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The Science Museum in South Kensington, London, was founded 
during Queen Victoria’s reign, and although it is imaginatively run 
and well worth a visit, it is scarcely renowned for its humor. But 
while I was in their Computer Science Area recently, I laughed so 
much, and so loudly, that I barely escaped arrest for disorderly 
behavior. The cause of my uncontrolled mirth was a glass case 
labeled “Obsolete Analog Computing Technology,” containing, 
among other things, an AD534 analog multiplier. ADI has been mak-
ing this device for more than 30 years, and it continues to generate 
substantial sales revenue. In fact, there are a number of operations 
where analog processing has clear advantages over digital, and this 
article will discuss some of them.

Analog Multipliers
A multiplier is a device having two input ports and an output port. 
The signal at the output is the product of the two input signals. If 
both input and output signals are voltages, the transfer characteristic 
is the product of the two voltages divided by a scaling factor, K, 
which has the dimension of voltage (see Figure 1).

From a mathematical point of view, multiplication is a “four- 
quadrant” operation, which is to say that both inputs may be either 
positive or negative, as may be the output. Some of the circuits used 
to produce electronic multipliers, however, are limited to signals of 
one polarity. If both signals must be unipolar, we have a “single-
quadrant” multiplier, and the output will also be unipolar. If one of 
the signals is unipolar, but the other may have either polarity, the 
multiplier is a “two-quadrant” multiplier, and the output may have 
either polarity (and is “bipolar”).

The circuitry used to produce one- and two-quadrant multipliers may 
be simpler than that required for four-quadrant multipliers, and since 
there are many applications where full four-quadrant multiplication is 

not required, it is not uncommon to find accurate devices that work 
only in one or two quadrants. An example is the AD539, a wideband, 
dual, two-quadrant multiplier that has a single unipolar Vy input with 
a relatively limited bandwidth of 5 MHz, and two bipolar Vx inputs, 
one per multiplier, with bandwidths of 60 MHz. A block diagram of 
the AD539 is shown in Figure 3.

The simplest electronic multipliers use logarithmic amplifiers. The 
computation relies on the fact that the antilog of the sum of the logs 
of two numbers is the product of those numbers (see Figure 4). 

The disadvantages of this type of multiplication are the very limited 
bandwidth and single-quadrant operation. A far better type of mul-
tiplier uses the “Gilbert Cell.” This structure was invented by Barrie 
Gilbert in the late 1960s (see References 1 and 2).
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Figure 1. The basic multiplier function.

Type Vx Vy VOUT

One Quadrant Unipolar Unipolar Unipolar

Two Quadrant Bipolar Unipolar Bipolar

Four Quadrant Bipolar Bipolar Bipolar

Figure 2. One-, two-, and four-quadrant multipliers.

Figure 3. AD539 functional block diagram.

Figure 4. Computation with log and antilog circuits.
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As it stands, the Gilbert Cell has three inconvenient features: (1) its 
X input is a differential current; (2) its output is a differential current; 
and (3) its Y input is a unipolar current—so the cell is only a two-
quadrant multiplier. 

By cross-coupling two such cells and using two voltage-to-current  
converters (as shown in Figure 7), we can convert the basic 
architecture to a four-quadrant device with voltage inputs, such as 
the AD534. At low and medium frequencies, a subtractor amplifier 
may be used to convert the differential current at the output to a 
voltage. Because of its voltage output architecture, the bandwidth of 
the AD534 is only about 1 MHz, although the AD835, a later version 
using a much faster dielectrically isolated complementary bipolar 
process (XFCB), has a bandwidth of 250 MHz. 

In Figure 7, Q1A and Q1B and Q2A and Q2B form the two core 
long-tailed pairs of the two Gilbert Cells, while Q3A and Q3B are 
the linearizing transistors for both cells. In Figure 7, there is an 
operational amplifier acting as a differential current to single-ended 
voltage converter, but for higher speed applications, the cross-
coupled collectors of Q1 and Q2 form a differential open collector 
current output (as in the AD834 500 MHz multiplier). 

The translinear multiplier relies on the matching of a number of 
transistors and currents. This is easily accomplished on a monolithic 
chip. Even the best IC processes have some residual errors, how-
ever, and these show up as four dc error terms in such multipliers 
(see Figure 8). In early Gilbert Cell multipliers, these errors had to be 
trimmed by means of resistors and potentiometers external to the 
chip, which was somewhat inconvenient. With modern analog pro-
cesses, which permit the laser trimming of SiCr thin film resistors on 

There is a linear relationship between the collector current of a sili-
con junction transistor and its transconductance (gain), which  
is given by

  dIc /dVbe = qIc /kT

where:

  Ic = the collector current

  Vbe = the base-emitter voltage

  q = the electron charge (1.60219 × 10–19)

  k = Boltzmann’s constant (1.38062 × 10–23)

  T = the absolute temperature

This relationship may be exploited to construct a multiplier with a 
long-tailed pair of silicon transistors, as shown in Figure 5.

This is a rather poor multiplier because (1) the Y input is offset by 
the Vbe, which changes nonlinearly with Vy; (2) the X input is nonlin-
ear as a result of the exponential relationship between Ic and Vbe; and 
(3) the scale factor varies with temperature. 

Gilbert realized that this circuit could be linearized and made tem-
perature stable by working with currents rather than voltages and by 
exploiting the logarithmic Ic /Vbe properties of transistors (see Figure 
6). The X input to the Gilbert Cell takes the form of a differential cur-
rent, and the Y input is a unipolar current. The differential X currents 
flow in two diode-connected transistors, and the logarithmic voltages 
compensate for the exponential Vbe/Ic relationship. Furthermore, 
the q/kT scale factors cancel. This gives the Gilbert Cell the linear 
transfer function

Figure 5. 

Figure 6. The Gilbert Cell: a linear two-quadrant multiplier. 

Figure 7. AD534.

Ic =
IxIy
Ix

Ic = Ic1 – Ic2
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the chip itself, it is possible to trim these errors during manufacture 
so that the final device has very high accuracy. Internal trimming has 
the additional advantage that it does not reduce the high frequency 
performance, as may be the case with external trim potentiometers. 

Because the internal structure of the translinear multiplier is neces-
sarily differential, the inputs are usually differential as well (after all, 
if a single-ended input is required, it is not hard to ground one of 
the inputs). This is convenient not only in allowing common-mode 
signals to be rejected, but also in permitting more complex computa-
tions to be performed.

Multipliers can be placed in the feedback loop of op amps to form 
several useful functions. Figure 10 illustrates the basic principle of 

analog computation that a function generator in a negative feedback 
loop computes the inverse function (provided, of course, that the 
function is monotonic over the range of operations). 

Figure 11 shows a multiplier and an op amp configured as a divider 
in both inverting and noninverting mode. 

Modulators and Mixers
A modulator (also called a mixer when it is used as a frequency 
changer) is closely related to a multiplier. The output of a multiplier 
is the instantaneous product of its inputs. The output of a modulator 
is the instantaneous product of a signal on one of its inputs (known 
as the signal input) and the sign of the signal on the other input 
(known as the carrier input). A modulator may be modeled as an 
amplifier whose gain is switched positive and negative by the output 
of a comparator on its carrier input (as in the case of the AD630 
balanced modulator)—or as a multiplier with a high gain limiting 
amplifier between the carrier output and one of its ports (see Figure 
12). Both architectures have been used to produce modulators, but 
the switched amplifier version, although potentially very accurate, 
tends to be rather slow. Most high speed integrated circuit modula-
tors consist of the translinear multiplier (based on the Gilbert Cell) 
with a limiting amplifier in the carrier path. 

If two periodic waveforms, Amcos(ωmt) and Accos(ωct), are applied to 
the inputs of a multiplier (with a scale factor of 1 V for simplicity of 
analysis), then the output will be given by 

 Vo(t) = 1/2AmAc[cos(ωm + ωc)t + cos(ωm – ωc)t]

This signal contains signals at the sum and difference frequencies, 
but not at the original frequencies. Some RF engineers also call 
these the upper and lower sidebands. There is a 6 dB loss in an ideal 
modulator. Note that using the cosine formula rather than the sine 
formula makes the equations easier to manipulate because cos(a) = 
cos(–a) (which makes sign unimportant during simplification), and 
because cos(0) = 1, so that for dc signals (when aωt = 0), cos(aωt) 
is equal to unity.

When we say that the original frequencies are not present in the 
output of a modulator, we make the assumption that the modulator 
is perfectly balanced—i.e., that neither its signal port nor its carrier 
port has any offset. In practice, both ports will have some offset, 
and so there will be some signal and carrier leakage. Trimming 
offset on the inputs of a modulator will reduce the leakages, but 
there will always be untrimmable residual leakages, which are due 
to coupling by stray capacitance and to nonlinearities in the core, 
rather than to offsets.

This “sum and difference mixer” is the function that we expect of 
modulators. However, if we use a linear multiplier as a modulator, we 
find that any noise or modulation on the carrier input appears in the 

Figure 8. 

Figure 9. 

Figure 10. Inverse function generated by function generator in feedback.

Figure 11. Multipliers and op amps used to divide. 

Figure 12. The modulator function (two ways of looking at it).
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output signal. If we replace the simple multiplier with a modulator, 
any amplitude variation on the carrier input disappears. 

Like an analog multiplier, a modulator multiplies two signals. But 
unlike analog multipliers, the multiplication is not linear. Instead, the 
signal input is “chopped” by the local oscillator carrier signal that 
alternates between +1 and –1 in sign (i.e, a square wave). This is 
equivalent to passing the carrier signal Accos(ωct) through a com-
parator, or limiting amplifier. The square wave with a frequency of 
ωct has the form represented by the Fourier series of odd harmonics:

K[cos(ωct) – 1/3cos(3ωct) + 1/5cos(5ωct) – 1/7cos(7ωct) +...]

The sum of the series: [+1, –1/3, +1/5, –1/7 +...] is π/4. Therefore, 
the value of K is 4/π, such that a balanced modulator acts as a unity 
gain amplifier when a positive dc signal is applied to its carrier input.

Therefore, if a modulator is driven by a signal Amcos(ωmt) and a 
carrier cos(ωct) (the carrier amplitude is unimportant provided it is 
great enough to drive the limiting amplifier), then the output will be 
the product of the signal and the squared carrier above.  
 
The final output is given by

 2Am/π[cos(ωm + ωc)t + cos(ωm – ωc)t

  –1/3{cos(ωm + 3ωc)t + cos(ωm – 3ωc)t}

  +1/5{cos(ωm + 5ωc)t + cos(ωm – 5ωc)t}

  –1/7{cos(ωm + 7ωc)t + cos(ωm – 7ωc)t} + ...]

This output contains sum and difference frequencies of the signal 
and carrier, and of the signal and each of the odd harmonics of the 
carrier (in the ideal, perfectly balanced modulator, products of even 
harmonics are not present—in real modulators, which have residual 
offsets on their carrier ports, low level, even harmonic products 
are also present; just how low their level depends on the size of the 
offset). In most applications, a filter is used to remove the products 
of the higher harmonics so that, effectively, the modulator does 
behave like a multiplier. (In analyzing the above expressions, we 
must remember that cos(A) = cos(–A), so that cos(ωm – Nωc)t = 
cos(Nωc – ωm)t, so we do not have to worry about “negative fre-
quencies.”) After filtering, the modulator output is given by

 2Am/π[cos(ωm + ωc)t + cos(ωm – ωc)t]

Because of the 2/π term, a modulator has a minimum 3.92 dB inser-
tion loss, in the absence of any gain. (The AD831 has a gain of  
3.92 dB to provide unity gain from RF to IF.)

The most obvious application of a modulator is a mixer or frequency 
changer. If we apply an input signal at F1 and a carrier at F2 to a 

modulator, we find that the output contains signals at the sum and 
difference frequencies as shown in Figure 14. This applies even if 
the signal is a modulated signal containing a number of frequency 
components. 

As we have mentioned above, we cannot have “negative frequencies,” 
and so if F1 – F2 is negative, what we actually see is a frequency of 
F2 – F1. If F1 is a complex signal containing a number of compo-
nents, however, we find that if the carrier frequency, F2, is less than 
F1, then the sidebands are inverted in both the sum and difference 
products. However, if F2 is greater than F1, then in the difference 
product, the sidebands are inverted, as shown in the diagram. 

The mixer, or frequency changer, is a key component in most radio 
receivers. While it is inappropriate to go into a detailed discussion 
of receiver design in this section, it is perhaps useful to point out 
two important features of modulators for use in receivers. These are 
noise and strong signal performance (see References 3 and 4).

Suppose that we have a mixer with a noisy carrier channel that 
causes the carrier frequency, F2, to spread out on either side of its 
center as shown in Figure 15. If we are receiving a small wanted sig-
nal, F1, then we shall see a small IF output from the mixer at F2 – F1. 
If, however, there is a strong unwanted signal at F3, then the product, 
F4 – F3, of F3 and that part of the broadband carrier noise indicated 
by F4 on the diagram, will also fall at the IF and, being larger than 
the wanted IF component, will swamp it. This phenomenon is known 
as reciprocal mixing and can cause severe limitation on the dynamic 
range of a receiver. While it is probably more commonly caused by 
noise or spurious synthesizer sidebands in the oscillator driving the 
modulator carrier port, it is common for it to be caused by noise 
in the modulator itself, and it should certainly be considered when 
choosing a mixer for a radio receiver (see Reference 5). 

In the past, the sensitivity of a radio receiver has been one of its 
most important features. Today, while sensitivity is still important, 
the behavior of the receiver in the presence of strong signals is 
equally important. The characteristic chosen as a measure of a 

Figure 13.

Figure 14. The modulator as a mixer (frequency changer).

Figure 15. Reciprocal mixing.
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mixer’s performance in this respect is its third-order intermodulation 
performance. The key specification is the third-order intercept point. 

Consider a nonlinear amplifier with two large input signals, at F1  
and F2, as shown in Figure 16. The nonlinearity gives rise to addi-
tional output components at F1 + F2 and F1 – F2: these are known 
as second-order intermodulation products. These second-order 
products mix with the original signals and produce third-order  
intermodulation products at frequencies 2F1 – F2 and 2F2 – F1. 

The third-order intermodulation products are a major nuisance in 
radio reception, especially in channelized systems, because they fall 
close to the signals causing them. As an example, consider a receiver 
monitoring a frequency of 145.5000 MHz. In Europe, this frequency 
is the calling frequency of the 2-meter amateur band. Working 
channels in this band are separated by 12.5 kHz. Suppose that there 
are two transmitters working at 145.475 MHz and 145.4875 MHz, 
respectively. The third-order IMD products of these two frequencies 
fall at 145.4625 MHz and 145.500 MHz. If the receiver is liable to 
third-order IMD, it will respond to the third-order products—which it 
itself produces—and appear to be receiving a signal at 145.500 MHz. 

It is impossible to design an amplifier or mixer that is unaffected  
by third-order intermodulation. All that can be done is to minimize 
the problem. The third-order intercept point mentioned above is  
the parameter that measures how susceptible a device is to third-
order IMD. 

If we plot the input vs. the output amplitudes of an amplifier on a 
log/log (dB/dB) scale as shown in Figure 17, we obtain a straight line 
slope of unity. At a certain input level, the device saturates, and the 
output ceases to rise. A measure of this saturation point is known as 
the 1 dB compression point. If we plot the level of the second-order 
IMD products in the output against the level of a two-tone input on 
the same axes, we obtain a straight line with a slope of 2. This line 
also ceases to rise when it reaches some limit. If, however, we extend 
the two straight lines past their limiting values, they will eventually 
cross. The value of the power in one of the two-tone inputs at this 
“intercept point” is the second-order intercept point of the device or 
system being measured. The level of the third-order IMD products 
can also be plotted as a function of input, and the slope of the 
straight line is 3. The intersection of this line with the extension of 
the unity-slope line is known as the third-order intercept point. 

In mixers for receivers, values of the third-order intercept point can 
vary from –15 dBm to over +45 dBm. For a radio working with 
an external antenna of reasonable size, any value below 0 dBm is 
generally considered poor, and good performance requires values of 

at least +15 dBm and, preferably, more—radios with small internal 
antennas are less demanding. The second-order intercept point may 
also be specified, but it is generally of less concern. 

The AD831 is a low distortion, wide dynamic range, monolithic 
mixer for use in such applications as RF to IF downconversion in 
HF and VHF receivers, the second mixer in digital mobile radio base 
stations, direct-to-baseband conversion, quadrature modulation and 
demodulation, and doppler-frequency shift detection in ultrasound 
imaging applications. The mixer includes a local oscillator driver 
and a low noise output amplifier. The AD831 provides a +24 dBm 
third-order intercept point for –10 dBm local oscillator power, thus 
improving system performance and reducing system cost, compared 
to passive mixers, by eliminating the need for a high power local 
oscillator driver and its associated shielding and isolation problems. 
A simplified block diagram of the AD831 is shown in Figure 18, and 
key specifications in Figure 19. (Since this article was originally  

Figure 16. Second- and third-order intermodulation products for f1 = 5 MHz, f2 = 6 MHz.

Figure 17. Intercept points, gain compression, and IMD.

Figure 18. The AD831 low distortion mixer.

Figure 19.
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written, a number of more advanced mixers have been developed  
at Analog Devices. Their details may be found on our website at 
www.analog.com.)

The basic mixing property of modulators is also used for many 
operations where dynamic range is far less important. These include 
frequency synthesis by mixing, frequency changing with fixed level 
signals, and sideband generation. 

One application worth considering is using a modulator as a preci-
sion rectifier. If an ac signal is applied to both inputs of a modulator 
as shown in Figure 20, the instantaneous output will be equal to the 
input, if the input is positive, and to the inverse of the input (and 
therefore still positive), if the input is negative. This arrangement, 
therefore, behaves as a precision rectifier. 

If, instead of applying a signal to both ports of a modulator, a signal 
is applied to the signal port and a reference signal at the same 
frequency (but not necessarily the same phase) to the carrier port, 
then the output will be proportional both to the amplitude of the 
signal input and the cosine of their phase difference. In this mode, a 
modulator acts as a phase-sensitive rectifier (see Figure 21). 

RMS-to-DC Converters
The root mean square (rms) is a fundamental measurement of 
the magnitude of an ac signal. Defined practically, the rms value 
assigned to the ac signal is the amount of dc required to produce an 
equivalent amount of heat in the same load. Defined mathematically, 
the rms value of a voltage is defined as the value obtained by squar-
ing the signal, taking the average, and then taking the square root. 
The averaging time must be sufficiently long to allow filtering at the 
lowest frequencies of operation desired. A complete (if now slightly 
dated) discussion of rms-to-dc converters can be found in Reference 
6, but we will show a few examples of how efficiently analog circuits 
can perform this function.

The first method, called the explicit method, is shown in Figure 22. 
The input signal is first squared (in the diagram by a multiplier with 
both inputs driven by the signal). The average value is then taken 
by using an appropriate filter, and the square root is taken using an 
op amp with a second squarer in the feedback loop. This circuit has 
relatively limited dynamic range because the stages following the 
squarer must handle a signal that varies enormously in amplitude—
especially if the signal has a high crest factor. Modern IC rms-to-dc 
converters of this type have dynamic ranges of up to 60 dB—and will 
work at frequencies up to several GHz.

Figure 24 shows the circuit for computing the rms value of a signal 
using the implicit method. Here, the output is fed back to the direct-
divide input of a multiplier such as the AD734. In this circuit, the 
output of the multiplier varies linearly (instead of as the square) with 
the rms value of the input. This considerably increases the dynamic 
range of the implicit circuit as compared to the explicit circuit. The 
disadvantage of this approach is that it generally has less bandwidth 
than the explicit computation.

While it is possible to construct such an rms circuit from an AD734 
multiplier/divider, it is far simpler to use a dedicated rms circuit. On 
a chip, the VIN

2/VZ circuit may be current driven and need only be one 
quadrant if the input first passes through an absolute value circuit. 

Figure 25 shows a simplified diagram of a typical monolithic rms-to-
dc converter, the AD536A. It is subdivided into four major sections: 
absolute value circuit (active rectifier), squarer/divider, current 
mirror, and buffer amplifier. The input voltage, VIN, which can be ac 
or dc, is converted to a unipolar current, I1, by the absolute value 
circuit A1, A2. I1 drives one input of the one-quadrant squarer/divider, 

Figure 20. Modulator used as a precision rectifier.

Figure 21. Modulator used as a phase-sensitive rectifier.

Figure 22. Explicit rms computation.

Figure 23. The AD8362 rms-to-dc converter works from VLF (<<50 Hz) to 2.7 GHz and 
has a dynamic range of 60 dB.

Figure 24. Implicit rms computation.
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which has the transfer function: I4 = I1
2/I3. The output current, I4, of 

the squarer/divider drives the current mirror through a low-pass 
filter formed by R1 and an externally connected capacitor, CAV. If 
the R1CAV time constant is much greater than the longest period of 
the input signal, then I4 is effectively averaged. The current mirror 
returns a current, I3, which equals AVG[I4], back to the squarer/
divider to complete the implicit rms computation. Thus,

  I4 = AVG [I1
2/I4] = I1 rms

The current mirror also produces the output current, IOUT, which 
equals 2I4. IOUT can be used directly or converted to a voltage with 
R2 and buffered by A4 to provide a low impedance voltage output. 
The transfer function becomes

  VOUT = 2R2 •I rms = VIN rms

The dB output is derived from the emitter of Q3, since the voltage  
at this point is proportional to −logVIN. Emitter follower, Q5, buf-
fers and level shifts this voltage, so that the dB output voltage 
is zero when the externally supplied emitter current (IREF) to Q5 
approximates I3. However, the gain of the dB circuit has a TC of 
approximately 3300 ppm/°C and must be temperature-compensated. 

Dynamic Range Compression and Logarithmic Amplifiers
A wide dynamic range is often an essential aspect of a signal, 
something to be preserved at all costs. This is true, for example, in 
the high quality reproduction of music. However, it is often neces-
sary to compress the signal to a smaller range without significant 
loss of information. Compression is often used in magnetic record-
ing, where the upper end of the dynamic range is limited by tape 
saturation and the lower end by the granularity of the medium. In 
professional noise-reduction systems, compression is “undone” by 
precisely matched nonlinear expansion during reproduction. Similar 
techniques are often used in conveying speech over noisy channels, 
where the performance is more likely to be measured in terms of 
word intelligibility than audio fidelity. The reciprocal processes of 
compressing and expanding are implemented using “compandors,” 
and many schemes have been devised to achieve this function. 

Logarithmic amps find wide applications where signals having wide 
dynamic ranges (perhaps greater than 100 dB) must be handled by 
elements such as ADCs, which may have a more limited dynamic 
range. Log amps have maximum incremental gain for small signals; 

the gain decreases in inverse proportion to the magnitude of the 
input. This permits the amplifier to accept signals with a wide input 
dynamic range and compress them substantially. 

Log amps provide nonlinear dynamic range compression and are 
used in applications where low harmonic distortion is not a require-
ment. All types of log amps produce a low dynamic range output 
without the need to first acquire some measure of the signal ampli-
tude for use in controlling gain. 

There is another class of linear dynamic range compression systems 
where the gain of the amplifiers in the signal processing chain is 
independent of the instantaneous amplitude of the signal, but is 
controlled by a closed-loop system in such a way as to render the 
output (that is, the peak, or rms value) essentially constant. The har-
monic distortion is relatively low. These systems use what are often 
called variable gain amplifiers. While correct, this lacks precision, 
because nonlinear amplifiers (such as log amps) also exhibit variable 
gain, but in direct response to the signal magnitude. The term volt-
age controlled amplifier (VCA) is preferred in this context; it clearly 
describes the way in which the gain control is implemented, while 
allowing latitude in regard to the actual circuit means used to achieve 
the function. The gain may be controlled by a current within the cir-
cuit, but usually a voltage. Analog multipliers may be used as VCAs, 
but other topologies are usually better. Although such dynamic range 
compression is quite obviously an example of analog computation, it 
is, perhaps, less relevant to the main topic of this article and will not 
be discussed further.

The term “logarithmic amplifier” (generally abbreviated to “log amp”) 
is something of a misnomer, and “logarithmic converter” would 
be a better description. The conversion of a signal to its equivalent 
logarithmic value involves a nonlinear operation, the consequences 
of which can be confusing if not fully understood. It is important 
to realize that many of the familiar concepts of linear circuits are 
irrelevant to log amps. For example, the incremental gain of an ideal 
log amp approaches infinity as the input tends to zero, and a change 
of offset at the output of a log amp is equivalent to a change of 
amplitude at its input—not a change of input offset. 

For the purposes of simplicity in our initial discussions, we shall 
assume that both the input and the output of a log amp are voltages, 
although there is no particular reason why logarithmic current, 
transimpedance, or transconductance amplifiers should not also be 
designed. 

If we consider the equation  
y = log(x), we find that every 
time x is multiplied by a con-
stant, A, y increases by another 
constant, A1. Thus, if log(K) = 
K1, then log(AK) = K1 + A1, 
log(A2K) = K1 + 2A1, and 
log(K/A) = K1 – A1. This gives 
a graph as shown in Figure 26, 
where y is zero when x is unity, 
where y approaches minus 
infinity as x approaches zero, 
and which has no values for x 
for which y is negative. 

On the whole, log amps do not behave in this way. Apart from the 
difficulties of arranging infinite negative output voltages, such a 

Figure 25. The AD536A monolithic rms-to-dc converter.

Figure 26. Graph of y = log (x).
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device would not, in fact, be very useful. A log amp must satisfy a 
transfer function of the form

  VOUT = Vy log(VIN/Vx)

over some range of input values that may vary from 100:1 (40 dB) 
to well over 1,000,000:1 (120 dB).

With inputs very close to zero, log amps cease to behave logarithmi-
cally, and most then have a linear VIN /Vout law. This behavior is often 
lost in device noise. Noise often limits the dynamic range of a log 
amp. The constant, Vy, has the dimensions of voltage, because the 
output is a voltage. The input, VIN, is divided by a voltage, Vx, because 
the argument of a logarithm must be a simple dimensionless ratio. 

A graph of the transfer characteristic of a log amp is shown in Figure 
3.2. The scale of the horizontal axis (the input) is logarithmic, and 
the ideal transfer characteristic is a straight line. When VIN = Vx, the 
logarithm is zero (log 1 = 0). Vx is therefore known as the intercept 
voltage of the log amp because the graph crosses the horizontal axis 
at this value of VIN. 

The slope of the line is proportional to Vy. When setting scales, 
logarithms to the base 10 are most often used because this simpli-
fies the relationship to decibel values: when VIN = 10Vx, the logarithm 
has the value of 1, so the output voltage is Vy. When VIN = 100Vx, the 
output is 2Vy, and so forth. Vy can therefore be viewed either as the 
“slope voltage” or as the “volts per decade factor.”

The logarithm function is indeterminate for negative values of x. Log 
amps can respond to negative inputs in three different ways: (1) they 
can give a full-scale negative output as shown in Figure 28; (2) they 
can give an output that is proportional to the log of the absolute value 
of the input and that disregards its sign as shown in Figure 29 (this 
type of log amp can be considered to be a full-wave detector with a 
logarithmic characteristic, and is often referred to as a detecting log 
amp); or (3) they can give an output that is proportional to the log of 
the absolute value of the input and has the same sign as the input as 
shown in Figure 30. This type of log amp can be considered to be a 
video amp with a logarithmic characteristic, and may be known as a 
logarithmic video (log video) amplifier or, sometimes (and mislead-
ingly), a true log amp.

There are three basic architectures that may be used to produce log 
amps: the basic diode log amp, the successive detection log amp, 
and the true log amp, which is based on cascaded semi- 
limiting amplifiers.

The voltage across a silicon diode is proportional to the logarithm 
of the current through it. If a diode is placed in the feedback path 
of an inverting op amp, the output voltage will be proportional to 
the log of the input current as shown in Figure 31. In practice, the 
dynamic range of this configuration is limited to 40 dB to 60 dB 
because of nonideal diode characteristic, but if the diode is replaced 
with a diode-connected transistor as shown in Figure 32, the 
dynamic range can be extended to 120 dB or more. This type of log 
amp has three disadvantages: (1) both the slope and intercept are 
temperature dependent; (2) it will only handle unipolar signals; and 
(3) its bandwidth is both limited and dependent on signal amplitude. 
Where several such log amps are used on a single chip to produce 
an analog computer that performs both log and antilog operations, 
the temperature variation in the log operations is unimportant, since 
it is compensated by a similar variation in the antilogging. This 
makes possible the AD538, a monolithic analog computer that can 
multiply, divide, and raise to powers (see Figure 33A). Where actual 
logging is required, however, the AD538 and similar circuits require 
temperature compensation (see Reference 7).

Recently the need for accurate attenuation measurements in fiber-
optic systems has driven the development of log amps of this type 
with integral temperature compensation. The ADL5310, shown 
in Figure 33B, is an example—it has a current input, allowing a 
dynamic range of 120 dB at high accuracy (the log conformance is 
0.4 dB typical (0.6 dB worst case) over 120 dB from 3 nA to 3 mA). 
The AD8304 has an even wider dynamic range of 160 dB, but its log 
conformance is slightly worse over the full range.

The major disadvantage of this type of log amp for high frequency 
applications, though, is its limited frequency response—which 
cannot be overcome. However carefully the amplifier is designed, 
there will always be a residual feedback capacitance, Cc (often known 
as Miller capacitance), from output to input, which limits the high 
frequency response (see Figure 32). 

What makes this Miller capacitance particularly troublesome is  
that the impedance of the emitter-base junction is inversely  

Figure 27. Log amp transfer function.

Figure 28. Basic log amp (saturates with 
negative input).

Figure 29. Detecting log amp (output 
polarity independent of input polarity).

Figure 30. Log video or “true log amp” 
(symmetrical response to positive or 
negative signals).
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proportional to the current flowing in it—so that if the log amp has 
a dynamic range of 1,000,000:1, then its bandwidth will also vary by 
1,000,000:1. In practice, the variation is less because other consider-
ations limit the large signal bandwidth, but it is very difficult to make 
a log amp of this type with a small-signal bandwidth greater than a 
few hundred kHz. 

For high frequency applications, therefore, detecting and “true log” 
architectures are used. Although these differ in detail, the general 
principle behind their design is common to both: Instead of one 
amplifier having a logarithmic characteristic, these designs use a 
number of similar cascaded linear stages having well-defined large 
signal behavior.

Consider N cascaded limiting amplifiers, the output of each driving a 
summing circuit as well as the next stage (Figure 34). If each ampli-
fier has a gain of A dB, the small signal gain of the strip is NA dB. 
If the input signal is small enough for the last stage not to limit, the 
output of the summing amplifier will be dominated by the output of 
the last stage. 

As the input signal increases, the last stage will limit. It will now 
make a fixed contribution to the output of the summing amplifier, but 
the incremental gain to the summing amplifier will drop to 
(N – 1)A dB. As the input continues to increase, this stage in turn will 
limit and make a fixed contribution to the output, and the incremental 
gain will drop to (N − 2)A dB, and so forth—until the first stage 
limits, and the output ceases to change with increasing signal input.

The response curve is thus a set of straight lines as shown in Figure 
35. The total of these lines, though, is a very good approximation 
to a logarithmic curve, and in practical cases, is an even better one, 
because few limiting amplifiers, especially high frequency ones, limit 
quite as abruptly as this model assumes. 

Figure 31. The diode/op amp log amp.

Figure 32. Transistor/op amp.

Figure 33A. AD538 log amp simplified diagram.

Figure 33B. AD5310 log amp simplified diagram.

Figure 34. Basic multistage log amp architecture.
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The choice of gain, A, will also affect the log linearity. If the gain 
is too high, the log approximation will be poor. If it is too low, too 
many stages will be required to achieve the desired dynamic range. 
Generally, gains of 10 dB to 12 dB (3× to 4×) are chosen.

This is, of course, an ideal and very general model—it demon-
strates the principle, but its practical implementation at very high 
frequencies is difficult. Assume that there is a delay in each limiting 
amplifier of t nanoseconds (this delay may also change when the 
amplifier limits, but let’s consider first-order effects!). The signal that 
passes through all N stages will undergo delay of Nt nanoseconds, 
while the signal that only passes one stage will be delayed only 
t nanoseconds. This means that a small signal is delayed by Nt 
nanoseconds, while a large one is “smeared” and arrives spread over 
Nt nanoseconds. A nanosecond equals a foot at the speed of light, 
so such an effect represents a spread in position of Nt feet in the 
resolution of a radar system—which may be unacceptable in some 
systems (for most log amp applications, this is not a problem).

A solution is to insert delays in the signal paths to the summing 
amplifier, but this can become complex. Another solution is to alter 
the architecture slightly so that instead of limiting gain stages, we 
have stages with small signal gain of A and large signal (incremen-
tal) gain of unity (0 dB). We can model such stages as two parallel 
amplifiers, a limiting one with gain, and a unity gain buffer, which 
together feed a summing amplifier as shown in Figure 36.

Figure 36 shows that such stages, cascaded, form a log amp without 
the necessity of summing from individual stages. Both the multistage 
architectures described above are video log amplifiers, or true log 
amplifiers, but the most common type of high frequency log amplifier 
is the successive detection log amp architecture shown in Figure 37. 

The successive detection log amp consists of cascaded limiting 
stages as described above, but instead of summing their outputs 
directly, these outputs are applied to detectors, and the detector 

outputs are summed as shown in Figure 37. If the detectors have 
current outputs, the summing process may involve no more than 
connecting all the detector outputs together. 

Log amps using this architecture have two outputs: the log output 
and a limiting output. In many applications, the limiting output is not 
used, but in some (FM receivers with “S”-meters, for example), both 
are necessary. 

The log output of a successive detection log amplifier generally 
contains amplitude information, and the phase and frequency 
information is lost. This is not necessarily the case, however, if a 
half-wave detector is used and attention is paid to equalizing the 
delays from the successive detectors—but the design of such log 
amps is demanding. 

The specifications of log amps will include noise, dynamic range, 
frequency response (some of the amplifiers used as successive 
detection log amp stages have low frequency as well as high fre-
quency cutoff), the slope of the transfer characteristic (which  
is expressed as V/dB or mA/dB depending on whether we are  
considering a voltage- or current-output device), the intercept point 
(the input level at which the output voltage or current is zero), and 
the log linearity (see Figures 38 and 39).

}
}

}
}

Figure 35. Basic multistage log amp response (unipolar case).

Figure 36. Structure and performace of “true” log amp element and of a log amp formed 
by several such elements.

Figure 37. Successive detection log amp.

Figure 38.

Figure 39. Log linearity.
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In the past, it has been necessary to construct high performance, 
high frequency successive detection log amps (called log strips) 
using a number of individual monolithic limiting amplifiers such 
as the one shown in Figure 40—which is over 40 years old! (See 
Reference 8.) Notice that such components are not, themselves, log 
amps, but are components from which log amps may be made. The 
circuit contains a limiting amplifier that drives both the output and an 
internal current-output half-wave rectifier. 

Figure 41 shows the overall transfer function of a log amp made 
with four such stages. The detected current output of each stage is 
plotted against input, as is the sum of all the outputs. It is clear that 
the sum of these currents approximates a straight line for inputs 
between 300 μV and 100 mV—about 48 dB. 

If we add stages, the dynamic range increases by 12 dB with each 
stage until the strip limits on the noise of its own input stage. This  
occurs with six stages if they are simply connected together broad-
band. If the noise figure is 5 dB at 450 Ω, this gives about 70 μV 
broadband noise (assuming 220 MHz bandwidth). The limiting 
amplifier limits with 100 mV drive, so there must be a gain of less 
than 1428 (63 dB) to the input of the last stage. At 12 dB/stage, this 
requires five stages, so, with the output stage, we cannot have more 
than six stages without limiting on noise. This gives a dynamic range 
of less than 70 dB. 

We can increase the dynamic range by placing an interstage filter 
between the third and fourth stages of the strip to limit the band-
width as shown in Figure 42. If we reduce the bandwidth to 10 MHz, 
the noise is reduced by the square root of 22 (13.5 dB), so we are 
still limited to seven stages. The interstage filter used does not affect 
the accuracy of the log response, provided that it has a voltage gain 
that is precisely unity throughout the pass band. 

If we allow for the effects of noise, seven stages will only give some 
80 dB dynamic range. If further dynamic range is required, we must 
use an auxiliary strip. This makes use of the fact that although the 
output of the limiting amplifier saturates with 100 mV input, the 
device operates without problems with inputs up to 1.9 V. 

If, therefore, we add another two-stage strip of limiting amplifiers, 
with a 24 dB attenuator at its input, in parallel with the existing strip, 
and summing its outputs to those of the existing strip, we can add 
another 24 dB of detector range before the input to the main seven-
stage strip is overloaded. This gives us nine stages, for a theoretical 
dynamic range of 108 dB—in practice, it is possible to achieve about 
103 dB to 105 dB. 

When constructing a log strip such as the one described above, 
there are various considerations of coupling, decoupling, filter 
design, and feedback via the detector pins that must be addressed 
in any successful design. The single-stage limiting amplifier building 
block has a low frequency cutoff of about 10 MHz, which makes it 
impossible to use in many lower frequency applications. 

Recent advances in IC processes have allowed the complete log strip 
function to be integrated into a single chip, thereby eliminating the 
need for complex and costly hybrid log strips. It is possible, using 
dielectrically isolated high frequency complementary bipolar pro-
cesses such as XFCB, to achieve bandwidths of 10 GHz and dynamic 
ranges up to 100 dB (but not [yet] both at once!).

Figure 40. Simplified schematic of monolithic limiting amplifier with half-wave detector.

Figure 41. Four-stage successive detection log strip using SL521 “log amps.”

Figure 42. 105 dB log amp using an auxilary strip and an interstage filter.

Figure 43. The AD8309 log amp.
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As an example, the AD8309 works from LF to 400 MHz and uses a similar configuration to that shown in Figure 42 (but, 
because the process is lower noise, there is no need for an interstage filter).

Because of their high accuracy, the actual 
waveform driving log amps of this type must be 
considered when calculating responses. When a 
waveform passes through a log function generator, 
the mean value of the resultant waveform changes. 
This does not affect the slope of the response, but 
the apparent intercept is modified according to 
Figure 44.

The waveform also affects the ripple or nonlinear-
ity of the log response. This ripple is greatest for 
dc or square wave inputs because every value 
of the input voltage maps to a single location on 
the transfer function, and thus traces out the full 
nonlinearities of the log response. By contrast, a 
general time-varying signal has a continuum of 
values within each cycle of its waveform. The aver-
aged output is thereby “smoothed” because the 
periodic deviations away from the ideal response, 
as the waveform “sweeps over” the transfer func-
tion, tend to cancel. As is clear in Figure 45, this 
smoothing effect is greatest for a triwave. 

Conclusion
This paper has shown that although digital com-
puting is a cheap and very powerful tool, there still 
remain a number of areas where analog comput-
ing can compete with it very successfully and offer 
considerable cost and performance advantages.
©1999 James Bryant and Walt Kester (Updated 2006)

References
1. Gilbert, Barrie, ISSCC Digest of Technical Papers 1968, February 16, 1968, pp. 114-115.

2. Gilbert, Barrie, Journal of Solid State Circuits, Vol. SC-3, December 1968, pp. 353-372.

3. Bryant, James M., Mixers for High Performance Radio, Wescon 1981: Session 24 (Published by Electronic 
Conventions, Inc., Sepulveda Blvd., El Segundo, CA).

4. Chadwick, P.E., High Performance IC Mixers, IERE Conference on Radio Receivers and Associated Systems, Leeds, 
1981, IERE Conference Publication No. 50.

5. Chadwick, P.E., Phase Noise, Intermodulation, and Dynamic Range, RF Expo, Anaheim, CA, January 1986.

6. Kitchin, Charles and Lew Counts, RMS-to-DC Conversion Application Guide, Second Edition, Analog Devices, Inc., 
1986.

7. Sheingold, Daniel H., Editor, Nonlinear Circuits Handbook, Analog Devices, Inc., l974.

8. Gay, M. S., SL521 Application Note, Plessey Semiconductors, 1966.

Figure 45. The effect of waveform on log amp log linearity and intercept point.

Figure 44. The effect of waveform on intercept point.

Input  
Waveform

Peak or RMS
Intercept 

Factor
Error  

(Relative to a DC Input)

Square Wave Either 1 0.00 dB

Sine Wave Peak 2 –6.02 dB

Sine Wave RMS 1.414 (∙2) –3.01 dB

Triwave Peak 2.718 (e) –8.68 dB

Triwave RMS 1.569 (e/∙3) –3.91 dB

Gaussian Noise RMS 1.887 –5.52 dB


