注册商标。

MAX7060评估板(EV kit)提供经过验证的设计,用于评 估MAX7060频率可编程ASK/FSK发送器,器件采用带有 裸焊盘的24引脚TQFN封装。评估板使用Windows XP[®]、 Windows Vista[®]和Windows[®]7兼容软件,提供简捷的 图形用户界面(GUI),以简化评估。该评估板能够测试IC的 RF性能,无需额外电路。RF输出采用50Ω匹配网络,并 带有SMA连接器,便于连接测试设备。评估板PCB预装了 MAX7060ATG+。

Windows、WIndows XP和Windows Vista是Microsoft Corp.的

概述

- ♦ Windows XP、Windows Vista和Windows 7兼容软件
- ◆ USB供电
- ♦ 经过验证的PCB布局
- ♦ 经过验证的元件列表
- ♦ 可调节频率
- ◆ 仿真模式能够对硬件电路进行仿真
- ◆ 完全安装并经过测试

_ 定购信息

特性

PART	ТҮРЕ
MAX7060EVKIT+	EV Kit

+表示无铅(Pb)并符合RoHS标准。

QTY

DESIGNATION

DESIGNATION	QTY	DESCRIPTION
BATT-2032	0	Not installed, battery holder and contact solution
BATT-AAA	0	Not installed, plastic battery holder
C1, C6, C12, C42, C46	5	33pF ±5%, 50V C0G ceramic capacitors (0402) Murata GRM1535C1H330J
C2, C8, C13, C43, C47	5	0.01µF ±10%, 25V X7R ceramic capacitors (0402) Murata GRM155R71E103J
C3, C9, C14, C44, C48	5	0.1µF ±10%, 16V X7R ceramic capacitors (0402) Murata GRM155R71C104K
C4*, C31, C32	3	100pF ±5%, 50V C0G ceramic capacitors (0402) Murata GRM1555C1H101J
C55*, C56*	2	10pF ±5%, 50V C0G ceramic capacitors (0402) Murata GRM1555C1H100J
C7	1	330pF ±5%, 50V C0G ceramic capacitor (0402) Murata GRM1555C1H331J

680pF ±5%, 50V COG ceramic C10 1 capacitor (0402) Murata GRM1555C1H681J 3.9pF ±0.25pF, 50V COG C33. C34 ceramic capacitors (0603) 2 Murata GRM1885C1H3R9C C100, C102, C104, C106, 0.1µF ±10%, 16V X7R ceramic C109-C112, 18 capacitors (0603) C117, C122, Murata GRM188R71C104K C125-C132 10µF ±10%, 6.3V X5R ceramic C101, C103, 4 capacitors (0603) C105, C107 Murata GRM188R60J106M Not installed, ceramic capacitor C113 0 (0603) 22pF ± 5%, 50V C0G ceramic C114, C115 2 capacitors (0603) Murata GRM1885C1H220J

Maxim Integrated Products 1

本文是英文数据资料的译文,文中可能存在翻译上的不准确或错误。如需进一步确认,请在您的设计中参考英文资料。 有关价格、供货及订购信息,请联络Maxim亚洲销售中心:10800 852 1249 (北中国区),10800 152 1249 (南中国区), 或访问Maxim的中文网站: china.maxim-ic.com。

元件列表

DESCRIPTION

评估板: MAX7060

DESIGNATION	QTY	DESCRIPTION
C116	1	33nF ±10%, 16V X7R ceramic capacitor (0603) Murata GRM188R71C333K
C118, C119	2	10pF ±5%, 50V C0G ceramic capacitors (0603) Murata GRM1885C1H100J
C120, C121	2	100pF ±5%, 50V C0G ceramic capacitors (0603) Murata GRM1885C1H101J
CS_DEV, DIN, ENABLE, GPO1, GPO2_MOD, LSHDN, SCLK_PWR0, SDI_PWR1, SDO	9	Red miniature test points
D100–D105	6	Yellow LEDs (1206)
D106–D111	6	Green LEDs (1206)
GND-A–GND-F, VADJ, VDUT-A, VDUT-B, VEXT, 3V3, V3V	12	1-pin headers
J100, J101	2	8-pin (2 x 4) headers
J102, J103	0	Not installed, 40-pin (2 x 20) headers
JU1, JU2	0	Not installed, 15-pin (3 x 5) headers
JU3–JU7, JU100–JU108	14	3-pin headers
JU8, JU109, JU110	3	2-pin headers
JU111	1	36-pin (2 x 18) header
L1*	1	51nH ±2% inductor (0603) Murata LQW18AN51NG00
L2*	1	22nH ±2% inductor (0603) Murata LQW18AN22NG00
P100	1	USB type-B right-angle female receptacle
Q100	1	Dual n-channel FET (6 SuperSot) Fairchild FDC6301N

DESIGNATION	QTY	DESCRIPTION
RA, R12, R3B, R117, R118	0	Not installed, resistors (0603)
RB, R3A, R125, R126	4	$0\Omega \pm 5\%$ resistors (0603)
R100	1	50k Ω ±10% potentiometer
R101	1	27.4k Ω ±1% resistor (0603)
R102	1	39.2k Ω ±1% resistor (0603)
R103, R105, R106, R107	4	100k Ω ±1% resistors (0603)
R104	1	59k Ω ±1% resistor (0603)
R108	1	158k Ω ±1% resistor (0603)
R109, R111, R113, R115, R116, R131, R132, R135, R136	9	150 Ω ±5% resistors (0603)
R110	1	$330\Omega \pm 5\%$ resistor (0603)
R112	1	$75\Omega \pm 5\%$ resistor (0603)
R114	1	$43\Omega \pm 5\%$ resistor (0603)
R119	1	1.5k Ω ±5% resistor (0603)
R120, R121	2	$27\Omega \pm 5\%$ resistors (0603)
R122	1	470 Ω ±5% resistor (0603)
R127–R130, R133, R134	6	100k Ω ±5% resistors (0603)
R137–R147, R149	12	$100\Omega \pm 5\%$ resistors (0603)
RF	1	SMA female vertical connector
S100, S101	2	Momentary pushbutton switches
S102	1	Quad SPST NO dip switch
TP1–TP5, TP127, TP128	7	Red multipurpose test points
TP129-TP132	4	Black multipurpose test points
U1	1	280MHz to 450MHz frequency- programmable ASK/FSK transmitter (24 TQFN-EP**) Maxim MAX7060ATG+
U100–U103	4	Low-noise LDO linear regulators (5 SC70) Maxim MAX8512EXK+
U104	1	UART-to-USB converter (32 TQFP)

元件列表(续)

元件列表(续)

DESIGNATION	QTY	DESCRIPTION
U105	1	Not installed, 93C46 3-wire EEPROM (8 SO)
U106	1	32-bit microcontroller (68 QFN-EP**) Maxim MAXQ2000-RAX+
U107–U110	4	8-channel level translators (20 TSSOP) Maxim MAX3001EEUP+
XTAL	0	Not installed, SMA female vertical connector
Y1	1	16MHz crystal

r		ľ
DESIGNATION	QTY	DESCRIPTION
Y100	1	6MHz crystal (HCM49) Hong Kong X'tals SSL600000018FAF
Y101	0	Not installed, 32.768kHz crystal
Y102	1	16MHz crystal Hong Kong X'tals SSM1600000E18FAF
	36	Shunts
_	1	USB high-speed A-to-B cables, 6ft
_	1	PCB: MAX7060 EVALUATION KIT+

*表示匹配元件。 **EP = 裸焊盘。

元件供应商

SUPPLIER	PHONE	WEBSITE
Fairchild Semiconductor	888-522-5372	www.fairchildsemi.com
Hong Kong X'tals Ltd.	852-35112388	www.hongkongcrystal.com
Murata Electronics North America	770-436-1300	www.murata-northamerica.com

注: 在联系这些元件供应商时,请说明您使用的是MAX7060。

MAX7060评估文件

FILE	DESCRIPTION
INSTALL.EXE	Installs the EV kit files on your computer
MAX7060.EXE	Application program
CDM20600.EXE	Installs the USB device driver
UNINSTALL.EXE	Uninstalls the EV kit software
USB_Driver_Help_200.PDF	USB driver installation help file

快速入门

所需设备

- MAX7060评估板
- 具有空闲USB口的Windows XP、Windows Vista或 Windows 7 PC
- 频谱分析仪
- (可选)功率计

注:以下章节中,与软件相关的条目用粗体字标识。粗体字 表示直接由评估软件提供的条目,<u>粗体字加下划线</u>表示与 Windows操作系统相关的条目。

步骤

评估板已完全安装并经过测试,按照以下步骤验证评估板的 工作情况:

- 1) 从<u>china.maxim-ic.com/evkitsoftware</u>下载最新版本的 评估软件7060Rxx.ZIP。将评估软件保存至一个临时文 件夹,然后解压缩ZIP文件。
- 2) 运行临时文件夹中的INSTALL.EXE程序,在计算机上 安装评估软件和USB驱动。程序文件将被拷贝至PC, 并在Windows的Start Programs菜单中创建图标。软 件安装期间,有些Windows版本可能会显示一条警告 消息,提示软件来自于未知发行商。这不是错误,可继 续安全安装。在Windows中安装USB设备驱动需要管 理员权限。
- 3) 确认全部跳线位于其默认位置,如表1、表2和表3所示。
- 4) 用USB电缆连接PC和评估板。首次将评估板连接至PC 时,显示一条Windows消息。根据Windows版本的 不同,消息会稍有不同。如果看到Windows消息提示 ready to use,即可进入下一步。否则,打开Windows 的<u>Start I Programs</u>菜单中的USB_Driver_Help_200. PDF文件,检查USB驱动是否安装正确。
- 5) 点击<u>Start I Programs</u>菜单中的图标,启动评估软件。图 1所示为评估软件主窗口,GUI界面在左下角状态栏中 显示是否已连接USB硬件。

- 6) VDUT电源应设为3.3V,可选择用DMM在TP127上进 行测量。可通过电阻R100调节VDUT电源。
- 7) 将RF SMA连接器连接至频谱分析仪,查看功率水平 和调制频谱。将频谱分析仪的中心频率设置为315MHz, 频率宽度为2MHz。
- 8) IC默认工作于ASK模式。通过在**Center Frequency**编 辑框中输入以MHz为单位的频率,将IC的载波频率设 置为315MHz。然后按回车键。
- 9) 通过在**PA Setting**下拉列表中选择相应的值,将PA输 出功率设置为**0x1E**。
- 10) 点击ENABLE (0x10)选择框,确认数值改为1。确认 lockdet灯指示为绿色。
- 11) 点击DATAIN (0x11)选择框。
- 12) 频谱分析仪应显示315MHz的未调制载波。功率水平取 决于在第9步中输入的值。当采用3.3V供电电压时,最 大设置0x1E应产生大约+15dBm (30mW至35mW)的 发送功率。
- 13) 为了测试FSK, 取消选中DATAIN (0x11)和ENABLE (0x10)选择框。
- 14) 点击mode选择框,并确认Conf0 (0x01)组合框中显示 FSK。在FSK组合框中,中心频率应设为315MHz。在 Frequency Deviation编辑框中,输入50,然后按回车 键。这样产生的峰峰值将被四舍五入至合成器的频率 分辨率。FSK组合框中,在fhi和flo标签旁边显示高频和 低频。
- 15)点击ENABLE (0x10)选择框。确认未选中DATAIN (0x11)选择框。频谱分析仪应显示逻辑0(空号)频率的 未调制载波,大约等于flo值。根据晶体频率容差的不 同,频率可能会偏移最多几十kHz。
- 16) 选中 DATAIN (0x11)选择框,并在频谱分析仪上观察频 率偏移。逻辑1 (传号)频率应接近fhi值。

评估板: MAX7060

其它评估

- 17) 如需测量效率,关闭GUI,断开USB电缆。
- 18) 移除跳线JU111引脚1-2上的短路器,串联一个安培计。
- 19) 重新连接USB电缆,并重新启动GUI。

表1. 控制侧跳线表(J100、JU100至JU111)

20) 将功率计连接至RF SMA连接器,测量输出功率和供 电电流。

21) 按下式计算效率:

JUMPER	SHUNT POSITION	DESCRIPTION
	1-2	VDUT (IC) powered by the battery.
	3-4	VDUT powered by the USB (+5V).
J100	5-6	VDUT powered by an external supply. Apply the external voltage between the VEXT and GND test points.
	7-8*	VDUT powered by an adjustable on-board regulator. Change the resistance of potentiometer R100 to the required DUT supply. The supply voltage range is between 2.1V and 3.6V.
	1-2	Connects the external supply to the REG supply.
30100	2-3*	Connects the USB supply to the REG supply.
	1-2*	Microcontroller supply comes from the REG supply.
JU101	2-3	Microcontroller supply comes from the battery. Installation of the battery holders is required.
	1-2*	Logic microcontroller supply (VMICROL) is set to 3.3V.
JU 102	2-3	Logic microcontroller supply (VMICROL) is set to VMICRO.
11102	1-2	Core microcontroller supply (VMICRO) is set to 2.0V.
30103	2-3*	Core microcontroller supply (VMICRO) is set to 2.5V.
11104	1-2*	Selects the AAA battery holder for the VBAT supply. Installation of the battery holder is required.
50104	2-3	Selects the 2032 battery holder for the VBAT supply. Installation of the battery holder is required.
11105	1-2	Must supply the microcontroller oscillation frequency externally.
30105	2-3*	Connects the microcontroller oscillator to the on-board crystal.
11106	1-2	Must supply the microcontroller oscillation frequency externally.
30100	2-3*	Connects the microcontroller oscillator to the on-board crystal.
11107	1-2	Must supply the RTC oscillation frequency externally.
30107	2-3*	Connects the RTC oscillator to the on-board crystal (not installed).
11108	1-2	Must supply the RTC oscillation frequency externally.
00100	2-3*	Connects the RTC oscillator to the on-board crystal (not installed).
	Closed*	GPO2 connects to the DUT through level translators.
00100	Open	GPO2 does not connect to the DUT.
	Closed*	GPO1 connects to the DUT through level translators.
00110	Open	GPO1 does not connect to the DUT.
JU111	Closed*	See Table 2.

*默认位置。

评估板: MAX7060

表2. JU111跳线表

SHUNT POSITION		DESCRIPTION		
1.0	Closed*	IC supply powered by the VDUT supply on the control side.		
1-2	Open	Connection point for an ammeter if supply current measurements are required.		
3-4	Closed*	Don't care.		
5-6	Closed*	Don't care.		
7-8	Closed*	Don't care.		
0.10	Closed*	Connects the IC AVDD voltage to test point V3V.		
9-10	Open	The V3V test point is unconnected.		
	Closed*	Connects the GPO1 signal from the IC to the on-board microcontroller. The GPO1 signal can be monitored on the GPO1 test point.		
11-12	Open	GPO1 signal is not connected to the on-board microcontroller. The GPO1 signal can be monitored by an external microcontroller on the GPO1 test point without interference loading from the on-board microcontroller.		
	Closed*	Connects the low-power shutdown (LSHDN) signal from the on-board microcontroller to the IC. The LSHDN signal can be monitored on the LSHDN test point.		
13-14	Open	The LSHDN signal is not connected to the on-board microcontroller. When using an external LSHDN signal, remove the jumper and apply the signal on the LSHDN test point. Alternatively, LSHDN can be driven high or low through JU2. LSHDN must be driven low for normal operation.		
15 10	Closed*	FREQ2 signal to the IC.		
15-16	Open	FREQ2 can be driven high or low through JU2.		
17 10	Closed*	FREQ1 signal to the IC.		
17-10	Open	FREQ1 can be driven high or low through JU2.		
10.20	Closed*	FREQ0 signal to the IC.		
19-20	Open	FREQ0 can be driven high or low through JU2.		
	Closed*	Connects the GPO2_MOD signal from the IC to the on-board microcontroller. The GPO2_MOD signal can be monitored on the GPO2_MOD test point.		
21-22	Open	GPO2_MOD signal is not connected to the on-board microcontroller. The GPO2_MOD signal can be monitored by an external microcontroller on the GPO2_MOD test point without interference loading from the on-board microcontroller. GPO2_MOD can be driven high or low through JU2.		
	Closed*	Connects the on-board \overline{CS} _DEV signal to the IC. \overline{CS} _DEV can be monitored on the \overline{CS} _DEV test point.		
23-24	Open	Does not connect the on-board \overline{CS} _DEV to the IC. When using external SPI™, remove this jumper and apply the \overline{CS} signal to the \overline{CS} _DEV test point. For manual mode, \overline{CS} _DEV can be driven high or low through JU1.		
25-26	Closed*	Connects the on-board SDI_PWR1 signal to the IC. SDI_PWR1 can be monitored on the SDI_PWR1 test point.		
	Open	Does not connect the on-board SDI_PWR1 to the IC. When using external SPI, remove this jumper and apply the SDI signal to the SDI_PWR1 test point. For manual mode, SDI_PWR1 can be driven high or low through JU1.		
	Closed*	Connects the on-board SCLK_PWR0 to the IC. SCLK_PWR0 can be monitored on the SCLK_PWR0 test point.		
27-28	Open	Does not connect the on-board SCLK_PWR0 to the IC. When using external SPI, remove this jumper and apply the SCLK signal to the SCLK_PWR0 test point. For manual mode, SCLK_PWR0 can be driven high or low through JU1.		

SPI是Motorola, Inc.的商标。

6

评估板: MAX7060

表2. JU111跳线表(续)

SHUNT F	POSITION	DESCRIPTION
	Closed*	Connects the on-board enable signal (ENABLE) to the IC. ENABLE can be monitored on the ENABLE test point.
29-30	Open	Does not connect the on-board enable signal to the IC. When using an external signal for enable, remove this jumper and apply the ENABLE signal to the ENABLE test point. For manual mode, ENABLE can be driven high or low through JU1.
21.22	Closed*	Connects the on-board transmitter data signal (DIN) to the IC. DIN can be monitored on the DIN test point.
31-32	Open	Does not connect the on-board transmitter data signal to the IC. When using an external signal for transmitter data, remove this jumper and apply the DIN signal to the DIN test point.
33-34	Closed*	Don't care.
35-36	Closed*	Connects the microcontroller to the on-board SDO from the IC. SDO can be monitored on the SDO test point.
	Open	Does not connect the microcontroller to the SDO signal from the IC. When using external SPI, remove this jumper and apply the MISO input to the SDO test point.

*默认位置。

表3. DUT侧跳线表

JUMPER	SHUNT POSITION	DESCRIPTION
JU1	_	See Table 6.
JU2	—	See Table 6.
	1-2*	Connects PAVDD to the on-board 3V supply.
503	2-3	External PAVDD. Must apply an external voltage on TP1 to power PAVDD.
11.14	1-2*	Connects AVDD to the on-board 3V supply.
504	2-3	External AVDD. Must apply an external voltage on TP2 to power AVDD.
JU5 1-2* 2-3	1-2*	Connects DVDD to the on-board 3V supply.
	2-3	External DVDD. Must apply an external voltage on TP3 to power DVDD.
	1-2*	Connects the 5V net to the on-board 5V supply.
500	2-3	External 5V supply. Must apply an external voltage on TP4 to power V5V.
11.17	1-2*	Connects GPOVDD to the on-board 5V supply.
507	2-3	External GPOVDD supply. Must apply an external voltage on TP5 to power GPOVDD.
JU8	Closed*	Connects the V5V net to the V3V for 3V operation.
	Open	For 5V operation, the V3V net is sourced by the IC's AVDD pin.

*默认位置。

布局问题

对于任何RF/微波电路来说,设计合理的PCB都至关重要。 使高频输入和输出线路尽量短,以将损耗和辐射降至最小。 高频时,大约λ/10或更长的走线相当于天线。

寄生电感和电容都会影响电路布局,使用较短的走线长度 能很好地避免该问题。通常情况下,接地区域上方0.0625 in 处的10mil宽PCB走线,在采用FR4电介质时产生大约 19nH/in的电感和大约1pF/in的电容。匹配网络中,电感大 约为22nH,电容大约为10pF,IC附近的电路对元件有效值 的影响非常大。

为了降低寄生电感,在信号走线下方采用稳固的接地或电源 区域。在全部GND引脚上,采用低电感通路连接至地,并 在所有靠近VDD连接的位置安装去耦电容。不要在去耦电 容上共用GND过孔,每个电容使用独立的过孔。

软件详细说明

MAX7060评估软件的主窗口如图1所示。

评估板采用Windows XP、Windows Vista和Windows 7兼容软件提供简单的GUI,演示MAX7060的功能。利用 评估板GUI Main Control标签页,可以方便地设置IC,无需

关注寄存器的编程。可在**Registers**标签页中查看寄存器的值。 这样就能够利用GUI采用不同的设置进行方便的原型设计。

主控制标签页

Main Control标签页着重于设置发送器和GPO配置。发送器频率范围可通过GUI来指定。发送频率范围为301.5MHz 至450.5MHz,采用16MHz晶体。可通过Registers标签页 将频率设置为任意值,但仅限于Main Control标签页中的允 许值。发送频率为ASK组合框中的Center Frequency。对于 FSK,中心频率规定了空号频率(flo)和传号频率(fhi)的中点。 低频和高频由Center Frequency附近的频率偏移规定。最大 PA功率设置可选。对于ASK数字整形,还提供定时和功率 步长设置。

DATAIN和ENABLE功能可通过软件(选择框)或硬件(按钮) 设置。位电平和硬件逻辑在内部进行"或"操作。

GPO配置

IOConf1 (0x05)组合框显示GPO1和GPO2的不同信号输出 选项。

IOConf0 (0x04)组合框给出了不同内部信号的状态,如表4 所示。改变TestMUX的值时,这些状态反映在Status寄存 器中。

图1. MAX7060评估软件主窗口(主控制标签页)

评估板: MAX7060

表4. 状态总线信号

tmux[2:0]	status[7]	status[6]	status[5]	status[4]	status[3]	status[2]	status[1]	status[0]
0		—			ckout	ckd16	ckd4	nock
1								
2					enable			
3		frac_fxdb		cap[4]	cap[3]	cap[2]	cap[1]	cap[0]
4			notover	capfxd[4]	capfxd[3]	capfxd[2]	capfxd[1]	capfxd[0]
5	integ[3]	integ[2]	integ[1]	integ[0]	frac[11]	frac[10]	frac[9]	frac[8]
6	frac[7]	frac[6]	frac[5]	frac[4]	frac[3]	frac[2]	frac[1]	frac[0]
7						—	lockdet	xmit_en

	保留信号	fra
nock	无时钟标识,若晶振被禁用则为(1),若观察 到IC时钟活动则为(0)	ca no
ckd4	4分频后的晶振时钟信号	int
ckd16	16分频后的晶振时钟信号	fra
ckout	时钟输出信号,对应于编程分频器(ckdiv[2:0])	xn
enable	内部使能信号(ENABLE引脚和使能位的 "或" 函数)	loc
cap[4:0]	SPI模式电容设置	

仿真模式

手动标签页

寄存器标签页

利用仿真模式,可通过SPI寄存器**Conf2**实现手动模式下相同的设置。这样就能够通过写单个寄存器实现对IC的完整 配置。

IC可工作于固定的纯硬件模式,无需SPI控制器。利用 Manual标签页(图2)可通过软件控制硬件设置。板载微控制 器根据该标签页中的选项设置电平,而不是通过跳线设置 高和低逻辑电平。固定硬件模式亦可通过JU1和JU2手动控 制。需要安装JU1和JU2,并且移除JU111(引脚3至30)上 的短路器。跳线位置可切换,以实现不同的输出设置。

Registers标签页(图3)显示每个寄存器的每个位的逻辑电平 状态。粗体数据位表示逻辑高,非粗体数据位表示逻辑低。 点击单个数据位切换该位状态,并执行写和读命令。新值显 示在最右侧的编辑框中。亦可通过在编辑框中键入十六进制 数值然后按键盘上的回车键,向寄存器中写入完整的寄存 器值。 frac_fxdb N分数模式(1)或ASK N定值模式(0)

capfxd[4:0] 仿真模式可变电容设置

otover ASK数字整形标识,当PA功率值不为0时为(1)

- nteg[3:0] N分数4位整数值
- rac[11:0] N分数12位小数值
- xmit en 发送器PA使能标识
- ckdet PLL锁定检测标识

记录标签页

Log标签页可用于确认命令是否执行。Log Page表旁边有 一个编辑框,显示上次写入至Log Page的值。不必切换至 Log Page确认命令是否发送。

使用提示

评估板包含一个简单的GUI用于演示IC特性。有些动作在后 台执行多次写入和读取操作。为确保软件正常工作,请遵循 以下提示:

- 确保跳线处于默认位置。
- 程序启动时,确认左下角状态栏上显示Hardware: Connected,右下角状态栏上显示MAX7060 Detected。
- 拔下USB电缆,再次插入前等待大约5s。这使供电电 压下降至低于复位门限。
- 将USB电缆从PC插入至评估板后,等待大约5s,然 后再运行评估软件。软件运行之前,需要一些时间检测 USB驱动。

评估板: MAX7060

Aain Control Manual Regis	ters Log Reset	0x46
-Manual Mode Enable Fixed 0	□ Mode ASK Deviation 31.25 ▼	
Output Power Pma× 🗨	Frequency 315.00	
ENABLE HW EN 0 Tuning Capacitance OpF	DATAIN HW DIN 0	

图2. MAX7060评估软件(手动标签页)

ain Control Manual Registers Log Reset OxA6 Read Registers B7 B6 B5 B4 B3 B2 B1 B0 dent Addr = 0x00 1 0 1 0 0 1 1 0 0xA6 Conf0 Addr = 0x02 ckdiv_2 ckdiv_1 ckdiv_0 cap_3 cap_2 cap_1 cap_0 0x 00 Conf1 Addr = 0x02 ckdiv_2 ckdiv_1 ckdiv_0 cap_4 cap_3 cap_2 cap_1 cap_0 0x 00 Conf1 Addr = 0x02 ckdiv_2 ckdiv_1 ckdiv_0 cap_3 cap_2 cap_1 cap_0 0x 00 Conf1 Addr = 0x02 ckdiv_1 ckdiv_0 cap_3 cap_2 cap_1 cap_0 0x 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0	e <u>O</u> ptions	: <u>H</u> elp	2000							
Read Registers B7 B6 B5 B4 B3 B2 B1 B0 Addr = 0x00 1 0 1 0 0 1 1 0 0x A66 Conf0 Addr = 0x01 0 gp1bst pllbw anshp_1 anshp_0 clksby clkout mode 0x 00 Addr = 0x02 ckdiv_2 ckdiv_1 ckdiv_0 cap_4 cap_3 cap_2 cap_1 cap_0 0x 00 Conf1 Addr = 0x03 fixed fxmode fxpwr_1 fxpwr_0 fxhdev fxfrq_2 fxfrq_1 fxfrq_0 0x 00	ain Contro	1 Manual	Registe	ers Log	Re	set		0xA6		
B7 B6 B5 B4 B3 B2 B1 B0 Ident Addr = 0x00 1 0 1 0 0 1 1 0 0x A6 Conf0 Addr = 0x01 0 gp1bst pllbw anshp_1 anshp_0 clksby clkout mode 0x 00 Conf1 Addr = 0x02 ckdiv_2 ckdiv_1 ckdiv_0 cap_4 cap_3 cap_2 cap_1 cap_0 0x 00 Conf2 Addr = 0x03 fixed fxmode fxpwr_1 fxpwr_0 fxhdev fxfrq_2 fxfrq_1 fxfrq_0 0x 00 IOConf0 Addr = 0x04 0 0 0 0 tmux_2 tmux_1 tmux_0 0x 00 IOConf1 Addr = 0x05 0 gp2s_2 gp2s_1 gp2s_0 0 gp1s_2 gp1s_1 gp1s_0 0x 00 IOConf1 Addr = 0x06 0 0 0 pastp_3 pastp_2 gps1s_1 gp1s_0 0x 00									Read Re	egisters
Ident Addr = 0x00 1 0 1 0 0 1 1 0 0x Å6 Conf0 Addr = 0x01 0 gp1bst pllbw anshp_1 anshp_0 clksby clkout mode 0x 00 Conf1 Addr = 0x02 ckdiv_2 ckdiv_1 ckdiv_0 cap_4 cap_3 cap_2 cap_1 cap_0 0x 00 Conf1 Addr = 0x02 ckdiv_2 ckdiv_1 ckdiv_0 cap_4 cap_3 cap_2 cap_1 cap_0 0x 00 Conf2 Addr = 0x03 fixed fxmode fxpwr_1 fxpwr_0 fxhdev fxfrq_2 fxfrq_1 fxfrq_0 0x 00 IOConf0 Addr = 0x04 0 0 0 0 tmux_2 tmux_1 tmux_0 0x 00 0 IOConf1 Addr = 0x05 0 gp2s_2 gp2s_1 gp2s_0 0 gp1s_2 gp1s_1 gp1s_0 0x 00 PX 00 PX 00 0 00 00 00		B7	B6	B5	B4	B3	B2	B1	BO	
Addr = 0x00 1 0 1 0 0 1 1 0 0x $A66$ Conf0 Addr = 0x01 0 gp1bst pllbw anshp_1 anshp_0 clksby clkout mode 0x 00 Conf1 Addr = 0x02 ckdiv_2 ckdiv_1 ckdiv_0 cap_4 cap_3 cap_2 cap_1 cap_0 0x 00 Conf2 Addr = 0x03 fixed fxmode fxpwr_1 fxpwr_0 fxhdev fxfrq_2 fxfrq_1 fxfrq_0 0x 00 IOConf0 Addr = 0x04 0 0 0 0 tmux_2 tmux_1 tmux_0 0x 00 IOConf0 Addr = 0x05 0 gp2s_2 gp2s_1 gp2s_0 0 gp1s_2 gp1s_1 gp1s_0 0x 00 IOConf1 Addr = 0x06 0 0 0 tstep_3 tstep_2 tstep_1 tstep_0 0x 00 PAStep Addr = 0x07 0 0 papwr_4 papwr_3 papwr_2 papwr_1 papwr_0 0x </td <td>Ident</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Ident									
Conf0 Addr = 0x01 0 gp1bst pllbw anshp_1 anshp_0 clksby clkout mode 0x 00 Conf1 Addr = 0x02 ckdiv_2 ckdiv_1 ckdiv_0 cap_4 cap_3 cap_2 cap_1 cap_0 0x 00 Conf2 Addr = 0x03 fixed fxmode fxpwr_1 fxpwr_0 fxhdev fxfrq_2 fxfrq_1 fxfrq_0 0x 00 IOConf0 Addr = 0x04 0 0 0 0 tmux_2 tmux_1 tmux_0 0x 00 IOConf1 Addr = 0x05 0 gp2s_2 gp2s_1 gp2s_0 0 gp1s_2 gp1s_1 gp1s_0 0x 00 IOConf1 Addr = 0x05 0 gp2s_2 gp2s_1 gp2s_0 0 gp1s_2 gp1s_1 gp1s_0 0x 00 INT step Addr = 0x06 0 0 0 tstep_3 tstep_2 tstep_1 tstep_0 0x 00 PAStep Addr = 0x07 0 0 papwr_4 papwr_3 papw	Addr = 0x00	1	0	1	0	0	1	1	0	Ox A6
Addr = 0x01 0 gp1bst pllbw anshp_1 anshp_0 clksby clkout mode 0x 00 Conf1 Addr = 0x02 ckdiv_2 ckdiv_1 ckdiv_0 cap_4 cap_3 cap_2 cap_1 cap_0 0x 00 Conf2 Addr = 0x03 fixed fxmode fxpwr_1 fxpwr_0 fxhdev fxfrq_2 fxfrq_1 fxfrq_0 0x 00 IOConf0 Addr = 0x04 0 0 0 0 tmux_2 tmux_1 tmux_0 0x 00 IOConf1 Addr = 0x05 0 gp2s_2 gp2s_1 gp2s_0 0 gp1s_2 gp1s_1 gp1s_0 0x 00 TXT step Addr = 0x06 0 0 0 tstep_3 tstep_2 tstep_1 tstep_0 0x 00 PAStep Addr = 0x07 0 0 0 papwr_4 papwr_3 papwr_2 papwr_1 papwr_0 0x 00 FHigh0 Addr = 0x08 0 0 0 papwr_4 papwr_3 papwr_2 papwr	ConfO	(227)	(1) <u>(1)</u>	2425	ga 100-	1710 - 6520A	200	120 - NA		
Conf1 Addr = 0x02 ckdiv_2 ckdiv_1 ckdiv_0 cap_4 cap_3 cap_2 cap_1 cap_0 0x 00 Conf2 Addr = 0x03 fixed fxmode fxpwr_1 fxpwr_0 fxhdev fxfrq_2 fxfrq_1 fxfrq_0 0x 00 IOConf0 Addr = 0x04 0 0 0 0 tmux_2 tmux_1 tmux_0 0x 00 IOConf1 Addr = 0x05 0 gp2s_2 gp2s_1 gp2s_0 0 gp1s_2 gp1s_1 gp1s_0 0x 00 IOConf1 Addr = 0x05 0 gp2s_2 gp2s_1 gp2s_0 0 gp1s_2 gp1s_1 gp1s_0 0x 00 TXT step Addr = 0x06 0 0 0 tstep_3 tstep_2 tstep_1 tstep_0 0x 00 PAStep Addr = 0x07 0 0 papwr_4 papwr_3 papwr_2 papwr_1 papwr_0 0x 00 FHigh0 Addr = 0x08 0 0 papwr_4 papwr_3 papwr_2 p	Addr = 0x01	0	gp1bst	pllbw	anshp_1	anshp_0	clksby	clkout	mode	0x 00
Addr = 0x02 ckdiv_2 ckdiv_1 ckdiv_0 cap_4 cap_3 cap_2 cap_1 cap_0 0x 00 Conf2 Addr = 0x03 fixed fxmode fxpwr_1 fxpwr_0 fxhdev fxfrq_2 fxfrq_1 fxfrq_0 0x 00 IOConf0 Addr = 0x04 0 0 0 0 tmux_2 tmux_1 tmux_0 0x 00 IOConf1 Addr = 0x05 0 gp2s_2 gp2s_1 gp2s_0 0 gp1s_2 gp1s_1 gp1s_0 0x 00 TXT step Addr = 0x06 0 0 0 tstep_3 tstep_2 tstep_1 tstep_0 0x 00 PAStep Addr = 0x07 0 0 pastp_4 pastp_3 pastp_2 pastp_1 pastp_0 0x 00 PApwr Addr = 0x08 0 0 papwr_4 papwr_3 papwr_2 papwr_1 papwr_0 0x 00 00 FHigh0 FHigh1 fhi_15 fhi_14 fhi_112 fhi_111 fhi_19 fhi_8 0x 00	Conf1			1 2 D	2	(20)	121	1	2	
Cont2 Addr = 0x03 fixed fxmode fxpwr_1 fxpwr_0 fxhdev fxfrq_2 fxfrq_1 fxfrq_0 0x 00 IOConf0 Addr = 0x04 0 0 0 0 tmux_2 tmux_1 tmux_0 0x 00 IOConf1 Addr = 0x05 0 gp2s_2 gp2s_1 gp2s_0 0 gp1s_2 gp1s_1 gp1s_0 0x 00 - TXT step Addr = 0x06 0 0 0 tstep_3 tstep_2 tstep_1 tstep_0 0x 00 - PAStep Addr = 0x07 0 0 pastp_4 pastp_3 pastp_2 pastp_1 pastp_0 0x 00 PApwr Addr = 0x08 0 0 papwr_4 papwr_3 papwr_2 papwr_0 0x 00 FHigh0 Addr = 0x08 0 0 papwr_4 papwr_3 papwr_2 papwr_1 papwr_0 0x 00 00 FHigh1 fhi_8 0x 00 00 FHigh1 fhi_6 fhi_5 fhi_4 fhi_	Addr = $0x02$	ckdiv_2	ckdiv_1	ckdiv_0	cap_4	cap_3	cap_2	cap_1	cap_0	0x 00
Addr = 0x03 txed txmode txpwr_1 txpwr_U fxhdev fxtrq_2 fxtrq_1 fxfrq_0 0x 0U IOConf0 Addr = 0x04 0 0 0 0 tmux_2 tmux_1 tmux_0 0x 00 IOConf1 Addr = 0x05 0 gp2s_2 gp2s_1 gp2s_0 0 gp1s_2 gp1s_1 gp1s_0 0x 00 - TXT step Addr = 0x06 0 0 0 tstep_3 tstep_2 tstep_0 0x 00 - PAStep Addr = 0x07 0 0 0 pastp_4 pastp_3 pastp_2 pastp_1 pastp_0 0x 00 PApwr Addr = 0x08 0 0 0 papwr_4 papwr_3 papwr_2 papwr_1 papwr_0 0x 00 FHigh0 Addr = 0x08 0 0 0 papwr_4 papwr_3 papwr_2 papwr_1 papwr_0 0x 00 00 FHigh1 fhi_8 0x 00 00 FHigh1 fhi_6 fhi_5 fhi_4	Conf2									0.000
Addr = 0x04 0 0 0 0 tmux_2 tmux_1 tmux_0 0x 00 IOConf1 Addr = 0x05 0 gp2s_2 gp2s_1 gp2s_0 0 gp1s_2 gp1s_1 gp1s_0 0x 00 - TXT step Addr = 0x06 0 0 0 tstep_3 tstep_2 tstep_1 tstep_0 0x 00 - PAStep Addr = 0x07 0 0 0 pastp_4 pastp_3 pastp_2 pastp_1 pastp_0 0x 00 PAStep Addr = 0x08 0 0 0 pastp_4 pastp_3 pastp_2 pastp_1 pastp_0 0x 00 PApwr Addr = 0x08 0 0 0 papwr_4 papwr_3 papwr_2 papwr_1 papwr_0 0x 00 FHigh0 Addr = 0x09 fhi_15 fhi_14 fhi_12 fhi_11 fhi_8 0x 00 FHigh1 Addr = 0x0A fhi_7 fhi_6 fhi_5 fhi_4 fhi_3 fhi_2 fhi_1 fhi_0 0x <td>Addr = 0x03</td> <td>fixed</td> <td>txmode</td> <td>Txpwr_1</td> <td>1xpwr_0</td> <td>Ixhdev</td> <td>txtrq_2</td> <td>L_prixt</td> <td>0_prixt</td> <td>0x 00</td>	Addr = 0x03	fixed	txmode	Txpwr_1	1xpwr_0	Ixhdev	txtrq_2	L_prixt	0_prixt	0x 00
Addr = 0x04 0 <td< td=""><td>IUContU</td><td>~</td><td>~</td><td>~</td><td></td><td>~</td><td></td><td></td><td></td><td></td></td<>	IUContU	~	~	~		~				
Addr = 0x05 0 gp2s_2 gp2s_1 gp2s_0 0 gp1s_2 gp1s_1 gp1s_0 0x 00 TXT step Addr = 0x06 0 0 0 tstep_3 tstep_2 tstep_1 tstep_0 0x 00 PAStep Addr = 0x07 0 0 pastp_4 pastp_3 pastp_2 pastp_1 pastp_0 0x 00 PApwr Addr = 0x08 0 0 papwr_4 papwr_3 papwr_2 papwr_1 papwr_0 0x 00 FHigh0 Addr = 0x09 fhi_115 fhi_114 fhi_113 fhi_112 fhi_111 fhi_19 fhi_8 0x 00 FHigh1 Addr = 0x0A fhi_77 fhi_6 fhi_5 fhi_4 fhi_33 fhi_22 fhi_11 fhi_0 0x 00 FCenter0	Addr = UxU4	U	U	U	U	U	tmux_2	tmux_1	tmux_0	0x 00
Addr = 0x05 0 gp/s_2 gp/s_1 gp/s_0 0 gp/s_2 gp/s_0 0 gp/s_2 gp/s_0 0x 00 TXT step Addr = 0x06 0 0 0 tstep_3 tstep_2 tstep_1 tstep_0 0x 00 PAStep Addr = 0x07 0 0 pastp_4 pastp_3 pastp_2 pastp_1 pastp_0 0x 00 PApwr Addr = 0x08 0 0 papwr_4 papwr_3 papwr_2 papwr_1 papwr_0 0x 00 FHigh0 Addr = 0x09 fhi_15 fhi_14 fhi_13 fhi_12 fhi_111 fhi_19 fhi_8 0x 00 FHigh1 Addr = 0x04 fhi_77 fhi_6 fhi_5 fhi_4 fhi_33 fhi_22 fhi_11 fhi_0 0x 00				2.1		•	1.0		1.0	
Addr = 0x06 0 0 0 tstep_3 tstep_2 tstep_1 tstep_0 0x 00 PAStep Addr = 0x07 0 0 pastp_4 pastp_3 pastp_2 pastp_1 pastp_0 0x 00 PApwr Addr = 0x08 0 0 papwr_4 papwr_3 papwr_2 papwr_1 papwr_0 0x 00 FHigh0 Addr = 0x09 fhi_15 fhi_14 fhi_13 fhi_112 fhi_111 fhi_9 fhi_8 0x 00 FHigh1 Addr = 0x0A fhi_7 fhi_6 fhi_5 fhi_4 fhi_33 fhi_22 fhi_11 fhi_0 0x 00	Addr = UxU5	U	gp2s_2	gp2s_1	gp2s_U	U	gp1s_2	gp1s_1	gp1s_U	
Addr = 0x06 0 0 0 0 tstep_3 tstep_2 tstep_1 tstep_0 0x 00 PAStep Addr = 0x07 0 0 pastp_4 pastp_3 pastp_2 pastp_1 pastp_0 0x 00 PApwr Addr = 0x08 0 0 papwr_4 papwr_3 papwr_2 papwr_1 papwr_0 0x 00 FHigh0 Addr = 0x09 fhi_115 fhi_114 fhi_123 fhi_112 fhi_111 fhi_99 fhi_8 0x 00 FHigh1 Addr = 0x0A fhi_77 fhi_66 fhi_45 fhi_33 fhi_22 fhi_11 fhi_0 0x 00 FCenter0			•				Lubra 2	1.1	h.h.s. 0	a. [00]
Addr = 0x07 0 0 pastp_4 pastp_3 pastp_2 pastp_1 pastp_0 0x 00 PApwr Addr = 0x08 0 0 papwr_4 papwr_3 papwr_2 papwr_1 papwr_0 0x 00 FHigh0 Addr = 0x09 fhi_115 fhi_114 fhi_112 fhi_111 fhi_10 fhi_8 0x 00 FHigh1 Addr = 0x0A fhi_7 fhi_6 fhi_4 fhi_3 fhi_2 fhi_11 fhi_0 0x 00 FCenter0	Addr = UXU6	U	U	U	U	tstep_3	tstep_2	tstep_1	tstep_0	
Addr = 0x07 0 0 0 pastp_4 pastp_3 pastp_2 pastp_1 pastp_0 0x 00 PApwr Addr = 0x08 0 0 papwr_4 papwr_3 papwr_2 papwr_1 papwr_0 0x 00 FHigh0 Addr = 0x09 fhi_15 fhi_14 fhi_13 fhi_12 fhi_11 fhi_9 fhi_8 0x 00 FHigh1 Addr = 0x0A fhi_7 fhi_6 fhi_5 fhi_4 fhi_3 fhi_2 fhi_1 fhi_0 0x 00 FCenter0	PAStep									0.00
Addr = 0x08 0 0 0 papwr_4 papwr_3 papwr_2 papwr_1 papwr_0 0x 00 FHigh0 Addr = 0x09 fhi_15 fhi_14 fhi_13 fhi_12 fhi_11 fhi_10 fhi_9 fhi_8 0x 00 FHigh1 Addr = 0x0A fhi_7 fhi_6 fhi_5 fhi_4 fhi_3 fhi_2 fhi_1 fhi_0 0x 00 FCenter0	Addr = 0x07	U	U	U	pastp_4	pastp_3	pas(p_2	pastp_1	pas(p_0	
Addi = 0x08 0 0 0 papwi_4 papwi_3 papwi_2 papwi_1 papwi_0 0x 00 FHigh0 Addr = 0x09 fhi_115 fhi_14 fhi_13 fhi_12 fhi_11 fhi_10 fhi_9 fhi_8 0x 00 FHigh1 Addr = 0x0A fhi_7 fhi_6 fhi_5 fhi_4 fhi_3 fhi_2 fhi_1 fhi_0 0x 00 FCenter0		0	0	0				1		0[00]
Addr = 0x09 fhi_15 fhi_14 fhi_13 fhi_12 fhi_11 fhi_10 fhi_9 fhi_8 0x 00 FHigh1 Addr = 0x0A fhi_7 fhi_6 fhi_5 fhi_4 fhi_3 fhi_2 fhi_1 fhi_0 0x 00 FCenter0	FHiab0	0	0	U	hahmi ⁴	hahwi_2	hahmm ² 2	hahwi_i	hahwi_0	
FHigh1 Addr = 0x0A fhi_7 fhi_6 fhi_5 fhi_4 fhi_3 fhi_2 fhi_1 fhi_0 0x 00 FCenter0	Addr = 0v00	fbi 15	fbi 14	fbi 12	fbi 12	fbi 11	fbi 10	fhi 9	fhi 9	
Addr = 0x0A fhi_7 fhi_6 fhi_5 fhi_4 fhi_3 fhi_2 fhi_1 fhi_0 0x 00 FCenter0	FHinh1	m_13	111_14	111_13	111_12		110	<u>-</u> 3	m_o	
FCenter0	Addr = 0x0A	fhi 7	fhi 6	fhi 5	fhi 4	fhi 3	fhi 2	fhi 1	fhi 0	0x 00
	FCenter									

图3. MAX7060评估软件(寄存器标签页)

硬件详细说明

MAX7060评估板为MAX7060提供了经过验证的布局。IC 可在5V或3V电源电压下工作。对于纯硬件模式,安装跳线 JU1和JU2,以实现手动模式设置。评估板上包含了监测不 同信号的测试点(表5)。

功率放大器匹配网络

评估板上的匹配网络是专门针对低端工作频率范围而优化设计的宽带网络。在300MHz至330MHz范围内可实现功率和效率的最佳组合。在频带的高端(430MHz至450MHz),功率比频带低端处低2dB至3dB。功率下降是由于谐波滤波器(C55-L2-C56)截止频率被设置为抑制较低频率的二次谐波造成的。可采用其它匹配网络元件参数移动最优频率范围。

手动模式操作

手动模式设置请参见表6、表7和表8。

电源

评估板: MAX7060

IC可采用2.1V至3.6V或4.5V至5.5V电源工作。评估板有 几个选项,在两种设置下均可由USB供电。用户亦可使用外 部电源为控制侧电路供电。J100上的1-2位置允许VDUT从 电池供电,需要电池支架(未安装)。

从USB获得3V电源

为了从USB电源获得2.1V至3.6V的供电电压,将控制侧 J100上的短路器移至7-8位置。短路器默认处于7-8位置。 该位置使VDUT等于VADJ。用户可利用伏特计监测VADJ, 并通过改变电位计电阻(R100)在2.1V至3.6V范围内调节电 压。在DUT侧,需将JU8闭合。

从USB获得5V电源

如需使用5V USB电源供电,将控制侧J100上的短路器移 至3-4位置。该位置使VDUT等于5V。这种情况下,需将 JU8开路。HVIN输入为5V时,AVDD引脚变为LDO输出, 并为其它电源产生V3V供电电压。

NAME	DESCRIPTION
GPO1	General-Purpose Output 1. In SPI mode, this test point can monitor internal status signals. In manual mode, this test point monitors the synthesizer lock-detect (lockdet) signal.
LSHDN	Low-Power Shutdown Current-Select Digital Input. Disables SPI when high. Must be driven low for normal operation in 3V mode. Functional only in 3V mode. Connect to GND in 5V mode.
GPO2_MOD	(SPI Mode/Manual Mode) Digital Signal. Acts as an SPI data output (SDO) when CS_DEV is low. ASK (0)/ FSK (1) modulation select input in manual mode.
CS _DEV	(SPI Mode/Manual Mode) Serial Peripheral Interface (SPI) Active-Low Chip-Select Signal.
SDI_PWR1	(SPI Mode/Manual Mode) SPI Data Signal in SPI Mode. Power-control MSB input in manual mode.
SCLK_PWR0	(SPI Mode/Manual Mode) SPI Clock Signal in SPI Mode. Power-control LSB input in manual mode.
ENABLE	Enable signal. All internal circuits (except the PA in ASK mode) are enabled on the rising edge of ENABLE.
DIN	Transmit Data Digital Signal.
SDO	See the GPO2_MOD description.

表5. DUT侧信号测试点

JUMPER	SIGNAL NAME	SHUNT POSITION	DESCRIPTION
		1-2	$\overline{\text{CS}}$ _DEV = low, 31.25kHz deviation
	CS_DEV	2-3	$\overline{\text{CS}}$ _DEV = high, 101.56kHz deviation
		4-5	SDI_PWR1 = low (see Table 7)
		5-6	SDI_PWR1 = high (see Table 7)
11.14		7-8	SCLK_PWR0 = low (see Table 7)
501	JOLK_FWHU	8-9	SCLK_PWR0 = high (see Table 7)
		10-11	ENABLE = low, transmitter off
	ENADLE	11-12	ENABLE = high, transmitter on
		13-14	DIN = low, data = 0
	DIN	14-15	DIN = high, data = 1
		13-14 D 14-15 D 1-2 G 2-3 G 4-5 FI	GPO2_MOD = low, ASK mode
	GFOZ_MOD	2-3	GPO2_MOD = high, FSK mode
	EDEOO	4-5	FREQ0 = low (see Table 8)
	ITTEQU	5-6	FREQ0 = high (see Table 8)
JU2		7-8	FREQ1 = low (see Table 8)
		8-9	FREQ1 = high (see Table 8)
		10-11	FREQ2 = low (see Table 8)
		11-12	FREQ2 = high (see Table 8)
		13-14	LSHDN = low, normal operation
	LOHDIN	14-15	LSHDN = high, shutdown

表6. JU1和JU2跳线表,用于手动模式

表7. 手动模式功率设置

SDI_PWR1	SCLK_PWR0	dB BELOW PMAX
0	0	0
0	1	3
1	0	6
1	1	10

表8. 手动模式频率

FREQ2	FREQ1	FREQ0	FREQUENCY (MHz)	DIVIDE RATIO
0	0	0	SPI	N/A
0	0	1	315.00	19.68750
0	1	0	433.62	27.10125
0	1	1	390.00	24.37500
1	0	0	418.00	26.12500
1	0	1	372.00	23.25000
1	1	0	345.00	21.56250
1	1	1	433.92	27.12000

外部供电

如需由外部供电,将J100上的短路器移至5-6位置。然后 在VEXT和GND-_测试点之间加外部电压。JU8上的跳 线设置取决于输入供电电压。如果输入供电电压为2.1V至 3.6V,则应安装跳线。如果输入供电电压为4.5V至5.5V, 则应将跳线开路。

独立供电的电流测量

IC具有不同的电源输入,均可独立监测。这些电源位于 DUT侧,由来自于控制侧的V3V和V5V供电。全部电源默 认连接在一起。如需测量特定电源的供电电流,修改与该电 源相对应的跳线,并通过一个安培计将V3V或V5V连接至 相应的测试点。

施加外部信号

如需在使能(ENABLE)和Tx数据(DIN)测试点施加外部信号, 必须首先移除JU111上的相应跳线,然后将信号施加至测试 点。如果已安装JU1,也应该将那里的相应跳线取下。例如,如需将外部信号加至DIN,首先取消选中DATAIN (0x11)选择框。然后从JU111的引脚31-32上移除跳线,将DIN信号加至DIN测试点。采用这种配置方式的发送器,可发送复杂的模式。使能的处理方式与之类似。施加信号之前,确保外部信号的电压范围限制至DVDD。

外部SPI

移除SPI跳线上的短路器,施加信号至SPI测试点。SPI跳线 位于JU111上(表2),请参考表9的说明。外部SPI信号需限 制至DVDD供电电压。J101可用于观察控制侧的SPI信号(表 10)。

外部频率输入

对于希望用外部频率取代晶体频率的应用,可以通过XTAL SMA连接器施加外部频率。取下晶体,并安装电阻R12(采 用0Ω)。IC GUI默认的晶体频率为16MHz。

表9. SPI跳线和测试点(JU111)

PINS	NAME
23-24	CS_DEV
25-26	SDI_PWR1
27-28	SCLK_PWR0
35-36	SDO (GPO2_MOD)

表10. SPI接头(J101)

JUMPER POSITION	NAME	DESCRIPTION
1	VMICROL	SPI I/O logic voltage
2	MAXQ_SS	SPI chip select
3	MAXQ_SCLK	SPI clock
4	MAXQ_MOSI	SPI data out (goes to SDI)
5	MAXQ_MISO	SPI data in (goes to SDO)
6	GND	GND
7	P2.4	Tx data
8	P0.3	Enable signal

图4a. MAX7060评估板原理图(1/5)

图4b. MAX7060评估板原理图(2/5)

评估板: MAX7060

图5. MAX7060评估板元件布局一元件层

图6. MAX7060评估板PCB布局一元件层

图7. MAX7060评估板PCB布局一焊接层

图8. MAX7060评估板元件布局一焊接层

修订历史

修订号	修订日期	说明	修改页
0	9/10	最初版本。	—

Maxim北京办事处 ^{北京8328信箱 邮政编码 100083}

免费电话: 800 810 0310 电话: 010-6211 5199 传真: 010-6211 5299

Maxim不对Maxim产品以外的任何电路使用负责,也不提供其专利许可。Maxim保留在任何时间、没有任何通报的前提下修改产品资料和规格的权利。

Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

© 2010 Maxim Integrated Products