RAQ's

Rarely Asked Questions

Strange but true stories from the call logs of Analog Devices

It may be Greek to you, but sigma delta converters are not really hard to understand.

Q. Can you please explain, simply, as to a Bear of Little Brain¹, how sigma-delta converters work?

A. By over-sampling, noise shaping and digital filtering.

Athens is a beautiful city, with the ambiance of many millennia of history. I was walking round the Acropolis with Spiros, one of our Greek distributors, when he asked me how sigma-delta (Σ - Δ) converters work. "Sigma and delta are letters of our Greek alphabet," he exclaimed, "but every article I have seen about their operation is dou-

ble dutch² to me. They all start with several pages of partial differential equations and then go downhill from there."

If a voltage is measured many times, the average of the measurements will be more accurate than most individual measurements. This is "over-sampling." (Dither³ may be necessary to randomize the errors in the individual measurements.)

There is a definite theoretical minimum limit to the possible noise of an analog-todigital converter (ADC). When an ADC samples a signal at a frequency of f_s the digital output contains the signal and this "quantization noise" is usually spread evenly from dc to $f_s/2$. By sampling at a higher rate of Kf_s, the noise is spread over the wider band from dc to Kf_s/2. If we then remove all the noise above $f_s/2$ with a digital filter the signal-to-noise ratio (SNR) of the digital output is improved — effectively improving the ADC resolution.

Normally the SNR increases with the square root of K, so very high sampling rates are necessary for useful increases in SNR. But a Σ - Δ modulator does not produce uniformly distributed quantization noise. Although the total noise is unaltered in a Σ - Δ system, most of it is at high fre-

quencies (HF). This is known as noise shaping and permits much lower values of K.

If the digital output from the $\Sigma-\Delta$ modulator is filtered to remove HF, leaving the frequencies from dc to $f_S/2$ (where the wanted signals are) then the SNR and resolution of the digital output are improved. A $\Sigma-\Delta$ ADC simply consists of a $\Sigma-\Delta$ modulator and a digital low-pass filter, both of which are easily made with modern highdensity digital technology. The principle of $\Sigma-\Delta$ ADCs has been known for more than 40 years, but the ability to build one on a chip is relatively recent.

³ Dither — the addition of noise or some other AC signal in order to randomize errors.

To learn more about sigma delta converters, Go to: http://rbi.ims.ca/5696-112

Contributing Writer James Bryant has been a European **Applications Manager** with Analog Devices since 1982. He holds a degree in Physics and Philosophy from the University of Leeds. He is also C.Eng., Eur.Eng., MIEE, and an FBIS. In addition to his passion for engineering, James is a radio ham and holds the call sign G4CLF.

Have a question involving a perplexing or unusual analog problem? Submit your question to: raq@reedbusiness.com

SPONSORED BY

¹ "When you are a Bear of Very Little Brain and you think of Things, you find sometimes that a Thing which seemed very Thingish inside you is quite different when it gets out into the open and has other people looking at it." — AA Milne, "The House at Pooh Corner"

² Double dutch means gobbledygook