
 Analog Dialogue 44-03, March (2010) 1

Free and Open-Source 
Software—An Analog 
Devices Perspective
By Michael Hennerich and Robin Getz

As a System Designer, Why Should I Care About Free and Open-
Source Software?
The rapid increase in use of free and open-source software (FOSS) 
represents the most significant, all-encompassing, and long-term 
trend that the embedded industry has seen since the early 1980s.1 
FOSS software licenses make source code available and grant 
developers the right to study, change, and improve the software 
design.2 FOSS is already playing, or will eventually play, a role 
in the life cycle of every major software category, influencing 
everything from 64-bit servers to 8-bit microcontrollers. FOSS 
will fundamentally change the value proposition of software for 
all users and developers.

So, for most embedded developers, if FOSS is not in your design 
today, most likely it will be soon.

What Is FOSS?
The main difference between free software and open-source 
software is in the philosophy of their inherent freedoms. A 
“free software” license is one that respects the end users’ four 
essential freedoms: 

1. The freedom to run it.
2. The freedom to study and change it.
3. The freedom to redistribute copies.
4. The freedom to improve the program and release  

those improvements.

Being free to do these things means (among other things) that 
you do not have to ask (or pay) for permission to do so. This is a 
matter of freedom, not commerce, so think of “free speech, not 
free beer.”3 Also note that the freedoms are for the end user, not the 
developer, nor the person who distributes the software.

On the other hand, open-source software does not always provide 
the end user the same freedoms, but it does provide developers 
such rights as access to the source.4 Various open-source licenses 
allow developers to create proprietary, closed-source software, 
which includes no requirement to distribute the source code for 
the end work. The BSD (Berkeley Software Distribution) license 
is an example of those that allow binary redistributions without 
source code.5

The key real-world difference between FOSS and closed-source, 
or proprietary, software is the mass collaborative nature of 
development—the large number of people working independently 
on individual projects; here any user can become a developer—
reporting and fixing bugs or adding new features.

The popularity of FOSS in the embedded markets is dominated 
by simple economic motivation6—it lowers software costs and 
hastens time to market. It turns “roll-your-own” developers 
into system-level integrators who can focus on adding value and 
differentiating features of their products rather than reproducing 
the same base infrastructure over and over again. It is the only 
proven methodology to reel in out-of-control software development 
costs. Irrespective of the organization, one can almost always find 
one of the five stages of open-source adoption taking place (our 
apologies to the late Dr. Kübler-Ross).7

www.analog.com/analogdialogue

Five Stages of FOSS Adoption8

State Symptom of Progression

Denial: 
that FOSS is 
already in use

• No recent audits of custom software
• Low awareness of popular FOSS 

components
• No official company policy for FOSS 

usage

Anger: over 
surprise loss of 
control

• Software in use with no record of adoption
• Management looks to assign 

accountability
• Developers practice “don’t ask, don’t tell”

Bargaining: 
to re-establish 
existing 
controls and 
processes

• Crash program to identify total exposure
• Program put in place to remove existing 

FOSS
• Lawyers spend hours meeting with 

development teams

Depression: 
on realizing 
the point of 
no return has 
been reached

• Realization that extracting open source 
would bring development to a halt

• Recognition that the effort involved in 
removing FOSS would be prohibitive

Acceptance: 
can’t fight it, 
might as well 
prepare for it

• Implementation of a formal FOSS strategy
• Adjustments to policies and procedures
• An attitude to shift from tolerance to 

extracting value

While many people equate FOSS with the prominent Linux® 
kernel, or a Linux-based distribution, the use of FOSS beyond 
Linux in embedded development is pervasive; it is used by 
almost three-quarters of organizations and spans hundreds of 
thousands of projects. However, with the increasing popularity 
of embedded Linux-based systems, the interest in finding 
Linux drivers for embedded peripherals (ADCs, DACs, audio 
codecs, accelerometers, touch screen controllers, etc.) becomes 
increasingly compelling.

We will discuss here the contributions of Analog Devices, Inc. 
(ADI), to various FOSS projects, focusing on the Linux kernel 
and how they are being used by our customers to reduce risk 
and decrease product development time. We will take a look at 
a few popular devices, for example, the ADXL345 digital 3-axis 
accelerometer, and describe:
• layers of the driver created, modified, and maintained by ADI

• where things are maintained (location of driver download)

• interface code (common code for the kernel)—allowing you to 
use the driver on your platform

• common practice for driver development (which files can be 
changed or contributed, and which cannot)

• where the code can be found—how to log bug- and problem 
reports

Linux Device Drivers—Architecture Independence
The majority of Linux users are (happily) unaware of the 
underlying hardware complexity and issues involved in the 
Linux kernel, and are surprised to find out how much of the 
kernel is independent from the hardware on which it runs. In 
fact, the vast majority of source code in the Linux kernel is 
related to architecture-independent device drivers: Of the entire 
7,934,5669  lines in the Linux 2.6.32.6 kernel, an overwhelming 
4,758,810 lines—over 60%—is in ./drivers, ./sound, and 
./firmware. Architecture-dependent code is a very small 

http://www.analog.com/en/sensors/inertial-sensors/adxl345/products/product.html


2  Analog Dialogue 44-03, March (2010)

fraction of the Linux kernel—1,501,545 lines (18.9%) for all 
22 different architectures. The top 10 architectures that the 
kernel supports:

Architecture 
Directory

Lines of Source Fraction of the 
Kernel

./arm 302,125 3.81%

./powerpc 188,825 2.38%

./x86 154,379 1.95%

./mips 139,782 1.76%

./m68k 106,392 1.34%

./sparc 88,529 1.12%

./ia64 85,103 1.07%

./sh 77,327 0.97%

./blackfin 74,921 0.94%

./cris 72,432 0.91%

This makes clear that architecture-independent drivers (~60% of 
the kernel source) play a very important role.

For each piece of Linux-supported hardware, someone has written 
a device driver. Since 2007, Analog Devices has ranked within 
the top 20 companies (from over 300+) contributing code to 
the Linux kernel10—and has a full-time team working on Linux 
device drivers.

Basics of Linux Device Drivers
A device driver simplifies programming by acting as a translator 
between the hardware and the application (user code), or the 
kernel that uses it, hiding the details of how the hardware works. 
Programmers can write the higher-level application code using a 
set of standardized calls (system calls)—independent of the specific 
hardware device it will control or the processor it will run on. Using 
a well-defined internal application programming interface (kernel API) 
the application code and device driver can interface in a standard way 
regardless of the software superstructure or underlying hardware. 

Operating systems (OS) handle the details of hardware operation 
for a specific processor platform. Kernel (OS) internal hardware 
abstraction layers (HALs) and processor-specific peripheral drivers 
(such as I2C® or SPI bus drivers) allow even a typical device 
driver to be processor platform independent. This approach 
allows a device driver—for the AD7879 touch screen digitizer, 
for example—to be used without modification on any processor 
platform running Linux, with any graphical user interface (GUI) 
package and suitable application running on top of the Linux 
kernel. If the hardware designer decides to change to the AD7877 
touch-screen controller, (s)he can do so without input from their 
software team. Drivers are available for both devices; and while 
they differ and can connect differently (the AD7877 is SPI only, 
and the AD7879 is SPI or I2C)—and they both have different 
register maps—the kernel API that is exposed to user code for 
touch screens is exactly the same. This puts control of the hardware 
back into the hands of the hardware architect.

Different types of device drivers in the Linux kernel provide 
different levels of abstraction. They are generally and historically 
classified into three categories.11

1. Char (character) devices: Handle byte streams. Serial 
port or input device drivers (keyboard, mouse, touch screen, 
joystick, etc.) typically implement the character device type. 

2. Block data devices: Handle 512-byte or higher power-of-two 
blocks of data in single operations. Storage-device drivers 
typically implement this type of block device.

3. Networking interface: Any network transaction is made 
through an interface, that is, a device that is able to exchange 
data with other hosts.

APPLICATIONS

SYSTEM CALL INTERFACE

DEVICE INTERFACE

HARDWARE

VIRTUAL FILE SYSTEM (VFS)

NETWORK (IP)

TRANSPORT
(TCP, UDP)

INET (AF_INET)

BSD SOCKET

CHARACTER
DEVICE DRIVER

BLOCK
DEVICE DRIVER

NETWORK
DEVICE DRIVER

BUFFER
CACHE

NETWORK
SUBSYSTEM

APPLICATION
AREA

KERNEL
AREA

HARDWARE

Each particular category may feature several independent 
device core layers within the Linux kernel, helping developers 
to implement drivers that serve standardized purposes—such 
as video, audio, network, input device, or backlight handling. 
Typically, each one of these subsystems has its own directory in the 
Linux kernel source tree. This device driver core approach removes 
code that would otherwise be common to all device drivers of a 
specific class and builds a standardized interface to the upper layer. 
Each class device, or bus device core driver, typically exports a set 
of functions to its child. Drivers register with such core drivers 
and use the API exported by the core driver instead of registering 
a character/block/network driver of their own. This typically 
includes support and handling for multiple instances—and the way 
data is distributed between layers. Huge portions of the system 
have very little interest in how devices are connected, but they 
need to know what kinds of devices are available. The Linux device 
model also includes a mechanism to assign devices to a specific 
class, such as input, RTC (real-time clock), net (networking), or 
GPIO (general-purpose input/output). These class names describe 
such devices at a higher, functional level and allow them to be 
discovered from user space.

There may be several device-driver subsystems associated with 
a particular piece of hardware. A multifunction chip, like the 
ADP5520 backlight driver with I/O expander, concurrently 
leverages the Linux backlight, LED, GPIO, and input subsystems 
for its keypad functionality.

As noted earlier, user applications are not allowed to communicate 
with hardware directly because that would require supervisor 
privileges on the processor, such as executing special instructions 
or handling interrupts. Applications utilizing a specific hardware 
device typically operate on kernel drivers exposed via nodes in 
the /dev directory.

Device nodes are called pseudof iles: they look like f iles; 
applications can also open() or close() them; but when they 
are read or written, the data comes from or is passed to the device 
nodes’ associated driver. This level of abstraction is handled by 
the virtual file system (VFS) inside the Linux kernel. Besides 
read(), write(), or poll(), user applications may also interact 
with a device using ioctl() (input/output control).

In addition to the device nodes, applications may also utilize file 
entries in /sys, a sysfs virtual file system that exports information 
about devices and drivers, including parent/child relationship 
or association to a specific class or bus, from the kernel device 
model to user space. /sys is also heavily used for device 

http://www.analog.com/en/analog-to-digital-converters/ad-converters/ad7879/products/product.html
http://www.analog.com/en/analog-to-digital-converters/ad-converters/ad7877/products/product.html
http://www.analog.com/en/power-management/display-and-lighting/adp5520/products/product.html


 Analog Dialogue 44-03, March (2010) 3

configuration, especially when the driver in question registers 
with a device driver core, which exports only its standardized 
set of functionality to the user.

Device drivers can register /sys hooks or entries; a specially 
registered callback function from the device driver gets executed 
when they are read or written. These callback functions—running 
in supervisor mode—may accept parameters, initiate bus transfers, 
invoke some processing, modify device-specific variables, and 
return integer values or character strings back to the user. This 
allows additional functionality; for example, the temperature 
sensor or auxiliary ADCs on the AD7877 touch-screen digitizer 
can be made available to user space.

Device drivers can be statically built into the kernel, or dynamically 
installed later as loadable modules. Linux kernel modules (LKMs) 
are dynamic components that can be inserted and removed at run 
time. This is especially valuable to driver developers since time 
is saved by quicker compilation and by not having to reboot the 
system to test the module. By letting the hardware drivers reside in 
modules that can be loaded into the kernel at any time, it is possible 
to save RAM when the specific hardware is not in use.

When a module is loaded, it can also be given configuration 
parameters. For a module that is built into the kernel, parameters 
are passed to it during the kernel boot. For example:

root:~> insmod ./sample_module.ko argument=1
root:~> lsmod
Module                  Size  Used by
sample_module 1396 0 - Live 0x00653000
root:~> rmmod sample_module

Drivers can also be instantiated multiple times, with different 
settings, with the target device sitting on a different I2C slave ID, 
connected to a different SPI slave select, or mapped to a different 
physical memory address. All instances share the same code, which 
saves memory, but will have individual data sections.

Since Linux is a preemptive multitasking, multiuser operating 
system, almost all device drivers and kernel subsystems are 
designed to allow multiple processes (possibly owned by different 
users) to leverage the devices concurrently. Popular examples are 
the network, audio, or input interfaces. Key-press or -release events 
of an ADP5588 QWERTY keypad controller are time-stamped, 

queued, and sent to all processes that opened the input event 
device. These event codes are the same on all architectures and are 
hardware independent. There is no difference between reading a 
USB keyboard and reading the ADP5588 from user space. Event 
types are differentiated from codes. A keypad sends key-events 
(EV _ KEY), together with codes identifying the key and some state 
value representing the press- or release action. A touch screen sends 
absolute coordinate events (EV _ ABS) with a triplet consisting of 
x, y, and touch pressure, while a mouse sends relative movement 
events (EV _ REL). An ADXL346 accelerometer may send key 
events for tap or double taps while it sends absolute-coordinate 
events for the acceleration.

In some applications, it could also make sense if the ADXL346 
accelerometer generated relative events, or sent a specific key 
code—very application-specific settings. In general, there are 
two ways of driver customization: during run time or during 
compile time.

Device characteristics that are likely to be customized during run 
time use module parameters or /sys entries.

Using an Open-Source Linux Driver—Customization for a  
Specific Target
For compile time configuration, it’s common Linux practice to 
keep board- and application-specific configuration out of the main 
driver file, instead putting it into the board support file.

For devices on custom boards, as typical of embedded and SoC-
(system-on-a-chip) based hardware, Linux uses platform _
data to point to board-specific structures describing devices 
and how they are connected to the SoC. This can include 
available ports, chip var iants, preferred modes, default 
initialization, additional pin roles, and so on. This shrinks 
the board-support packages (BSPs) and minimizes board and 
application specific #ifdefs in drivers. It is up to the driver’s 
author to decide which tunables go into platform _ data and 
which should have access during run time. 

Digital accelerometer characteristics are highly application-
specif ic and may differ between boards and models. The 
following example shows a set of these configuration options. 
These variables are fully documented in the header file, adxl34x.h 
(include/linux/input/adxl34x.h).

DEVICE
DRIVER

ROUTINES

SYSTEM
CALLS

LINUX
KERNEL

USER PROGRAMS (APPLICATIONS)

fd = open(“/dev/xxx“, O_RDW); read(fd, out_data, 8); write(fd, in_data, 8); ioctl(fd, DO_XY, 1); closed(fd);

xxx_open(); xxx_read(); xxx_write(); xxx_ioctl(); xxx_close();

VIRTUAL FILE SYSTEM

HARDWARE
INDICATES DATA FLOW

http://www.analog.com/en/power-management/display-and-lighting/adp5588/products/product.html
http://www.analog.com/en/sensors/inertial-sensors/adxl346/products/product.html


4  Analog Dialogue 44-03, March (2010)

#include <linux/input/adxl34x.h>
static const struct adxl34x_platform_data 
adxl34x_info = {
 .x_axis_offset = 0,
 .y_axis_offset = 0,
 .z_axis_offset = 0,
 .tap_threshold = 0x31,
 .tap_duration = 0x10,
 .tap_latency = 0x60,
 .tap_window = 0xF0,
 .tap_axis_control = ADXL_TAP_X_EN | ADXL_
TAP_Y_EN | ADXL_TAP_Z_EN,
 .act_axis_control = 0xFF,
 .activity_threshold = 5,
 .inactivity_threshold = 3,
 .inactivity_time = 4,
 .free_fall_threshold = 0x7,
 .free_fall_time = 0x20,
 .data_rate = 0x8,
 .data_range = ADXL_FULL_RES,

 .ev_type = EV_ABS,
 .ev_code_x = ABS_X,  /* EV_REL */
 .ev_code_y = ABS_Y,  /* EV_REL */
 .ev_code_z = ABS_Z,  /* EV_REL */

 .ev_code_tap = {BTN_TOUCH, BTN_TOUCH, BTN_
TOUCH}, /* EV_KEY x,y,z */ 

.ev_code_ff = KEY_F,  /* EV_KEY */

.ev_code_act_inactivity = KEY_A, /* EV_KEY */
 .power_mode = ADXL_AUTO_SLEEP | ADXL_LINK,
 .fifo_mode = ADXL_FIFO_STREAM,
};

To attach devices to drivers, the platform and bus model eliminates 
the need for device drivers to contain hard-coded physical 
addresses or bus IDs of the devices they control. The platform 
and bus model also prevents resource conflicts, greatly improves 
portability, and cleanly interfaces with the kernel’s power-
management features.

With the platform and bus model, device drivers know how to 
control a device once informed of its physical location and interrupt 
lines. This information is provided as a data structure passed to 
the driver during probing.

Unlike PCI or USB devices, I2C or SPI devices are not enumerated 
at the hardware level. Instead, the software must know which 
devices are connected on each I2C/SPI bus segment and what 
address (slave selects) these devices are using. For this reason, 
the kernel code must instantiate I2C/SPI devices explicitly. There 
are different ways to achieve this, depending on the context and 
requirements. However, the most common method is to declare 
the I2C/SPI devices by bus number.

This method is appropriate when the I2C/SPI bus is a system bus, 
as in many embedded systems, wherein each I2C/SPI bus has a 
number which is known in advance. It is thus possible to pre-
declare the I2C/SPI devices that inhabit this bus. This is done with 
an array of struct i2c _ board _ info / spi _ board _
info, which is registered by calling i2c _ register _ board _
info()/spi _ register _ board _ info()

static struct i2c_board_info __initdata bfin_
i2c_board_info[] = {
#if defined(CONFIG_TOUCHSCREEN_AD7879_I2C) || 
defined(CONFIG_TOUCHSCREEN_AD7879_I2C_MODULE)
 {
  I2C_BOARD_INFO(“ad7879”, 0x2F),
  .irq = IRQ_PG5,

  .platform_data = (void *)&bfin_ad7879_ts_
info,
 },
#endif
#if defined(CONFIG_KEYBOARD_ADP5588) || 
defined(CONFIG_KEYBOARD_ADP5588_MODULE)
 {
  I2C_BOARD_INFO(“adp5588-keys”, 0x34),
  .irq = IRQ_PG0,
  .platform_data = (void *)&adp5588_kpad_
data,
 },
#endif
#if defined(CONFIG_PMIC_ADP5520) || 
defined(CONFIG_PMIC_ADP5520_MODULE)
 {
  I2C_BOARD_INFO(“pmic-adp5520”, 0x32),
  .irq = IRQ_PG0,
  .platform_data = (void *)&adp5520_pdev_
data,
 },
#endif
#if defined(CONFIG_INPUT_ADXL34X_I2C) || 
defined(CONFIG_INPUT_ADXL34X_I2C_MODULE)
 {
  I2C_BOARD_INFO(“adxl34x”, 0x53),
  .irq = IRQ_PG0,
  .platform_data = (void *)&adxl34x_info,
 },
#endif
};

static void __init blackfin_init(void)
{
 (...)
 i2c_register_board_info(0, bfin_i2c_board_
info, ARRAY_SIZE(bfin_i2c_board_info));
 spi_register_board_info(bfin_spi_board_info, 
ARRAY_SIZE(bfin_spi_board_info));
 (...)
}

So, to enable such a driver one need only edit the board support 
file by adding an appropriate entry to i2c _ board _ info 
(spi _ board _ info).

It has also been noted that the driver needs to be selected 
du r i ng ke r ne l  con f ig u rat ion.  Dr ive r s  a re  sor ted by 
subsystems they belong to. The ADXL34x driver can be 
found under:

Device Drivers  --->
  Input device support  --->
   [*]   Miscellaneous devices  --->
    <M>   Analog Devices AD714x Capacitance 
Touch Sensor
       <M>     support I2C bus connection
       <M>     support SPI bus connection
    <*>   Analog Devices ADXL34x Three-Axis 
Digital Accelerometer
       <*>     support I2C bus connection
       <*>     support SPI bus connection

Selected drivers will be compiled automatically once the user has 
started the kernel build process.

The above code declares four devices on I2C Bus 0, including 
their respective addresses, IRQ, and custom platform_data 
needed by their drivers. When the I2C bus in question is 
registered, the I2C devices will be instantiated automatically 
by the i2c-core kernel subsystem.



 Analog Dialogue 44-03, March (2010) 5

To get help with these drivers, in the standard open-source fashion, 
Analog Devices sponsors a website that includes web forums and 
mailing lists at http://blackfin.uclinux.org/gf/—where a full-time 
ADI team is responsible for answering questions and handling 
requests about FOSS drivers in a timely manner.

References
(Information on all ADI components can be found at www.analog.com.)
1 IDC study/survey from over 5000 developers in 116 countries. 
Open Source in Global Software: Market Impact, Disruption, and 
Business Models. 2006.

2 http://en.wikipedia.org/wiki/Free_and_open_source_software.
3 www.gnu.org/philosophy/free-sw.html.
4 www.opensource.org/docs/osd.
5 www.opensource.org/licenses/bsd-license.php.
6 Riehle, Dirk. “The Economic Motivation of Open-Source 
Software: Stakeholder Perspectives.” IEEE Computer, vol. 40, 
no. 4 (April 2007). pp 25–32. http://dirkriehle.com/computer-
science/research/2007/computer-2007.pdf.

7Kübler-Ross, Dr. Elisabeth E. On Death and Dying. Routledge. 
ISBN 0415040159.

8 Forrester Research. 1973. http://i.i.com.com/cnwk.1d/i /
bto/20090521/Picture_2_610x539.png.

9 All lines of source measurements were counted with David 
A. Wheeler’s SLOCcount from http://www.dwheeler.com/
sloccount/.

10 Kroah-Hartman, Greg. SuSE Labs/Novell Inc., Jonathan 
Corbet, LWN.net, and Amanda McPherson. Linux Foundation; 
“Linux Kernel Development: How Fast It Is Going, Who Is Doing 
It, What They Are Doing, and Who Is Sponsoring It.” www.
linuxfoundation.org/publications/whowriteslinux.pdf.

11 Corbet, Jonathan, Alessandro Rubini, and Greg Kroah-
Hartman. Linux Device Drivers, Third Edition. http://lwn.net/
Kernel/LDD3/.

Authors
Michael Hennerich [michael.hennerich@
analog.com] joined Analog Devices in 2004. 
As a systems and applications design engineer 
he worked on a variety of DSP- and embedded-
processor-based applications and reference 
designs. Michael now works as an open-source 
systems engineer in Munich. In this role he is 
the leading device driver and kernel developer 
for the Blackfin architecture Linux support. He holds an 
MSC degree in computer-based engineering and Dipl.-Ing. 
(FH) degree in electronics and information technologies from 
Reutlingen University.

Robin Getz [robin.getz@analog.com] joined ADI 
in 1999 as a senior field applications engineer, 
and he currently leads the Free and Open-Source 
efforts at Analog Devices, which include an entire 
Linux distribution for ADI processors, the GNU 
Toolchain, and platform independent device 
drivers for a variety of processors and operating 
systems. Prior to joining ADI, Robin held various 
positions at other multinational semiconductor manufactures, 
where he obtained multiple patents. He received a B.Sc. in 1993 
from the University of Saskatchewan.

static struct i2c_driver adxl34x_driver = {
 .driver = {
  .name = “adxl34x”,
  .owner = THIS_MODULE,
 },
 .probe    = adxl34x_i2c_probe,
 .remove   = __devexit_p(adxl34x_i2c_
remove),
 .suspend  = adxl34x_suspend,
 .resume   = adxl34x_resume,
 .id_table = adxl34x_id,
};

static int __init adxl34x_i2c_init(void)
{
 return i2c_add_driver(&adxl34x_driver);
} 
module_init(adxl34x_i2c_init);

At some point during kernel startup, or at any time later, a device 
driver named “adxl34x” may register itself, using struct 
i2c _ driver—which is registered by calling i2c _ add _
driver(). Members of struct i2c _ driver are set with 
pointers to ADXL34x driver functions, connecting the driver 
with its bus master core. (The module _ init() macro defines 
which function (adxl34x _ i2c _ init()) is to be called at 
module insertion time.)

If the name of the driver that is filed matches the name given 
with the I2C_BOARD_INFO macro, the i2c-core bus model 
implementation invokes the driver’s probe() function, passing it 
the associated platform _ data and irq from the board support 
file to the driver. This only happens in cases without recourse 
conflicts, such as when a previously instantiated device uses the 
same I2C slave address.

The adxl34x _ i2c _ probe() function then starts to do what 
its name implies. It checks if either an ADXL345 or ADXL346 
device is present and functional by reading the manufacturer and 
device ID. If this succeeds, the driver’s probe function allocates 
device-specific data structures, requests the interrupt, and 
initializes the accelerometer.

It then allocates a new input device structure using input _
allocate _ device() and sets up input bit fields. In this way, 
the device driver tells the other parts of the input systems what 
it is and what events can be generated by this new input device. 
Finally the ADXL34x driver registers the input device structure 
by calling input _ register _ device().

This adds the new input device structure to linked lists of the input 
driver—and calls device-handler modules’ connect functions to 
tell them a new input device has appeared. From this point on, 
the device may generate interrupts. The interrupt service routine, 
once executed, reads the status registers and event FIFOs from 
the accelerometer and sends appropriate events back to the input 
subsystem using input _ event().

Drivers Maintained by Analog Devices
A complete list of Linux drivers maintained by Analog Devices 
can be found in the mainline Linux kernel (at kernel.org) or within 
ADI’s own Linux distribution website at https://docs.blackfin.
uclinux.org/doku.php?id=linux-kernel:drivers. It includes a wide 
variety of drivers, from audio, digital potentiometers, touch-screen 
controllers, and digital accelerometers to ADCs and DACs.

http://blackfin.uclinux.org/gf/
mailto:michael.hennerich@analog.com
mailto:michael.hennerich@analog.com
mailto:robin.getz@analog.com
https://docs.blackfin.uclinux.org/doku.php?id=linux-kernel:drivers
https://docs.blackfin.uclinux.org/doku.php?id=linux-kernel:drivers

	Free and Open-Source Software-An Analog Devices Perspective
	As a System Designer, Why Should I Care About Free and Open-Source Software?
	What Is FOSS?
	Linux Device Drivers-Architecture Independence
	Basics of Linux Device Drivers
	Using an Open-Source Linux Driver-Customization for a  Specific Target
	Drivers Maintained by Analog Devices
	References
	Authors


