(μs)		
						0	0	0	0		
						0	0	1	5		
						0	1	0	10		
						0	1	1	20		
						1	0	0	30		
						1	0	1	50		
						1	1	0	75		
						1	1	1	100		
			1:0	FLT1至FLT0	R/W	FLT1	FLT0				
			""	12.12.1	""	0	0	OV	- 大王起井		
						0	1		及OV		
						1	0	UV	20 V		
							1		1		
	040	CEDVACEL	7.2			1	•	关闭	J		
	0x4D	SFDX4SEL	7:2	CEL 4 7 CEL 0	D 444	无法使		-1.61	AND THE		
			1:0	SEL1至SEL0	R/W	SEL1	SEL0	_	选择		
						0	0		FD(故障)		
						0	1		PI(故障)		
						1	0	GPI(故障)+第二VH SFD(报警)		
						1	1	无功	」能(输入仍可用作ADC输入)		
	0x4E	XGPI4CFG	7			无法使	用。				
			6	INVIN	R/W	如为高	电平,	则输入	反相。		
			5	INTYP	R/W				平还是边沿。		
						INTYP		P/边沿			
						0		则电平			
						1		则 则 边沿			
			4:3	PULS1至 PULS0	R/W				,脉冲输出的长度。		
						PULS1	PU	LSO I	脉冲长度(μs)		
						0	0		10 10		
						0	1		100		
								l I	1000		
						1	0				
						1	1		10,000		

输入	寄存器 编号	寄存器名称	位	位的名称	R/W	描述					
			2:0	GF2至GF0	R/W	毛刺滤波器,忽略该时间长度内的脉冲。					
						GF2	GF1	GF0	延迟(μs)		
						0	0	0	0		
						0	0	1	5		
						0	1	0	10		
						0	1	1	20		
						1	0	0	30		
						1	0	1	50		
						1	1	0	75		
						1	1	1	100		
VX1至VX4,	0x91	PDEN1	7			无法位	吏用。				
A0, A1											
			6	A1PDOWN	R/W	1 = 使	能A1的	J20 μΑ Ţ	下拉电流。		
			5	A0PDOWN	R/W	1 = 使	能A0的	J20 μΑ Ţ	下 拉电流。		
			4	VX4PDOWN	R/W	1 = 使能VX4的20 μA下拉电流。					
			3	VX3PDOWN	R/W	/ 1 = 使能VX3的20 μA下拉电流。					
			2	VX2PDOWN	R/W	N 1 = 使能VX2的20 μA下拉电流。					
			1	VX1PDOWN	R/W						
			0			无法	吏用。				

输出

ADM1068/ADM1069/ADM1168/ADM1169具有8路可编程驱动器输出(PDO)。电源时序控制通过将PDO用作电源的控制信号来实现。输出驱动器可以用作逻辑使能或FET驱动器。

PDO可以用于多种功能,主要功能是提供LDO或DC/DC转换器的使能信号,以在电路板本地产生电源。PDO也可以在输入处于耐受范围内时,用来提供POWER_GOOD信号,或者在一路输入超出规格时提供复位输出(可以用作DSP、FPGA或其他微控制器的状态信号)。

可以将PDO配置为上拉至多个不同的选项。输出可以编程为:

- 开漏(允许用户连接一个外部上拉电阻)
- 弱上拉至V_{DDCAP}
- 强上拉至V_{DDCAP}
- 弱上拉至VPx
- 强上拉至VPx
- 强下拉至GND
- 内部电荷泵提供的高驱动(12 V, PDO1至PDO6)

最后一个选项(仅PDO1至PDO6可用)允许用户将电压直接驱动到足够高的程度,以全面增强外部N-FET,该N-FET可以起到多种作用,例如将卡侧电压与背板电源隔离开来(PDO可以向1μA负载持续提供10.5 V以上的电压)。下拉开关可用来驱动状态LED。

驱动各PDO的数据有三个来源。具体来源可以在PDOCFG 配置寄存器中使能。数据来源如下:

- 时序控制引擎(SE)的输出。这是ADM1068/ADM1069/ADM1168/ADM1169控制输出的一般工作方式。
- 直接来自SMBus。经过适当配置,SMBus可以直接控制 PDO。利用这一功能,可以通过软件控制PDO,这样就 可以利用微控制器启动软件上电/关断序列。
- 片内时钟。器件产生一个100 kHz时钟。任何PDO都可以 使用该时钟。它可以用来为外部器件提供时钟,如LED 等。

表3详细列出了用来配置输出以执行本部分所述功能的所有寄存器。

表3. 用来配置输出的寄存器

输出	寄存器编号	前面的奇存者 寄存器 名称	位	位的名称	R/W	描述				
PDO1	0x07	PDO1CFG	7			无法使用	1.			
			6:4	CFG6至CFG4	R/W		」 N驱动PDO的	的逻辑源,		
						即SE、内]部时钟或9	SMBus _。		
						CFG6	CFG5	CFG4	PDO状	态
						0	0	0	禁用,	弱下拉
						0	0	1		跟随SE驱动的逻辑
						0	1	0		MBus数据,驱动至低电平
						0	1	1		MBus数据,驱动至高电平
						1	Χ	X	使能引	脚上的100 kHz时钟输出
			3:0	CFG3至CFG0	R/W	确定PDC	的上拉格:	式。		
						CFG3	CFG2	CFG1	CFG0	PDO上拉
						0	0	0	X	无
						0	0	1	X	上拉至12 V电荷泵电压
						0	1	1	0	弱上拉至VP1
						0	1	1	1	强上拉至VP1
						1	0	0	0	弱上拉至VP2
						1	0	0	1	强上拉至VP2
						1	0	1	0	弱上拉至VP3
						1	0	1	1	强上拉至VP3
						1	1	1	0	弱上拉至V _{DDCAP}
						1	1	1	1	强上拉至V _{DDCAP}
PDO2	0x0F	PDO2CFG	7			无法使用				
			6:4	CFG6至CFG4	R/W		I驱动PDO的			
						CFG6	I部时钟或S CFG5		PDO状	*
							0	CFG4		
						0	_	0		弱下拉
						0	0	0		跟随SE驱动的逻辑
							1			MBus数据,驱动至低电平
						0	1 X	1 X		/Bus数据,驱动至高电平 脚上的100 kHz时钟输出
			3:0	CFG3至CFG0	R/W		<u> ^</u> 的上拉格:		使肥力	脚上的 TOO KIIZIN 押制 山
			3.0	Crasifician	I IV VV	研及FDC CFG3	CFG2	八。 CFG1	CFG0	PDO上拉
						0	0	0	X	无
						0	0	1	X	/ L 上拉至12 V电荷泵电压
						0	1	1	0	弱上拉至VP1
						0	1	1	1	强上拉至VP1
						1	0	0	0	弱上拉至VP2
						1	0	0	1	强上拉至VP2
						1	0	1	0	弱上拉至VP3
	1					1	0	1	1	强上拉至VP3
						1	1	1	0	弱上拉至V _{DDCAP}
	I				1	1	1	1	1	强上拉至V _{DDCAP}

输出	寄存器编号	寄存器 名称	位	位的名称	R/W	描述						
PDO3	0x17	PDO3CFG	7			无法使月	月。					
			6:4	CFG6至CFG4	R/W	直接控制		OO的	逻辑	源.		
						即SE、						
						CFG6	CFG5		CFG		PDO	
						0	0		0		禁用,	弱下拉
						0	0		1		使能,	跟随SE驱动的逻辑
						0	1		0			MBus数据,驱动至低电平
						0	1		1			MBus数据,驱动至高电平
						1	Х		Χ			引脚上的100 kHz时钟输出
			3:0	CFG3至CFG0	R/W	确定PDO	O的上拉			L	p - 1,10 t	
						CFG3	CFG2	CF	G1	CFG	0 PI	DO上拉
						0	0	0		Χ	无	
						0	0	1		Χ	上	拉至12V电荷泵电压
						0	1	1		0		上拉至VP1
						0	1	1		1		 上拉至VP1
						1	0	0		0		上拉至VP2
						1	0	0		1		上拉至VP2
						1	0	1		0		上拉至VP3
						1	0	1		1		上拉至VP3
						1	1	1		0		上拉至V _{DDCAP}
						1	1	1		1		上拉至V _{DDCAP}
PDO4	0x1F	PDO4CFG	7			无法使月	<u>.</u> 目			•	7.2	DDCAP
	•///		6:4	CFG6至CFG4	R/W	直接控制		O的·	逻辑	源.		
				C. CC_C.	,	即SE、内						
						CFG6	CFG5		CFG		PDO	
						0	0		0			弱下拉
						0	0		1			跟随SE驱动的逻辑
						0	1		0			MBus数据,驱动至低电平
						0	1		1			MBus数据,驱动至高电平
						1	X		X			別脚上的100 kHz时钟输出
			3:0	CFG3至CFG0	R/W	确定PDO					IX IIU V	/1/4-T742.00.00.=0.151 JB0 EE
			0.0	G. 65 T. 6.	.,,,,,	CFG3	CFG2		CFG	1	CFG0	PDO上拉
						0	0		0		X	无
						0	0		1		Χ	上拉至12 V电荷泵电压
						0	1		1		0	弱上拉至VP1
						0	1		1		1	强上拉至VP1
						1	0		0		0	弱上拉至VP2
						1	0		0		1	强上拉至VP2
						1	0		1		0	弱上拉至VP3
						1	0		1		1	强上拉至VP3
						1	1		1		0	弱上拉至V _{DDCAP}
						1	1		1		1	强上拉至V _{DDCAP}
PDO5	0x27	PDO5CFG	7			无法使月	Ħ.					DDCAP
			6:4	CFG6至CFG4	R/W	直接控制		O的·	逻辑	源.		
					•	即SE、内						
						CFG6	CFG5		CFG		PDO	大态
						0	0		0		禁用,	弱下拉
						0	0		1		使能,	跟随SE驱动的逻辑
						0	1		0		使能S	MBus数据,驱动至低电平
						0	1		1		使能S	MBus数据,驱动至高电平
						1	Х		Χ		使能引	引脚上的100 kHz时钟输出
-	•	•		•	•	•	•					

输出	寄存器 编号	寄存器 名称	位	位的名称	R/W	描述				
			3:0	CFG3至CFG0	R/W	确定PDO的上拉格式。				
						CFG3	CFG2	CFG1	CFG0	PDO上拉
						0	0	0	Х	无
						0	0	1	Х	上拉至12 V电荷泵电压
						0	1	1	0	弱上拉至VP1
						0	1	1	1	强上拉至VP1
						1	0	0	0	弱上拉至VP2
						1	0	0	1	强上拉至VP2
						1	0	1	0	弱上拉至VP3
						1	0	1	1	强上拉至VP3
						1	1	1	0	弱上拉至V _{DDCAP}
						1	1	1	1	强上拉至V _{DDCAP}
PDO6	0x2F	PDO6CFG	7			无法使月	月。			
			6:4	CFG6至CFG4	R/W		削驱动PDO			
							的部时钟或			
						CFG6	CFG5	CFG4	PDO状	
						0	0	0		弱下拉
						0	0	1		跟随SE驱动的逻辑
						0	1	0		MBus数据,驱动至低电平
						0	1	1		MBus数据,驱动至高电平
						1	Χ	X	使能引	脚上的100 kHz时钟输出
			3:0	CFG3至CFG0	R/W	确定PDO	O的上拉格	式。	_	
						CFG3	CFG2	CFG1	CFG0	PDO上拉
						0	0	0	Х	无
						0	0	1	Х	上拉至12V电荷泵电压
						0	1	1	0	弱上拉至VP1
						0	1	1	1	强上拉至VP1
						1	0	0	0	弱上拉至VP2
						1	0	0	1	强上拉至VP2
						1	0	1	0	弱上拉至VP3
						1	0	1	1	强上拉至VP3
						1	1	1	0	弱上拉至V _{DDCAP}
						1	1	1	1	强上拉至V _{DDCAP}
PDO7	0x37	PDO7CFG	7			无法使月				
			6:4	CFG6至CFG4	R/W		间驱动PDO			
							内部时钟或		T ••	
						CFG6	CFG5	CFG4	PDO状	_
						0	0	0		弱下拉
						0	0	1		跟随SE驱动的逻辑
						0	1	0		MBus数据,驱动至低电平
						0	1	1		MBus数据,驱动至高电平
						1	X	Х	使能引	脚上的100 kHz时钟输出
			3:0	CFG3至CFG0	R/W		O的上拉格			
						CFG3	CFG2	CFG1	CFG0	PDO上拉
						0	0	0	X	无
						0	0	1	X	上拉至12 V电荷泵电压
						0	1	1	0	弱上拉至VP1
						0	1	1	1	强上拉至VP1
						1	0	0	0	弱上拉至VP2
						1	0	0	1	强上拉至VP2
						1	0	1	0	弱上拉至VP3
		1				1	0	1	1	强上拉至VP3

输出	寄存器 编号	寄存器 名称	位	位的名称	R/W	描述					
						1	1	1	0	弱上拉至V _{DDCAP}	
						1	1	1	1	强上拉至V _{DDCAP}	
PDO8	0x3F	PDO8CFG	7			无法使用					
			6:4	CFG6至CFG4	R/W		驱动PDO 部时钟或:	的逻辑源, SMBus。			
						CFG6	CFG5	CFG4	PDO状	态	
						0	0	0	禁用,	弱下拉	
						0	0	1	使能,	跟随SE驱动的逻辑	
						0	1	0	使能SN	MBus数据,驱动至低电平	
						0	1	1	使能SN	MBus数据,驱动至高电平	
						1	Χ	Χ	使能引	脚上的100 kHz时钟输出	
			3:0	CFG3至CFG0	R/W	确定PDC	的上拉格	式。			
						CFG3	CFG2	CFG1	CFG0	PDO上拉	
						0	0	0	Х	无	
						0	0	1	Х	上拉至12 V电荷泵电压	
						0	1	1	0	弱上拉至VP1	
						0	1	1	1	强上拉至VP1	
						1	0	0	0	弱上拉至VP2	
						1	0	0	1	强上拉至VP2	
						1	0	1	0	弱上拉至VP3	
						1	0	1	1	强上拉至VP3	
						1	1	1	0	弱上拉至V _{DDCAP}	
						1	1	1	1	强上拉至V _{DDCAP}	

时序控制引擎

ADM1068/ADM1069/ADM1168/ADM1169集成一个时序控制引擎(SE),它能提供强大而灵活的时序控制功能。SE对PDO输出实行状态机控制,状态变化以输入事件为条件。SE程序可以实现复杂的电路板控制,例如:上电和关断序列控制、故障事件处理、报警时产生中断等。SE程序中可以集成看门狗功能,以便检查处理器时钟是否持续正常工作。SE也可以通过SMBus进行控制,以便利用软件或固件控制电路板的电源时序。

从应用角度考虑SE的功能,最好将SE视作为一个状态机提供状态。该状态具有下列属性:

- 它用于监控8个输入引脚的状态信号: VP1至VP3、 VH、VX1至VX4。
- 可以从任何其他状态进入该状态。
- 有三条退出途径可使状态机变为下一状态:步骤结束检测、监控故障和超时。

- 步骤结束和超时模块的延迟时间可以独立编程,并且可以随各种状态变化而改变。超时范围为0 ms至400 ms。
- 在一个状态之内,8个PDO引脚的输出状况是明确的,并且固定不变。
- 从一个状态到下一个状态的跃迁在少于10 μs的时间内完成,等于从EEPROM下载一个状态定义到SE所需的时间。

ADM1068/ADM1069/ADM1168/ADM1169最多提供63种状态定义,每种状态由一个64位字定义。

表4显示了用于定义状态的64位的详情。表8详细说明了如何与SE通信。表9提供了ADM1168/ADM1169中的附加时序引擎控制寄存器(用于重新启动时序控制引擎)的详细信息。

表4. SE中每个状	态的起始地址
------------	--------

表4. SE中每个状态的起	始地址
状态	起始地址
保留状态	FA00
状态1	FA08
状态2	FA10
状态3	FA18
状态4	FA20
状态5	FA28
状态6	FA30
状态7	FA38
状态8	FA40
状态9	FA48
状态10	FA50
状态11	FA58
状态12	FA60
状态13	FA68
状态14	FA70
状态15	FA78
状态16	FA80
状态17	FA88
状态18	FA90
状态19	FA98
状态20	FAA0
状态21	FAA8
状态22	FAB0
状态23	FAB8
状态24	FAC0
状态25	FAC8
状态26	FAD0
状态27	FAD8
状态28	FAE0
状态29	FAE8
状态30	FAF0
状态31	FAF8

 状态	起始地址
状态32	FB00
状态33	FB08
状态34	FB10
状态35	FB18
状态36	FB20
状态37	FB28
状态38	FB30
状态39	FB38
状态40	FB40
状态41	FB48
状态42	FB50
状态43	FB58
状态44	FB60
状态45	FB68
状态46	FB70
状态47	FB78
状态48	FB80
状态49	FB88
状态50	FB90
状态51	FB98
状态52	FBA0
状态53	FBA8
状态54	FBB0
状态55	FBB8
状态56	FBC0
状态57	FBC8
状态58	FBD0
状态59	FBD8
状态60	FBE0
状态61	FBE8
状态62	FBF0
状态63	FBF8

表5. SE中每个状态定义的位映射

次5.35中母	位	SE位	如果置0	如果置1	注释
寄存器编号 0	0	0 0	驱动PDO1至低电平	驱动PDO1至高电平	注释
U	-		* *		
	1	1	驱动PDO2至低电平	驱动PDO2至高电平	
	2	2	驱动PDO3至低电平 驱动PDO4至低电平	驱动PDO3至高电平 驱动PDO4至高电平	
	4	4	驱动PDO4至似电平 驱动PDO5至低电平	驱动PDO4至高电平 驱动PDO5至高电平	
	5	5	驱动PDO5至低电平 驱动PDO6至低电平	驱动PDO5至高电平 驱动PDO6至高电平	
	6	6	驱动PDO7至低电平	驱动PDO0至高电平 驱动PDO7至高电平	
	7	7	驱动PDO/至低电平 驱动PDO8至低电平	驱动PDO7至高电平 驱动PDO8至高电平	
1	0	8	並列FDO6主版电干	並列FDO0主向电干	保留。
1	1	9			保留。
	2	10			保留。
	3	11			保留。
	4	12	如果VP1=0,	如果VP1 = 1,	体苗。 监控功能:必须解除对VP1故障监控的
	4	12	则退出状态	如未VF1 = 1, 则退出状态	蓝径切能: 必须解除剂VF 取障监控的 屏蔽(下一位)。
	5	13	屏蔽VP1监控	解除对VP1监控的屏蔽	位11 = 1,开启对VP1通道的监控功能。
	6	14	如果VP2=0,	如果VP2=1,	监控功能:必须解除对VP2故障监控的
			则退出状态	则退出状态	屏蔽(下一位)。
	7	15	屏蔽VP2监控	解除对VP2监控的屏蔽	位13=1,开启对VP2通道的监控功能。
2	0	16	如果VP3=0,	如果VP3=1,	监控功能:必须解除对VP3故障监控的
			则退出状态	则退出状态	屏蔽(下一位)。
	1	17	屏蔽VP3监控	解除对VP3监控的屏蔽	位15=1,开启对VP3通道的监控功能。
	2	18	如果VH=0,	如果VH=1,	监控功能:必须解除对VH故障监控的
			则退出状态	则退出状态	屏蔽(下一位)。
	3	19	屏蔽VH监控	解除对VH监控的屏蔽	位19=1,开启对VH通道的监控功能。
	4	20			保留。
	5	21			保留。
	6	22	如果VX1=0,	如果VX1=1,	监控功能:必须解除对VX1故障监控的
	_	22	则退出状态	则退出状态	屏蔽(下一位)。
	7	23	屏蔽VX1监控	解除对VX1监控的屏蔽	位23 = 1,开启对VX1通道的监控。
3	0	24	如果VX2=0, 则退出状态	如果VX2 = 1, 则退出状态	监控功能:必须解除对VX2故障监控的 屏蔽(下一位)。
	1	25	屏蔽VX2监控	解除对VX2监控的屏蔽	
	2	26	如果VX3=0,	如果VX3=1,	监控功能:必须解除对VX3故障监控的
	_	20	则退出状态	则退出状态	屏蔽(下一位)。
	3	27	屏蔽VX3监控	解除对VX3监控的屏蔽	位27 = 1,开启对VX3通道的监控。
	4	28	如果VX4=0,	如果VX4=1,	监控功能:必须解除对VX4故障监控的
			则退出状态	则退出状态	屏蔽(下一位)。
	5	29	屏蔽VX4监控	解除对VX4监控的屏蔽	位29=1;开启对VX4通道的监控。
	6	30	屏蔽报警监控	解除对报警监控的屏蔽	只能在WARNING = 1时产生监控故障;
					因此,不要求第二位区分WARNING = 0
					和WARNING = 1。
	7	31	TIMEOUT<0>		超时长度。参见表6。
4	0	32	TIMEOUT<1>		
	1	33	TIMEOUT<2>		
	2	34	TIMEOUT<3>		
	3	35	SEQCOND<0>		时序控制条件。参见表7。
	4	36	SEQCOND<1>		
	5	37	SEQCOND<2>		
	6	38	SEQCOND<3>		
	7	39	选定输入的	选定输入的	SEQSENSE
		<u> </u>	时序控制=高电平	时序控制 = 低电平	

寄存器编号	位	SE位	如果置0	如果置1	注释
5	0	40	SEQDELAY<0>		时序控制延迟。参见表6。
	1	41	SEQDELAY<1>		
	2	42	SEQDELAY<2>		
	3	43	SEQDELAY<3>		
	4	44	MONADDR<0>		如果发生监控功能故障,则MONADDR<5:0>是要转入的状态编号(+1)。例如,如果MONADDR设置为01000(即8),则发生监控功能故障时,SE转入状态8(地址FA40)。
	5	45	MONADDR<1>		
	6	46	MONADDR<2>		
	7	47	MONADDR<3>		
6	0	48	MONADDR<4>		
	1	49	MONADDR<5>		
	2	50	TIMADDR<0>		如果发生超时故障,则TIMADDR<5:0>是要转入的状态编号(+1)。例如,如果TIMADDR设置为01000(即8),则发生超时功能故障时,SE转入状态8(地址FA40)。
	3	51	TIMADDR<1>		
	4	52	TIMADDR<2>		
	5	53	TIMADDR<3>		
	6	54	TIMADDR<4>		
	7	55	TIMADDR<5>		
7	0	56	SEQADDR<0>		如果发生时序控制状态故障,则SEQADDR<5:0> 是要转入的状态编号(+1)。例如,如果SEQADDR 设置为01000(即8),则发生时序控制状态故障时, SE转入状态8(地址FA40)。
	1	57	SEQADDR<1>		
	2	58	SEQADDR<2>		
	3	59	SEQADDR<3>		
	4	60	SEQADDR<4>		
	5	61	SEQADDR<5>		
	6	62	禁用轮询	使能轮询	此位与RRCTRL.2进行逻辑"OR"运算。
	7	63	故障锁存关闭	故障锁存打开	

表6. SE中的功能超时和延迟

TIMEOUT<3:0>, SEQDELAY<3:0>	延迟(ms)
0	无法使用
1	0.1
2	0.2
3	0.4
4	0.7
5	1
6	2
7	4
8	7
9	10
10	20
11	40
12	70
13	100
14	200
15	400

表7. SE中的SEQCOND和"对来自何处的信号进行时序控制"¹

SEQCOND<3:0>	对来自以下的信号进行时序控制
0	从不进行时序控制,设置SEQSENSE = 0可确保无时序控制
	(位39)。
1	N/A.
2	VP1.
3	VP2.
4	VP3.
5	VH.
6	N/A.
7	VX1.
8	VX2.
9	VX3.
10	VX4.
11	整件。
12	SMBus跳转。转入下一状态前,等待SMBus命令。
	设置SEQSENSE = 0以确保正常工作。

¹N/A表示不适用。

表8.与SE诵信

7CO. —J.	7 - ALL 10				
寄存器	寄存器 名称	位	名称	R/W	描述
0x93	SECTRL	7:3	不适用		无法使用。
		2	SMBus jump	W	允许对SE状态变化进行软件控制。可强制无条件转入下一状态。该位可设置为步骤结束变化的条件,以便用户通过前移一个状态变化来清除外部中断。 状态变化发生后,该位自动清0。
		1	SWSTEP	R/W	使SE前进到下一状态。与中止位一同使用,逐步执行一个序列。 可用作调试序列的工具。
		0	Halt	R/W	中止SE。状态变化不会发生。必须置1才能对SE EEPROM进行读取、 擦除或写入访问。
0xE9	SEADDR	7:6	不适用		无法使用。
		5:0	ADDR	R	SE当前状态,与中止位(地址0x93[0])一同使用。

表9. ADM1168/ADM1169附加时序引擎控制寄存器

	11000-100 01 , 10-100 10 10							
寄存器	寄存器名称	位	名称	R/W	描述			
0xDA	UNLOCKSE	7:0	Unlock Key	W	依次向该寄存器写入0x27和0x10将解除对SEDOWNLD寄存器的锁定,			
					以便能够写入后一寄存器。要复位锁定,应向Unlock Key中写入0x00。			
					写入SEDOWNLD不会复位锁定。			
0xDB	SEDOWNLD	7:1	不适用		无法使用。			
		0	Restart	W	置1将使时序控制引擎从保留状态重新启动。			

配置时序控制引擎状态以写入ADM1168/ADM1169的黑盒EEPROM

当时序控制引擎进入用户定义的触发状态时,ADM1168/ADM1169可以使用一部分EEPROM来存储故障记录。这些状态在EEPROM中定义,当ADM1168/ADM1169初始化时,与其他配置数据一起下载到寄存器。黑盒写入触发器的寄存器位置如表10所示,这些寄存器从0xF8xx EEPROM模块的相同位置加载。BBWRTRGx寄存器为读/写寄存器,下载后如需要,可以通过软件更改。

当BBWRTRx寄存器的一位或多位置1时,黑盒使能;当时序控制引擎进入一个状态,并且该状态对应的BBWRTRGx位置1时,则故障记录写入EEPROM。

当黑盒使能时,对EEPROM的配置、用户和黑盒部分的所有访问都被禁止,除非BBCTRL.HALT位设为1,停止黑盒功能。

当ADM1168/ADM1169上电时,黑盒自动搜索EEPROM的黑盒部分,查找第一个未使用的位置,以便用于写入下一个故障记录。擦除EEPROM的此部分后,可以指示黑盒再次进行搜索,为下一个故障记录找到正确的写入位置。BBSEARCH.RESET位用于启动此操作。

表10. ADM1168/ADM1169各SE状态的黑盒写入触发器定义的位映射1

寄存器	寄存器名称	位	名称	R/W	描述
0x94	BBWRTRG1	7	STATE7	R/W	状态7写入触发器。
		6	STATE6	R/W	状态6写入触发器。
		5	STATE5	R/W	状态5写入触发器。
		4	STATE4	R/W	状态4写入触发器。
		3	STATE3	R/W	状态3写入触发器。
		2	STATE2	R/W	状态2写入触发器。
		1	STATE1	R/W	状态1写入触发器。
		0	保留	R/W	保留状态黑盒触发器;始终置0。
0x95	BBWRTRG2	7	STATE15	R/W	状态15写入触发器。
		6	STATE14	R/W	状态14写入触发器。
		5	STATE13	R/W	状态13写入触发器。
		4	STATE12	R/W	状态12写入触发器。
		3	STATE11	R/W	状态11写入触发器。
		2	STATE10	R/W	状态10写入触发器。
		1	STATE9	R/W	状态9写入触发器。
		0	STATE8	R/W	状态8写入触发器。
0x96	BBWRTRG3	7	STATE23	R/W	状态23写入触发器。
		6	STATE22	R/W	状态22写入触发器。
		5	STATE21	R/W	状态21写入触发器。
		4	STATE20	R/W	状态20写入触发器。
		3	STATE19	R/W	状态19写入触发器。
		2	STATE18	R/W	状态18写入触发器。
		1	STATE17	R/W	状态17写入触发器。
		0	STATE16	R/W	状态16写入触发器。
0x97	BBWRTRG4	7	STATE31	R/W	状态31写入触发器。
		6	STATE30	R/W	状态30写入触发器。
		5	STATE29	R/W	状态29写入触发器。
		4	STATE28	R/W	状态28写入触发器。
		3	STATE27	R/W	状态27写入触发器。
		2	STATE26	R/W	状态26写入触发器。
		1	STATE25	R/W	状态25写入触发器。
		0	STATE24	R/W	状态24写入触发器。
0x98	BBWRTRG5	7	STATE39	R/W	状态39写入触发器。
		6	STATE38	R/W	状态38写入触发器。
		5	STATE37	R/W	状态37写入触发器。
		4	STATE36	R/W	状态36写入触发器。
		3	STATE35	R/W	状态35写入触发器。

寄存器	寄存器名称	位	名称	R/W	描述
		2	STATE34	R/W	状态34写入触发器。
		1	STATE33	R/W	状态33写入触发器。
		0	STATE32	R/W	状态32写入触发器。
0x99	BBWRTRG6	7	STATE47	R/W	状态47写入触发器。
		6	STATE46	R/W	状态46写入触发器。
		5	STATE45	R/W	状态45写入触发器。
		4	STATE44	R/W	状态44写入触发器。
		3	STATE43	R/W	状态43写入触发器。
		2	STATE42	R/W	状态42写入触发器。
		1	STATE41	R/W	状态41写入触发器。
		0	STATE40	R/W	状态40写入触发器。
0x9A	BBWRTRG7	7	STATE55	R/W	状态55写入触发器。
		6	STATE54	R/W	状态54写入触发器。
		5	STATE53	R/W	状态53写入触发器。
		4	STATE52	R/W	状态52写入触发器。
		3	STATE51	R/W	状态51写入触发器。
		2	STATE50	R/W	状态50写入触发器。
		1	STATE49	R/W	状态49写入触发器。
		0	STATE48	R/W	状态48写入触发器。
0x9B	BBWRTRG8	7	STATE63	R/W	状态63写入触发器。
		6	STATE62	R/W	状态62写入触发器。
		5	STATE61	R/W	状态61写入触发器。
		4	STATE60	R/W	状态60写入触发器。
		3	STATE59	R/W	状态59写入触发器。
		2	STATE58	R/W	状态58写入触发器。
		1	STATE57	R/W	状态57写入触发器。
		0	STATE56	R/W	状态56写入触发器。

¹ 当给定状态的触发位设为1时,如果时序控制引擎进入该状态,则会将一个故障记录写入EEPROM黑盒部分中的下一个可用位置。 当该触发位设为0时,不写入故障记录。

表11. ADM1168/ADM1169黑盒控制寄存器

	寄存器				
寄存器	名称	位	名称	R/W	描述
0x9C	BBCTRL	7:1	不适用		无法使用。
		0	Halt	R/W	当BBWRTRGx寄存器的一位或多位设为1时,黑盒功能使能,
					此时再也无法读取或写入EEPROM的配置、用户和黑盒部分。
					此位写入1将禁用黑盒,使能对EEPROM的配置、用户和黑盒部分的读写访问。
					在向EEPROM写入故障记录期间不能设置此位;
					因此,写入此位后务必读取此位,确保设置正确。
0XD9	BBSEARCH	7:1	不适用		无法使用。
		0	复位	R	写入1时,黑盒从地址0xF980开始搜索第一个未使用的故障记录。
					擦除EEPROM保持黑盒故障记录的部分后,为使黑盒从第一个位置
					开始写入记录,此位应写入1。

ADM1069/ADM1169 ADC

ADM1069/ADM1169具有一个片内12位ADC, ADC的模拟前端上具有一个8通道模拟多路复用器。可以选择任意或所有输入由ADC读取。然后,可以将ADC设置为连续读取选定的通道。控制该操作的电路称为轮询(RR)电路。用户选择要使用的通道,ADC轮流在每个通道上执行转换。可以开启均值电路,将轮询电路设置为在每个通道上执行16次转换;否则,每个通道上仅执行一次转换。该周期结束时,结果写入输出寄存器。ADM1069/ADM1169还具有限值寄存器,每个ADC通道一个。可以在这些寄存器中设置阈值,以便ADC读数与之进行比较。针对每个输入通道仅提供一个寄存器,因此,针对给定通道可以设置UV或OV

阈值, 但不能同时设置这两者的阈值。

超过阈值时会产生一个报警信号,该报警可以输入SE。因此,超范围ADC读数可以用来在一个PDO上产生中断,详细说明参见"报警"部分。

轮询电路可以通过一个SMBus写操作使能,或者通过使能 RR位将其设置为在SE程序中的某一特定状态开启。例如, 可以将轮询电路设置为在上电序列完成时启动,此时所有 电源处于预期的故障限值以内。

表12至表16列出了设置ADC及其输入所需的寄存器详情。

ADC回读配置寄存器

表12. 限值寄存器—ADC读数高于或低于此限值时产生报警

寄存器号	输入	寄存器名称	位	位的名称	R/W	描述
0x71	VP1	ADCVP1LIM	7:0	LIM7至LIM0	R/W	VP1输入的ADC转换的限值寄存器。
0x72	VP2	ADCVP2LIM	7:0	LIM7至LIM0	R/W	VP2输入的ADC转换的限值寄存器。
0x73	VP3	ADCVP3LIM	7:0	LIM7至LIM0	R/W	VP3输入的ADC转换的限值寄存器。
0x74	VH	ADCVHLIM	7:0	LIM7至LIM0	R/W	VH输入的ADC转换的限值寄存器。
0x76	VX1	ADCVX1LIM	7:0	LIM7至LIM0	R/W	VX1输入的ADC转换的限值寄存器。
0x77	VX2	ADCVX2LIM	7:0	LIM7至LIM0	R/W	VX2输入的ADC转换的限值寄存器。
0x78	VX3	ADCVX3LIM	7:0	LIM7至LIM0	R/W	VX3输入的ADC转换的限值寄存器。
0x79	VX4	ADCVX4LIM	7:0	LIM7至LIM0	R/W	VX4输入的ADC转换的限值寄存器。

表13. 检测寄存器—确定何时产生报警

寄存器号	输入	寄存器名称	位	位的名称	R/W	描述	
0x7D	VX2	LSENSE1	7	SENS7	R/W	VX2的限值检测(0 = ADC > ADCVX2LIM产生报警,即过压; 1 = ADC < ADCVX2LIM产生报警,即欠压)。	
	VX1		6	SENS6	6 R/W VX1的限值检测(0 = ADC > ADCVX1LIM产生报警,即过压, 1 = ADC < ADCVX1LIM产生报警,即欠压)。		
			5			无法使用。	
	VH		4	SENS4	R/W VH的限值检测(0 = ADC > ADCVHLIM产生报警,即过压; 1 = ADC < ADCVHLIM产生报警,即欠压)。		
	VP3		3	SENS2	R/W VP3的限值检测(0 = ADC > ADCVP3LIM产生报警,即过压; 1 = ADC < ADCVP3LIM产生报警,即欠压)。 R/W VP2的限值检测(0 = ADC > ADCVP2LIM产生报警,即过压; 1 = ADC < ADCVP2LIM产生报警,即欠压)。		
	VP2		2	SENS1			
	VP1		1	SENS0	R/W	VP1的限值检测(0 = ADC > ADCVP1LIM产生报警,即过压, 1 = ADC < ADCVP1LIM产生报警,即欠压)。	
			0			无法使用。	
0x7E		LSENSE2	7:2			无法使用。	
	VX4		1	SENS0	R/W	VX4的限值检测(0 = ADC > ADCVX4LIM产生报警,即过压; 1 = ADC < ADCVX4LIM产生报警,即欠压)。	
	VX3		0	SENS0	R/W	VX3的限值检测(0 = ADC > ADCVX3LIM产生报警,即过压, 1 = ADC < ADCVX3LIM产生报警,即欠压)。	

表14. 轮询选择寄存器—确定ADC循环操作时实际读取哪些输入

寄存器编号	输入	寄存器名称	位	位的名称	R/W	描述
0x80	VX2	RRSEL1	7	VX2CHAN	/X2CHAN R/W 0=> VX2包括在RR中。1=> VX2不包括在RR中。	
	VX1		6	VX1CHAN	R/W	0=> VX1包括在RR中。1=> VX1不包括在RR中。
			5			无法使用。
	VH		4	VHCHAN	R/W	0 => VH包括在RR中。1 => VH不包括在RR中。
	VP3		3	VP3CHAN	R/W	0=> VP3包括在RR中。1=> VP3不包括在RR中。
	VP2		2	VP2CHAN	R/W	0 => VP2包括在RR中。1 => VP2不包括在RR中。
	VP1		1	VP1CHAN	R/W	0=> VP1包括在RR中。1=> VP1不包括在RR中。
			0			无法使用。
0x81		RRSEL2	7:2			无法使用。
	VX4		1	VX4CHAN	R/W	0 => VX4包括在RR中。1 => VX4不包括在RR中。
	VX3		0	VX3CHAN	R/W	0 => VX3包括在RR中。1 => VX3不包括在RR中。

表15. 轮询控制寄存器—激活ADC读取;确定是否使用均值以及是否有连续读取

寄存器编号	输入	寄存器名称	位	位的名称	R/W	描述
0x82		RRCTRL	7:5			无法使用。
			4	CLEARLIM	R/W	此位写入1将清除限值报警,然后自动清0。
			3	STOPWRITE	R/W	此位禁止RR将结果写入输出寄存器。如果用户打算使用
						双字节读取操作回读任意通道的两个输出寄存器,则必须置1。
						如果用户使用块读取,则无需置1,因为当SMBus接口繁忙时,
						禁止RR写入输出寄存器。
			2	AVERAGE	R/W	开启16倍均值。
			1	使能	R/W	开启RR连续工作。
			0	GO	R/W	启动RR。

表16. ADC值寄存器

寄存器编号	输入	寄存器名称	位	位的名称	R/W	描述
0xA2	VP1	ADCHVP1	7:4			0x82:2(均值)= 0时不使用。
			3:0	OUT3至OUT0	R/W	0x82:2(均值)=0时,VP1的12位ADC转换结果的4个MSB。
			7:0	OUT7至OUT0	R/W	0x82:2(均值)= 1时,VP1的16位ADC转换结果的8个MSB。
0xA3		ADCLVP1	7:0	OUT7至OUT0	R/W	VP1输入的12或16位ADC转换结果的8个LSB。
0xA4	VP2	ADCHVP2	7:4			0x82:2(均值)= 0时不使用。
			3:0	OUT3至OUT0	R/W	0x82:2(均值)=0时,VP2的12位ADC转换结果的4个MSB。
			7:0	OUT7至OUT0	R/W	0x82:2(均值)= 1时,VP2的16位ADC转换结果的8个MSB。
0xA5		ADCLVP2	7:0	OUT7至OUT0	R/W	VP2输入的12或16位ADC转换结果的8个LSB。
0xA6	VP3	ADCHVP3	7:4			0x82:2(均值)= 0时不使用。
			3:0	OUT3至OUT0	R/W	0x82:2(均值)=0时,VP3的12位ADC转换结果的4个MSB。
			7:0	OUT7至OUT0	R/W	0x82:2(均值)= 1时,VP3的16位ADC转换结果的8个MSB。
0xA7		ADCLVP3	7:0	OUT7至OUT0	R/W	VP3输入的12或16位ADC转换结果的8个LSB。
0xA8	VH	ADCHVH	7:4			0x82:2(均值)= 0时不使用。
			3:0	OUT3至OUT0	R/W	0x82:2(均值)= 0时,VH的12位ADC转换结果的4个MSB。
			7:0	OUT7至OUT0	R/W	0x82:2(均值)= 1时,VH的16位ADC转换结果的8个MSB。
0xA9		ADCLVH	7:0	OUT7至OUT0	R/W	VH输入的12或16位ADC转换结果的8个LSB。
0xAC	VX1	ADCHVX1	7:4			0x82:2(均值)= 0时不使用。
			3:0	OUT3至OUT0	R/W	0x82:2(均值)= 0时,VX1的12位ADC转换结果的4个MSB。
			7:0	OUT7至OUT0	R/W	0x82:2(均值)= 1时,VX1的16位ADC转换结果的8个MSB。
0xAD		ADCLVX1	7:0	OUT7至OUT0	R/W	VX1输入的12或16位ADC转换结果的8个LSB。
0xAE	VX2	ADCHVX2	7:4			0x82:2(均值)= 0时不使用。
			3:0	OUT3至OUT0	R/W	0x82:2(均值)= 0时,VX2的12位ADC转换结果的4个MSB。
			7:0	OUT7至OUT0	R/W	0x82:2(均值)= 1时,VX2的16位ADC转换结果的8个MSB。
0xAF		ADCLVX2	7:0	OUT7至OUT0	R/W	VX2输入的12或16位ADC转换结果的8个LSB。

寄存器编号	输入	寄存器名称	位	位的名称	R/W 描述	
0xB0	VX3	ADCHVX3	7:4		0x82:2(均值)=0时不使用。	
			3:0	OUT3至OUT0	R/W	0x82:2(均值)=0时,VX3的12位ADC转换结果的4个MSB。
			7:0	OUT7至OUT0	R/W	0x82:2(均值)= 1时,VX3的16位ADC转换结果的8个MSB。
0xB1		ADCLVX3	7:0	OUT7至OUT0	OUT7至OUT0 R/W VX3输入的12或16位ADC转换结果的8个LSB。	
0xB2	VX4	ADCHVX4	7:4			0x82:2(均值)= 0时不使用。
			3:0	OUT3至OUT0	R/W	0x82:2(均值)= 0时,VX4的12位ADC转换结果的4个MSB。
			7:0	OUT7至OUT0	R/W	0x82:2(均值)= 1时,VX4的16位ADC转换结果的8个MSB。
0xB3		ADCLVX4	7:0	OUT7至OUT0	R/W	VX4输入的12或16位ADC转换结果的8个LSB。

ADM1069/ADM1169 DAC

ADM1069/ADM1069具有4个电压输出DAC,这些DAC的主要作用是通过改变反馈节点的电流来调整DC/DC转换器的输出电压。与片内ADC一起,这些DAC提供了用于闭环余量微调系统的工具。有关余量微调的更多信息,请参阅相关器件的数据手册。

提供四种DAC范围,这些范围的中间代码(代码0x7F)设在0.6 V、0.8 V、1.0 V和1.25 V,输出摆幅为以这些中间代码电压为中心的±300 mV。这些电压对应于最常用的LDO/DC-DC转换器反馈电压。这些DAC具有8位分辨率,但在600 mV的受限输出范围,电压分辨率为600 mv/256 = 2.34 mV。将DAC输出的中间电压设为四个中间代码电压,可以使DAC分辨率得到最佳利用。

对于多数电源,可以选择DAC中间代码电压,使其与转换器的调整/反馈电压相同,这样DC/DC输出就不会被更改。在这种情况下,DAC范围的上半部分(300 mV)可以上调,下半部分可以下调。DAC输出电压由写入DACx寄存器的代码设置,它与该寄存器中的无符号二进制数成线性关系。代码0x7F对应中间电压。输出电压可通过以下公式

计算:

 $DACoutput = (DACx - 0x7F)/255 \times 0.6015 + V_{OFF}$

其中, V_{OFF}是上述四个偏移电压之一。

器件的限值寄存器(称为DPLIMx和DNLIMx)为用户提供保护,防止固件缺陷迫使电源电压超出容许的输出范围而引起灾难性电路板问题。基本上,写入DACx寄存器的DAC代码会被截除,用于设置DAC电压的代码实际上为:

DACCode

- = DACx, DNLIMx \leq DACx \leq DPLIMx
- = DNLIMx, DACx < DPLIMx
- = DPLIMx, DACx > DPLIMx

如果DNLIMx > DPLIMx,则DAC输出缓冲器处于三态。通过这种方式设置限值寄存器(即启动时从EEPROM下载的部分寄存器),用户便可以使DAC输出缓冲器难以在系统正常工作中开启。

表17列出了设置DAC所需的寄存器详情。

表17. DAC配置寄存器

输出	寄存器	寄存器名称	位	名称	R/W	描述				
DAC1	0x52	DACCTRL1	7:3	不适用	1	无法使用。				
			2	ENDAC	R/W	使能DAC1。				
			1:0	OFFSEL1至OFFSEL0	R/W	选择DAC1的中间电压(中间代码)输出。				
						OFFSEL1	OFFSEL0	(中间代码)输出电压		
						0	0	1.25 V		
						0	1	1.0 V		
						1	0	0.8 V		
						1	1	0.6 V		
	0x5A	DAC1	7:0	DAC7至DAC0	R/W	8位DAC代码		代码)。		
	0x62	DPLIM1	7:0	LIM7至LIM0	R/W			果DAC1设置为较高的代码,		
	06 A	DAIL IMA	7.0	LIMAZZILIMO	D/M			AC输出为限。		
	0x6A	DNLIM1	7:0	LIM7至LIM0	R/W			果DAC1设置为较低的代码, AC输出为限。		
						注意,如果	DNLIM1大于[DPLIM1,则DAC输出始终禁用		
						(这是一项多	(全功能)。			
DAC2	0x53	DACCTRL2	7:3	不适用		无法使用。				
	2 ENDAC		R/W	使能DAC2。						
			1:0	OFFSEL1至OFFSEL0	R/W		1	间代码)输出。		
						OFFSEL1	OFFSEL0	(中间代码)输出电压		
						0	0	1.25 V		
						0	1	1.0 V		
						1	0	0.8 V		
	0.50	D.4.63		D.4.6777 D.4.60	D ///	00:04607	 	0.6 V		
	0x5B	DAC2	7:0	DAC7至DAC0	R/W		马(0x7F为中间			
	0x63	DPLIM2	7:0	LIM7至LIM0	R/W			果DAC2设置为较高的代码, AC输出为限。		
	0x6B	DNLIM2	7:0	LIM7至LIM0	R/W			RDAC2设置为较低的代码,		
			7.0					AC输出为限。注意,如果		
								DAC输出始终禁用		
						(这是一项安	(全功能)。			
DAC3	0x54	DACCTRL3	7:3	不适用		无法使用。				
			2	ENDAC	R/W	使能DAC3。		De the set Maria		
			1:0	OFFSEL1至OFFSEL0	R/W	选择DAC3B	可中间电压(中 OFFSELO	间代码)输出。 (中间代码)输出电压		
						0	0	1.25 V		
						0	1	1.0 V		
	1					1	0	0.8 V		
						1	1	0.6 V		
	0x5C	DAC3	7:0	DAC7至DAC0	R/W	8位DAC代码		L.		
	0x64	DPLIM3	7:0	LIM7至LIM0	R/W			果DAC3设置为较高的代码,		
							则此寄存器的内容以该DAC输出为限。			
	0x6C	DNLIM3	7:0	LIM7至LIM0	R/W					
								AC输出为限。注意,如果		
	1					DNLIM3大寸 (这是一项多		DAC输出始终禁用		
	L	1	l			一、及正一项支	(王切肥)。			

输出	寄存器	寄存器名称	位	名称	R/W	描述			
DAC4	0x55	DACCTRL4	7:3	不适用		无法使用。			
			2	ENDAC	R/W	Enables DAG	C4		
			1:0	OFFSEL1至OFFSEL0	R/W	选择DAC4的	中间电压(中	间代码)输出。	
						OFFSEL1	OFFSEL0	(中间代码)输出电压	
						0	0	1.25 V	
						0	1	1.0 V	
						1	0	0.8 V	
						1	1	0.6 V	
	0x5D	DAC4	7:0	DAC7至DAC0	R/W	8位DAC代码	引(0x7F为中间	代码)。	
	0x65	DPLIM4	7:0	LIM7至LIM0	R/W	8位DAC正限	見 值代码。如身	果DAC4设置为较高的代码,	
						则此寄存器	的内容以该D	AC输出为限。	
	0x6D	DNLIM4	7:0	LIM7至LIM0	R/W		- 1221	果DAC4设置为较低的代码,	
						则此寄存器	的内容以该D	AC输出为限。注意,如果	
						DNLIM4大于	EDPLIM4,则I	DAC输出始终禁用	
						(这是一项多	(全功能)。		

报警、故障、状态

报警

ADM1068/ADM1069/ADM1168/ADM1169具有低电平故障 检测功能,该功能可以与输入提供的故障检测功能结合使 用。低电平故障报告由ADC限值寄存器和VP1至VP3、VH 输入的辅助SFD提供。(这些引脚在VX1至VX4用作数字输 入时提供辅助SFD,参见"输入"部分)。

WARNING作为SE的单路输入提供,它包括ADC限值寄存器的宽OR运算和辅助SFD输出。"时序控制引擎"部分说明了如何选择WARNING作为SE的输入。

故障/状态报告

如果ADM1068/ADM1069/ADM1168/ADM1169监控的一路 输入发生故障(即VXx/VPx/VH引脚之一的电源电压移动到 阈值窗口以外),或者逻辑电平解除置位,则通过SMBus回 读故障平面,可以判断哪一路输入发生故障。

故障平面包括两个寄存器FSTAT1和FSTAT2,其中的各位均代表一个功能,例如一个VPx引脚或VXx引脚。通过读取这些寄存器的内容并确定哪些位设为1,用户就可以知

道哪些输入发生故障。1代表故障,例外情况是当VXx引脚用作数字输入时,1为相应引脚的输入的逻辑真值。

只有明确使能,器件才会将故障数据报告给故障层。使能方法是将各状态的使能故障寄存器写入位设为高电平,为此应将相关状态配置的位63设为1。如果此位未置1,故障平面就不会出现该状态中发生的故障。

为了锁存故障平面中的数据,在器件进入的下一个状态中,使能故障寄存器写入位必须置0。只有将此位设为0,寄存器才能锁定数据。如果一个输入通道发生故障,然后在使能故障寄存器写入位设为1时恢复正常,则故障寄存器中的相关位从0变为1,然后又变为0。

ADM1068/ADM1169还具有多个状态寄存器,任何时候都可以读取以确定输入的状态。这些寄存器的内容可能会随时改变,也就是说,这些寄存器的数据未被锁存,FSTAT1和FSTAT2同样如此。表18列出了故障和状态寄存器的详情。

表18. 故障和状态寄存器

寄存器	寄存器名称	位	名称	R/W	描述
0xE0	FSTAT1	7	FLT_VX2	R	用作模拟输入时,故障输出来自VX2引脚的SFD;
					用作数字输入时,VX2引脚逻辑置位。
		6	FLT_VX1	R	用作模拟输入时,故障输出来自VX1引脚的SFD;
		l _			用作数字输入时,VX1引脚逻辑置位。
		5		_	无法使用。
		4	FLT_VH	R	故障输出来自VH SFD。
		3	FLT_VP3		故障输出来自VP3 SFD。
		2	FLT_VP2		故障输出来自VP2 SFD。
		1	FLT_VP1		故障输出来自VP1 SFD。
		0	不适用		无法使用。
0xE1	0xE1 FSTAT2 7:2 不适用				无法使用。
		1	FLT_VX4	R	用作模拟输入时,故障输出来自VX4引脚的SFD,
				_	用作数字输入时,VX4引脚逻辑置位。
		0	FLT_VX3	R	用作模拟输入时,故障输出来自VX3引脚的SFD;
0.53	OVETAT1	-	01/ 1/0/2	-	用作数字输入时,VX3引脚逻辑置位。
0xE2	OVSTAT1	7	OV_VX2	R	VX2 (SFD)或VP2(报警)超过OV阈值。
		6	OV_VX1	R	VX1 (SFD)或VP1(报警)超过OV阈值。
		5	不适用		无法使用
		4	OV_VH	R	VH SFD超过OV阈值。
		2	OV_VP3	R	VP3 SFD超过OV阈值。
		2	OV_VP2	R	VP2 SFD超过OV阈值。
		1 -	OV_VP1	R	VP1 SFD超过OV阈值。
		0	N/A		无法使用。
0xE3	OVSTAT2	7:2	N/A		无法使用。
		1	OV_VX4	R	VX4 (SFD)或VP4(报警)超过OV阈值。
		0	OV_VX3	R	VX3 (SFD)或VP3(报警)超过OV阈值。
0xE4	UVSTAT1	7	UV_VX2	R	VX2 (SFD)或VP2(报警)超过UV阈值。
		6	UV_VX1	R	VX1 (SFD)或VP1(报警)超过UV阈值。

寄存器	寄存器名称	位	名称	R/W	描述
		5			无法使用。
		4	UV_VH	R	VH SFD超过UV阈值。
		3	UV_VP3	R	VP3 SFD超过UV阈值。
		2	UV_VP2	R	VP2 SFD超过UV阈值。
		1	UV_VP1	R	VP1 SFD超过UV阈值。
		0	不适用		无法使用。
0xE5	UVSTAT2	7:2	不适用		无法使用。
		1	UV_VX4	R	VX4 (SFD)或VP4(报警)超过UV阈值。
		0	UV_VX3	R	VX3 (SFD)或VP3(报警)超过UV阈值。
0xE6	LIMSTAT1	7	LIM_VX2	R	1=VX2超过ADCVX2LIM中设置的ADC限值。
		6	LIM_VX1	R	1=VX2超过ADCVX2LIM中设置的ADC限值。
		5	不适用		无法使用。
		4	LIM_VH	R	1=VH超过ADCVX2LIM中设置的ADC限值。
		3	LIM_VP3	R	1=VP3超过ADCVX2LIM中设置的ADC限值。
		2	LIM_VP2	R	1=VP2超过ADCVX2LIM中设置的ADC限值。
		1	LIM_VP1	R	1=VP1超过ADCVX2LIM中设置的ADC限值。
		0	不适用		无法使用。
0xE7	LIMSTAT2	7:2	不适用		无法使用。
		1	LIM_VX4	R	1 = VX4超过ADCVX2LIM中设置的ADC限值。
		0	LIM_VX3	R	1 = VX3超过ADCVX2LIM中设置的ADC限值。
0xE8	GPISTAT	7:5			无法使用。
		4	VX4_STAT	R	VX4 GPI输入状态(信号调理后)。
		3	VX3_STAT	R	VX3 GPI输入状态(信号调理后)。
		2	VX2_STAT	R	VX2 GPI输入状态(信号调理后)。
		1	VX1_STAT	R	VX1 GPI输入状态(信号调理后)。
		0	不适用		无法使用。

ADM1168/ADM1169的黑盒状态寄存器和故障记录

ADM1168/ADM1169时序控制引擎每次改变状态时, UVSTATx、OVSTATx、LIMSTATx和GPISTATx的内容,以 及与时序控制引擎状态和最后一次状态跃迁的原因相关的 一些信息,就会被锁存到7个黑盒状态寄存器中。

这些寄存器简要说明了ADM1168/ADM1169所监控输入的 状态,并显示最终状态是什么以及导致最后一次状态改变 的原因。

时序控制引擎改变状态后,如果新状态的对应 BBWRTRGx.STATEy位设为1,则7个黑盒状态寄存器的内 容顺次写入EEPROM黑盒部分中下一个可用的位置。

写入7个字节后,还会写入第8个校验和字节,以便检查数据完整性。如果由于为器件供电的所有电源都发生故障而只写入了一部分记录,这种检查就变得非常重要。

EEPROM中存储的故障记录的字节顺序如下:

- PREVSTEXT
- PREVSEQST
- BBSTAT1
- BBSTAT2
- BBSTAT3
- BBSTAT4
- BBSTAT5
- CHECKSUM

字节从EEPROM的最低地址存储到最高地址,因此,对于 黑盒EEPROM中的第一个故障记录位置,PREVSTEXT将存储在0xF980,CHECKSUM则存储在0xF987。

REVID寄存器的使用

ADM1068和ADM1168、ADM1069和ADM1169的I²C地址范围相同,读取MANID寄存器时,这些器件均返回值0x41。REVID是一个只读寄存器,可用来判断给定地址的器件是ADM1068/ADM1168还是ADM1069/ADM1169。详情见表20。

表19. ADM1168/ADM1169黑盒故障和状态寄存器

寄存器	寄存器名称	位	名称	R/W	描述
0xEA	PREVSTEXT	7	BBUSED		读数始终为0。
					将此位写入EEPROM中一个故障记录的第一字节时,所有8个字节都会
					被标记为在用状态。当黑盒搜索下一个可用位置时,会检查此位。
					如果此位为0,则即使前一个故障记录只是部分写入EEPROM,
		_	ta śn		该故障记录的8个字节也会被忽略。
		6	保留	_	读数始终为0。
		5 4	SMBJUMP LIMWARN	R	表示上一次状态跃迁的原因是接收到SMBJump。
				R	表示上一次状态跃迁的原因是超过了一个或多个ADC报警限值。
		3	SFDCMP	R	表示上一次状态跃迁的原因是超过了一个或多个电源故障检测器限值。
		2	超时	R	表示上一次状态跃迁的原因是超时条件变为真。
		1	监控	R	表示上一次状态跃迁的原因是监控条件变为真。
		0	序列	R	表示上一次状态跃迁的原因是时序控制条件变为真。
0xEB	PREVSEQST	7:6			无法使用。
		5:0	PREVADDR	R	当前状态之前的有效状态的状态编号。
0xEC	BBSTAT1	7	UV_VX2	R	VX2 (SFD)或VP2(报警)超过UV阈值。
		6	UV_VX1	R	VX1 (SFD)或VP1(报警)超过UV阈值。
		5	不适用		无法使用。
		4	UV_VH	R	VH SFD超过UV阈值。
		3	UV_VP3	R	VP3 SFD超过UV阈值。
		2	UV_VP2	R	VP2 SFD超过UV阈值。
		1	UV_VP1	R	VP1 SFD超过UV阈值。
		0	不适用		无法使用。
0xED	BBSTAT2	7	不适用		无法使用。
		6	OV_VH	R	VH SFD超过OV阈值。
		5	OV_VP3	R	VP3 SFD超过OV阈值。
		4	OV_VP2	R	VP2 SFD超过OV阈值。
		3	OV_VP1	R	VP1 SFD超过OV阈值。
		2	不适用		无法使用。
		1	UV_VX4	R	VX4 (SFD)或VP4(报警)超过UV阈值。
		0	UV_VX3	R	VX3 (SFD)或VP3(报警)超过UV阈值。
0xEE	BBSTAT3	7	VX3_STAT	R	VX3 GPI输入状态(信号调理后)。
		6	VX2_STAT	R	VX2 GPI输入状态(信号调理后)。
		5	VX1_STAT	R	VX1 GPI输入状态(信号调理后)。
		4	不适用		无法使用。
		3	OV_VX4	R	VX4 (SFD)或VP4(报警)超过OV阈值。
		2	OV_VX3	R	VX34 (SFD)或VP3(报警)超过OV阈值。
		1	OV_VX2	R	VX2 (SFD)或VP2(报警)超过OV阈值。
		0	OV_VX1	R	VX1 (SFD)或VP1(报警)超过OV阈值。
0xEF	BBSTAT4	7	VX1 CH	R	VX1限值状态 – 与LSENSE1一起使用。
		6	不适用		无法使用。
		5	VH CH	R	VH限值状态 – 与LSENSE1一起使用。
		4	VP3 CH	R	VP34限值状态 - 与LSENSE1一起使用。
		3	VP2 CH	R	VP2限值状态 – 与LSENSE1一起使用。
		2	VP1 CH	R	VP1限值状态 – 与LSENSE1一起使用。
		1	不适用		无法使用。
		0	VX4_STAT	R	VX4 GPI输入状态(信号调理后)。

寄存器	寄存器名称	位	名称	R/W	描述
0x F0	BBSTAT5	7:3	N/A		无法使用。
		2	VX4 CH	R	VX4限值状态 – 与LSENSE2一起使用。
		1	VX3 CH	R	VX3限值状态 – 与LSENSE1一起使用。
		0	VX2 CH	R	VX2限值状态 - 与LSENSE1一起使用。
0x F1	BBADDR	7:0	ADDR	R	0xF980至0xF9FF范围中写入下一个故障记录的地址位置的低位字节。 没有写入故障记录时,值为0x80,每写入一个故障记录,值递增8。 当只有一个故障记录未写入时,值为0xF8。所有位置均已写入并且 黑盒EEPROM已满时,值为0x00。

表20. REVID寄存器解码

寄存器	寄存器名称	位	名称	R/W	描述			
0xF5	REVID	7:4	系列	R	读取值为0x0时,器件为ADM1068/ADM1069。			
					读取值为0x1时,器件为ADM1168/ADM1169。			
		3:0	HWVER	R	此值为硬件版本号。			

表21. 寄存器映射快速参考1

	可计码收剂	人处乡的			1	1	1	1	ľ	
基本 地址 (十六 进制)	功能	0/8	1/9	2/A	3/B	4/C	5/D	6/E	7/F	输出
00	X	X	X	X	X	X	X	x	PDO1CFG	PDO1
08	VP1	PS1OVTH	PS1OVHYS T	PS1UVTH	PS1UVHYST	SFDV1CFG	SFDV1SEL	X	PDO2CFG	PDO2
10	VP2	PS2OVTH	PS2OVHYS T	PS2UVTH	PS2UVHYST	SFDV2CFG	SFDV2SEL	х	PDO3CFG	PDO3
18	VP3	PS3OVTH	PS3OVHYST	PS3UVTH	PS3UVHYST	SFDV3CFG	SFDV3SEL	x	PDO4CFG	PDO4
20	VH	PSVHOVTH	PSVHOVHY ST	PSVHUVTH	PSVHUVHYST	SFDVHCFG	SFDVHSEL	х	PDO5CFG	PDO5
28	x	x	x	x	x	x	x	x	PDO6CFG	PDO6
30	VX1	X1OVTH	X10VHYST	X1UVTH	X1UVHYST	SFDX1CFG	SFDX1SEL	XGPI1CFG	PDO7CFG	PDO7
38	VX2	X2OVTH	X2OVHYST	X2UVTH	X2UVHYST	SFDX2CFG	SFDX2SEL	XGPI2CFG	PDO8CFG	PDO8
40	VX3	X3OVTH	X3OVHYST	X3UVTH	X3UVHYST	SFDX3CFG	SFDX3SEL	XGPI3CFG	x	
48	VX4	X4OVTH	X40VHYST	X4UVTH	X4UVHYST	SFDX4CFG	SFDX4SEL	XGPI4CFG	x	
50	DAC控制	x	x	DACCTRL1	DACCTRL2	DACCTRL3	DACCTRL4	x	x	
58	DAC代码	x	х	DAC1	DAC2	DAC3	DAC4	x	x	
60	DAC上限	x	x	DPLIM1	DPLIM2	DPLIM3	DPLIM4	x	x	
68	DAC下限	x	x	DNLIM1	DNLIM2	DNLIM3	DNLIM4	x	x	
70	ADCLIM		ADCVP1LIM	ADCVP2LIM	ADCVP3LIM	ADCVHLIM	x	ADCVX1LIM	ADCVX2LIM	
78	ADCLIM	ADCVX3LIM	ADCVX4LIM	x	х	x	LSENSE1	LSENSE2	x	
80	ADC设置	RRSEL1	RRSEL2	RRCTRL	х	х	х	x	x	
88	x	x	x	x	х	х	x	x	x	
90	其它	UPDCFG	PDEN1	PDEN2	SECTRL	BBWRTRG1 ²	BBWRTRG2 ²	BBWRTRG3 ²	BBWRTRG4 ²	
98	其它	BBWRTRG5 ²	BBWRTRG6 ²	BBWRTRG7 ²	BBWRTRG8 ²	BBCTRL ²	x	x	x	
A0	ADC回读	x	х	ADCHVP1	ADCLVP1	ADCHVP2	ADCLVP2	ADCHVP3	ADCLVP3	
A8	ADC回读	ADCHVH	ADCLVH	х	x	ADCHVX1	ADCLVX1	ADCHVX2	ADCLVX2	
B0	ADC回读	ADCHVX3	ADCLVX3	ADCHVX4	ADCLVX4	x	x	x	x	
B8		х	х	х	x	x	x	x	х	
C0		х	х	х	x	x	x	x	х	
C8		x	х	х	x	x	x	x	x	
D0		x	x	x	x	х	x	x	x	
D8	其它	UDOWNLD	BBSEARCH ²	UNLOCKSE ²	SEDOWNLD ²	x	x	x	x	
E0	故障(只读)	FSTAT1	FSTAT2	OVSTAT1	OVSTAT2	UVSTAT1	UVSTAT2	LIMSTAT1	LIMSTAT2	
E8	故障(只读)	GPISTAT	SEADDR	PREVSTEXT ²	PREVSEQST ²	BBSTAT1 ²	BBSTAT2 ²	BBSTAT3 ²	BBSTAT4 ²	
F0	其它	BBSTAT5 ²	BBADDR ²	x	x	MANID	REVID1	MARK1	MARK2	
F8	命令	EEALOW	EEAHIGH	EEBLOW	EEBHIGH	BLKWR	BLKRD	BLKER	х	

¹x表示该寄存器位置不存在。

² 仅限ADM1168和ADM1169。

注释

AN-721	
注释	

I²C指最初由Philips Semiconductors(现为NXP Semiconductors)开发的一种通信协议。

