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Phase Response in Active Filters 
Part 3—The Band-Pass Response

By Hank Zumbahlen

Introduction

In the first article of this series,1 I examined the relationship  
of the filter phase to the topology of the implementation of the 
filter. In the second article,2 I examined the phase shift of the 
filter transfer function for the low-pass and high-pass responses.
This article will concentrate on the band-pass response. While 
filters are designed primarily for their amplitude response, the 
phase response can be important in some applications.

For purposes of review, the transfer function of an active filter 
is actually the cascade of the filter transfer function and the 
amplifier transfer function (see Figure 1).
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Figure 1. Filter as cascade of two transfer functions.

The Band-Pass Transfer Function
Changing the numerator of the low-pass prototype to Q

ω0
0

sH

will convert the filter to a band-pass function. This will put a 
zero in the transfer function. An s term in the numerator gives 
us a zero and an s term in the numerator gives us a pole.  
A zero will give a rising response with frequency while a 
pole will give a falling response with frequency.

The transfer function of a second-order band-pass filter is then:
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 ω0 here is the frequency (F0 = 2 π ω0) at which the gain of the 
filter peaks. 

H0 is the circuit gain (Q peaking) and is defined as:

 (2)H 0 = H/Q 	

where H is the gain of the filter implementation.

Q has a particular meaning for the band-pass response. It is the 
selectivity of the filter. It is defined as: 

(3)Q =
F0

FH – FL

where FL and FH are the frequencies where the response is  
 –3 dB from the maximum.

The bandwidth (BW) of the filter is described as: 

(4)BW = FH – FL
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It can be shown that the resonant frequency (F0) is the geometric 
mean of FL and FH, which means that F0 will appear half way 
between FL and FH on a logarithmic scale. 

(5)F0 =   √FH FL

Also, note that the skirts of the band-pass response will always 
be symmetrical around F0 on a logarithmic scale.

The amplitude response of a band-pass filter to various values 
of Q is shown in Figure 2. In this figure, the gain at the center 
frequency is normalized to 1 (0 dB).
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Figure 2. Normalized band-pass filter amplitude response.

Again, this article is primarily concerned with the phase 
response, but it is useful to have an idea of the amplitude 
response of the filter.

A word of caution is appropriate here. Band-pass filters can be 
defined two different ways. The narrow-band case is the classic 
definition that we have shown above. In some cases, however, 
if the high and low cutoff frequencies are widely separated, the 
band-pass filter is constructed out of separate high-pass and 
low-pass sections. Widely separated, in this context, means 
separated by at least two octaves (×4 in frequency). This is the 
wideband case. We are primarily concerned with the narrow- 
band case for this article. For the wideband case, evaluate the 
filter as separate high-pass and low-pass sections.

While a band-pass filter can be defined in terms of standard 
responses, such as Butterworth, Bessel, or Chebyshev, they  
are also commonly defined by their Q and F0.
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The Amplifier Transfer Function

It has been shown in previous installments that the transfer 
function is basically that of a single-pole filter. While the 
phase shift of the amplifier is generally ignored, it can affect 
the overall transfer of the composite filter. The AD822 was 
arbitrarily chosen to use in the simulations of the filters in 
this article. It was chosen partially to minimize the effect on 
the filter transfer function. This is because the phase shift of 
the amplifier is considerably higher in frequency than the 
corner frequency of the filter itself. The transfer function of 
the AD822 is shown in Figure 5, which is information taken 
directly from the data sheet.
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Figure 5. AD822 bode plot gain and phase.

Example 1: A 1 kHz, 2-Pole Band-Pass Filter with  
a Q = 20

The first example will be a filter designed as a band-pass from 
the start. We arbitrarily choose a center frequency of 1 kHz 
and a Q of 20. Since the Q is on the higher side, we will use the 
dual amplifier band-pass (DABP) configuration. Again, this is 
an arbitrary choice.

We use the design equations from Reference 1. The resultant 
circuit is shown in Figure 6:
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Figure 6. 1 kHz, Q = 20 DABP band-pass filter.

The phase response of a band-pass filter is:

(6)

– √4Q 2 –1
2Qω
ω0

)(arctan

+ √4Q 2 –1
2Qω
ω0

)(– arctan –
2
π

φ (ω) =

Note that there is no such thing as a single-pole band-pass filter.
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Figure 3. Normalized band-pass filter phase response.

Figure 3 evaluates Equation 6 from two decades below the 
center frequency to two decades above the center frequency. 
The center frequency has a phase shift of 0°. The center fre-
quency is 1 and the Q is 0.707. This is the same Q used in the 
previous article, although in that article we used α. Remember        
 α = 1/Q.

Inspection shows the shape of this curve is basically the same as 
that of the low-pass (and the high-pass for that matter). In this 
case, however, the phase shift is from 90°, below the center 
frequency going to 0° at the center frequency to –90° above the 
center frequency.

In Figure 4 we examine the phase response of the band-pass 
filter with varying Q. If we take a look at the transfer function, 
we can see that the phase change can take place over a rela-
tively large frequency range, and that the range of the change is 
inversely proportional to the Q of the circuit. Again, inspection 
shows that the curves have the same shape as those for the  
low-pass (and high-pass) responses, just with a different range.
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Figure 4. Normalized band-pass filter phase response with varying Q.
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We are primarily concerned with phase in this article, but I 
think it useful to examine the amplitude response. 
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Figure 7. 1 kHz, Q = 20 DABP band-pass filter amplitude response.

We see the phase response in Figure 8:
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Figure 8. 1 kHz, Q = 20 DABP band-pass filter phase response.

Note that the DABP configuration is noninverting. Figure 8 
matches Figure 3.

Example 2: A 1 kHz, 3-Pole 0.5 dB Chebyshev  
Low-Pass to Band-Pass Filter Transformation

Filter theory is based on a low-pass prototype that can then 
be manipulated into the other forms. In this example, the pro-
totype that will be used is a 1 kHz, 3-pole, 0.5 dB Chebyshev 
filter. A Chebyshev filter was chosen because it would show 
more clearly if the responses were not correct. The ripples in 

the pass band, for instance, would not line up. A Butterworth 
filter would probably be too forgiving in this instance. A 3-pole 
filter was chosen so that a pole pair and a single pole would 
be transformed.

The pole locations for the LP prototype (from Reference 1) are:

Stage  𝛂 𝛃 FO  𝛂

1 0.2683 0.8753 1.0688 0.5861

2 0.5366 0.6265

The first stage is the pole pair and the second stage is the 
single pole. Note the unfortunate convention of using α for 
two entirely separate parameters. The α and β on the left are 
the pole locations in the s plane. These are the values that are 
used in the transformation algorithms. The α on the right is 
1/Q, which is what the design equations for the physical filters 
want to see. 

The low-pass prototype is now converted to a band-pass filter. 
The equation string outlined in Reference 1 is used for the 
transformation. Each pole of the prototype filter will trans-
form into a pole pair. Therefore, the 3-pole prototype, when 
transformed, will have six poles (3-pole pairs). In addition, 
there will be six zeros at the origin. There is no such thing as a 
single-pole band-pass.

Part of the transformation process is to specify the 3 dB band-
width of the resultant filter. In this case this bandwidth will be 
set to 500 Hz. The results of the transformation yield:

Stage F0 Q A0 

1 804.5 7.63 3.49

2 1243 7.63 3.49

3 1000 3.73 1
 
In practice, it might be useful to put the lower gain, lower Q 
section first in the string, to maximize signal level handling. 
The reason for the gain requirement for the first two stages is 
that their center frequencies will be attenuated relative to the 
center frequency of the total filter (that is, they will be on the 
skirt of other sections). 

Since the resultant Qs are moderate (less than 20), the multiple 
feedback topology will be chosen. The design equations for 
the multiple feedback band-pass filter from Reference 1 are 
used to design the filter. Figure 9 shows the schematic of the 
filter itself.
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Figure 9. 1 kHz, 6-pole, 0.5 dB Chebyshev band-pass filter.
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In Figure 10 we look at the phase shift of the complete filter. 
The graph shows the phase shift of the first section alone  
(Section 1), of the first two sections together (Section 2), and  
of the complete filter (Section 3). These show the phase shift 
of the “real” filter sections, including the phase shift of the 
amplifier and the inversion of the filter topology.

There are a couple of details to note on Figure 10. First,  
the phase response is cumulative. The first section shows 
a change in phase of 180° (the phase shift of the filter func-
tion, disregarding the phase shift of the filter topology). The 
second section shows a phase change of 360° due to having 
two sections, 180° from each of the two sections. Remember 
that 360° = 0°. And the third section shows 540° of phase shift, 
180° from each of the sections. Also note that at the frequen-
cies above 10 kHz we are starting to see the phase roll-off 
slightly due to the amplifier response. We can see that the  
roll-off is again cumulative, increasing for each section. 

In Figure 11 we see the amplitude response of the complete filter.

Conclusion

This article considers the phase shift of band-pass filters. In 
previous articles in this series, we examined the phase shift 
in relation to filter topology and for high-pass and low-pass 
topologies. In future articles, we will look at notch and all-pass 
filters. In the final installment, we will tie it all together and 
examine how the phase shift affects the transient response of 
the filter, looking at the group delay, impulse response, and 
step response, and what that means to the signal.

Endnotes:
1 Hank Zumbahlen. “Phase Relations in Active Filters.” Analog 

Dialogue, Volume 41, Number 4, 2007.  
2 Hank Zumbahlen. “Phase Response in Active Filters Part 2, 

the Low-Pass and High-Pass Responses.” Analog Dialogue, 
Volume 43, Number 3, 2009. 

Additional References:

Daryanani, G. Principles of Active Network Synthesis and Design. 
John Wiley & Sons, 1976. 
Graeme, J., G. Tobey, and L. Huelsman. Operational  
Amplifiers Design and Applications. McGraw-Hill, 1971. 
Van Valkenburg, Mac. Analog Filter Design. Holt, Rinehart and 
Winston, 1982. 
Williams, Arthur B. Electronic Filter Design Handbook.  
McGraw-Hill, 1981. 
Zumbahlen, Hank. Basic Linear Design. Ch. 8.  
Analog Devices, Inc, 2006. 
Zumbahlen, Hank. “Chapter 5: Analog Filters.”  
Op Amp Applications Handbook. Newnes-Elsevier, 2006. 
Zumbahlen, Hank. Linear Circuit Design Handbook.  
Newnes-Elsevier, 2008. 
Zumbahlen, Hank. “Phase Relations in Active Filters.”  
Analog Dialog, Volume 41, 2007
Zverev, Anatol I. Handbook of Filter Synthesis.  
John Wiley & Sons, 1967.

Figure 10. Phase response of a 1 kHz, 6-pole, 0.5 dB Chebyshev  
band-pass filter.

Figure 11. Amplitude response of a 1 kHz, 6-pole, 0.5 dB Chebyshev  
band-pass filter.

–540

–450

–360

–270

–180

–90

0

90

180

100 300 500 700 3k 5k 7k1k 10k
Frequency (Hz)

P
h

as
e 

( °
)

1st Stage

2nd Stage

3rd Stage

80

70

60

50

40

30

20

10

0

100 300 500 700 3k 5k 7k1k 10k
Frequency (Hz)

G
ai

n
 (d

B
)

Hank Zumbahlen [hank.zumbahlen@analog.com] has worked at ADI since 
1989, originally as a field applications engineer based in California. For the   
last several years, he has been involved with training and seminar develop-
ment as a senior staff applications engineer. Previously, he held a similar 
position at Signetics (Philips)—and positions as a design engineer at  
several companies, primarily in the test and measurement areas. Hank  
has a B.E.E.E. from the University of Illinois. He is the author of the Linear  
Circuit Design Handbook (Newnes-Elsevier 2008).

Hank Zumbahlen

Also by this Author:

Staying Well Grounded 
Volume 46, Number 6

http://www.analog.com/library/analogDialogue/cd/vol41n4.pdf#page=3
http://www.analog.com/library/analogDialogue/cd/vol43n3.pdf#page=18
http://www.analog.com/library/analogDialogue/cd/vol43n3.pdf#page=18
http://www.analog.com/library/analogDialogue/archives/41-10/phase_relations.html
mailto:hank.zumbahlen%40analog.com?subject=
https://www.linkedin.com/shareArticle?mini=true&url=http://www.analog.com/library/analogdialogue/archives/50-03/phase-response3.html&title=Phase%20Response%20in%20Active%20Filters%20Part%203&source=Analog%20Dialogue
https://www.facebook.com/sharer/sharer.php?s=100&p[title]=Phase%20Response%20in%20Active%20Filters%20Part%203&p[summary]=Phase%20Response%20in%20Active%20Filters%20Part%203&p[url]=http://www.analog.com/library/analogdialogue/archives/50-03/phase-response3.html
https://twitter.com/intent/tweet?text=Phase%20Response%20in%20Active%20Filters%20Part%203%20http://www.analog.com/library/analogdialogue/archives/50-03/phase-response3.html&source=webclient
http://www.analog.com/library/analogDialogue/archives/46-06/staying_well_grounded.html
http://www.analog.com/library/analogDialogue/archives/46-06/staying_well_grounded.html

	Phase Response in Active Filters  Part 3-The Band-Pass Response
	Introduction
	The Band-Pass Transfer Function 
	The Amplifier Transfer Function 
	Example 1: A 1 kHz, 2-Pole Band-Pass Filter with  a Q = 20
	Example 2: A 1 kHz, 3-Pole 0.5 dB Chebyshev  Low-Pass to Band-Pass Filter Transformation
	Conclusion
	Endnotes: 
	Additional References: 


