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Question:
Why use point-of-load (POL) power supplies where the DC-to-DC converter is as 
close as possible to the load?

Answer:
Efficiency and accuracy are two big advantages but achieving POL conversion 
requires some care in regulator design.

Proximity to power. It’s one of the best ways to improve voltage accuracy, 
efficiency, and the dynamic response of a power rail. A point-of-load converter 
is a power supply DC-to-DC converter placed as close to the load as possible 
to achieve proximity to power. Applications that benefit from POL converters 
include high performance CPUs, SoCs, and FPGAs—all of which require ever 
increasing power levels. In automotive applications, for example, the number of 
sensors used for an advanced driver assistance system (ADAS)—such as those  
in radar, LIDAR, and vision systems—is steadily multiplying, resulting in the 
need for faster data processing (more power) to detect and track surrounding 
objects with minimal latency.

Many of these digital systems operate at high current and low voltages, increas-
ing the need to minimize the distance from power supply to load. One obvious 
problem with high currents is trace-induced voltage drops from converter to load. 
Figure 1 and Figure 2 show how minimizing the resistance of the leads between 
supply and load minimizes the output voltage drop of the converter’s output—in 
this case, a controller IC and MOSFETs powering a CPU.
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Figure 1. DC-to-DC output voltage drop with narrower PCB trace.
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The wider PCB trace shown in Figure 2 reduces the voltage drop to meet the 
accuracy requirement, but parasitic inductance must also be considered. The 
PCB trace length in Figure 2 has an estimated inductance of about 14.1 nH, as 
shown in the LTspice® model of Figure 3. 
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Figure 3. An LTspice model for the PCB trace inductance.

Because inductance suppresses dynamic changes in current, di/dt, when loads 
change, the current passing through this parasitic inductance is limited by its 
time constant, deteriorating transient response. The result of parasitic induc-
tance are voltage droops, as shown in the simulation plot in Figure 4.
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Figure 4. A DC-to-DC output voltage dip with a transient current.

Placing a converter near the load minimizes the effect of PCB resistance and 
parasitic inductance. The DC-to-DC converter IC should be placed at the nearest 
possible location to the CPU. Note that Figure 1 and Figure 2 show the schematic 
for a traditional high current power supply—namely, a switch-mode controller and 
external FETs. Controller FET solutions can handle the high current loads required 
by the applications mentioned above. The problem with a controller solution is that 
the external FETs have space requirements that can make it difficult to produce a 
true POL regulator solution, as exemplified in the layout shown in Figure 5. 

DC/DC

Short and Wide PCB Trace

Figure 5. Ideal placement of a DC-to-DC converter to the CPU.

One alternative to a controller is a monolithic solution where the FETs are 
internal to the converter IC. For instance, the LTC3310S monolithic step-down 
regulator (3 mm × 3 mm IC footprint) enables point-of-load solutions up to 10 A 
for one IC, 20 A with parallel multiple ICs. These ICs are shown in Figure 6 and 
Figure 12, respectively. 
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Figure 6. An LTC3310S step-down regulator.

Figure 2. DC-to-DC output voltage drop with wider PCB trace.
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Figure 7. The tiny LTC3310S footprint enables POL placement.

In addition to its small package size, the LTC3310S supports a maximum switch-
ing frequency of 5 MHz—high frequency operation reduces the necessary output 
capacitance and overall solution PCB footprint. Figure 8 shows the load transient 
performance of LTC3310S, where an 8 A load change results in an output voltage 
excursion of less than ±40 mV, achieved with only 110 µF output capacitance.
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Figure 8. The transient response of the LTC3310S.

Despite the obvious advantages of using high powered monolithic POL convert-
ers, there is a possible deal breaker: heat. If the converter produces too much 
heat, it won’t survive when used in an already hot system. 

In the solution proposed above, the LTC3310S internal temperature rise is 
minimized through high efficiency operation, enabling it to reliably run even in 
the severe temperature conditions surrounding power-hungry components such 
as CPUs, SoCs, and FPGAs. Furthermore, the LTC3310S includes accurate internal 
temperature sensors, which allows for the measurement of the internal junction 
temperature through the SSTT pin, as shown in Figure 10, with the resulting 
temperature sensor characteristic shown in Figure 11.
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Figure 9. A thermal camera image of the LTC3310S.

Figure 10. An LTC3310S temperature sense pin.
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Figure 11. Soft start and temperature monitoring operation.

Certain monolithic regulators can be scaled to higher load applications through 
multiphase, parallel operation. Figure 12 shows multiple LTC3310S devices con-
nected in parallel and operated out of phase to double the current capability. 

The controller’s clock is set by a single resistor on the RT pin, with the relative 
phase(s) of subnode(s) programmed through a resistor divider on the RT pin. In 
the case shown in Figure 12, RT is grounded to set the subnode to 180° phase 
shifted from the controller. 

Figure 13 shows the inductor current and output ripple current for a 2-channel 
converter, as shown in Figure 12. In-phase performance is compared with dual, 
antiphase performance. Antiphase operation reduces output ripple current (via 
cancellation) from 14 A peak-to-peak (single-phase) to 6 A peak-to-peak (dual-
phase) without additional external filters. 

Conclusion
In summary, the LTC3310S is an efficient and tiny POL solution for high current 
power systems feeding power hungry CPUs, SoCs, and FPGs. Its small footprint 
and optimized power efficiency result in low self-heat dissipation, enabling it 
to be placed very close to loads. It can easily be paralleled for scaled-up power 
using multiple LTC3310Ss in a multiphase solution.
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Figure 12. A 20 A, dual phase monolithic regulator POL solution.

Figure 13. Comparing the inductor current and output current in two versions of a 2-channel converter: (a) channels in-phase vs. (b) antiphase.
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