
         

VISIT ANALOG.COM

Vol 56, No 1—January 2022

How to Accelerate Peripheral
Monitoring in Low Power
Wearables with DMA
Brandon Hurst�, Hardware and Embedded Firmware Engineer

Abstract
This article explains the use cases, advantages, and disadvantages of utilizing
direct memory access (DMA) in embedded systems programming. The article
describes how DMA interacts with peripheral and memory modules for more
efficient operation of CPUs. The article will also introduce the reader to differ-
ent DMA bus access architectures, and the advantages of each.

One task that is common for embedded systems is managing external input.
Managing input can put a lot of unnecessary computational strain on the proces-
sor, causing longer periods in active power modes and slow response times. For
optimizing power, preserving quick responses to events, and managing large
continuous data transfers, a microcontroller with direct memory access (DMA)
may offer the best solution.

Direct Memory Access (DMA)
In system applications involving peripherals, there are many points at which a
microprocessor can become bottlenecked. For instance, when managing an ADC
that is constantly sending data, a processor can be interrupted so often that it
struggles to accomplish other tasks. DMA is a method of moving data and mini-
mizing processor involvement in large or fast data transactions. You can think
of the DMA controller as a coprocessor whose sole purpose is to interact with
memory and peripherals. This allows the main processor to successfully manage
a greedy peripheral, focus on another task, or even go to sleep and conserve
power while data transactions happen in the background. For example, on Arm®
architectures, a DMA module can operate during LP2 (sleep) or LP3 (run) modes.
This can give a distinct advantage in applications that require extended battery
life, such as wearable sensor hubs and smart watches.

Advantages and Drawbacks
DMA is useful in many digital systems, and sometimes it is even required to manage
large amounts of bus traffic. It has been used in network cards, graphics cards,
and even some of the original IBM PCs. That being said, incorporating DMA into a
design does have some trade-offs.

Table 1. Advantages of Using DMA

Advantages of Using DMA

CPU Time DMA minimizes the need for processor execution and interrupts,
decreasing the required CPU time for data transactions.

Power Consumption
Using DMA can yield opportunities to minimize power

consumption if it allows the processor to sleep during DMA
transfers.

Parallel Operation
Depending on the architectural details of the system bus,

the processor may be able to execute other operations while
peripheral transactions are taking place.

Table 2. Disadvantages of Using DMA

Disadvantages of Using DMA

Cost Incorporating a system with DMA requires a DMA controller,
and this can make a system more expensive.

Complexity While DMA can reduce the frequency of interrupts, it can
increase the size and complexity of application firmware.

Platform Dependence
DMA controllers have differing internal architectures

between and within manufacturers and can have different
behavior depending on their native bus access schemes.

Cache Incoherency

DMA transactions can cause logical errors to occur by
writing to a cached layer of the memory hierarchy. This can
be solved by using cache-coherent system architectures or

by invalidating cache storage upon DMA completion.

Bus Access and CPU Cycles
While DMA controllers can be incredibly effective at conserving power or speeding
up embedded systems, their implementation is not heavily standardized. There
are multiple schemes for making sure that internal bus access is not granted
simultaneously with the CPU. The goal of the bus access scheme is primarily to
avoid concurrent access to the same memory locations, which can lead to cache
incoherency and logical errors. A single DMA controller will usually be configured
to employ one of these schemes, since different hardware or firmware control
may be required to use each of them. The bus access schemes used by most DMA
controllers are burst, cycle-stealing, and transparent DMA.

https://www.analog.com
https://www.analog.com/en/index.html
https://ez.analog.com
https://www.youtube.com/user/AnalogDevicesInc
https://twitter.com/adi_news
https://www.linkedin.com/company/analog-devices
https://www.facebook.com/AnalogDevicesInc
https://flipboard.com/@AnalogDevices

2  How to Accelerate Peripheral Monitoring in Low Power Wearables with DMA

CPU

DMA FIFO

(Memory to Memory)

(Memory to Peripheral)

Peripheral Bus
 (I2C, SPI, UART)

Burst: Bulk
Transaction

(Suspended)

Memory Bus
(SRAM)

Sy
st

em
 B

us
es

 (A
HB

, A
PB

, e
tc

.)

Figure 1. An architectural diagram of burst DMA during DMA operations.

Burst DMA occurs through infrequent large bursts, where the DMA controller sends
as much data to the destination buffer as the buffer can hold. The DMA controller
blocks CPU operation for a very short period to move a large chunk of memory,
and then relinquishes the bus back to the main CPU, repeating until the transfer is
complete. Burst DMA is generally considered the fastest type.

CPU

DMA FIFO

(Memory to Memory)

(Memory to Peripheral)

Peripheral Bus
 (I2C, SPI, UART)

Cycle-Stealing:
Single Transaction

(Between Instructions)

Memory Bus
(SRAM)

Sy
st

em
 B

us
es

 (A
HB

, A
PB

, e
tc

.)

Figure 2. Cycle-stealing DMA during DMA operations occurs between two CPU cycles.

Conversely, single byte transfer or cycle-stealing DMA takes a cue from the CPU
and only carries out operations between CPU instructions. It inserts a single
operation between two CPU cycles, and thus is in effect “stealing” CPU time. Due
to the limitation of executing one operation at a time, it is generally slower than
burst DMA.

CPU

DMA FIFO

(Memory to Memory)

Transparent DMA:
Single Transaction (Memory to Peripheral)

Peripheral Bus
 (I2C, SPI, UART)

Sy
st

em
 B

us
es

 (A
HB

, A
PB

, e
tc

.)
M

em
or

y
Bu

se
s

 (S
RA

M
)

Figure 3. Transparent DMA during DMA operations occurs while the processor works on tasks
that do not access the data or address buses.

Transparent DMA can only execute a single operation at a time, but it must also wait
for the processor to execute instructions in which it yields access to the desired
data or address buses. Extra logic is required to verify this access restriction, and
this type of DMA is generally the slowest. Transparent DMA may be advantageous in
applications where one has extra processing to do that does not require access
to the memory buses. The advantage in this case would be the elimination of
throttling the CPU, since the processor does not have to stop operating completely.

Table 3. Summary of DMA Types and Their Pros/Cons

Type of DMA Pros Cons

Burst DMA Fastest type of DMA Relatively long periods of CPU
idle time

Cycle-Stealing DMA CPU is not idle for long
contiguous periods Slower than burst DMA

Transparent DMA No throttling of CPU use needed Slowest form of DMA

Example of a Burst DMA Architecture

 Figure 4. An architectural diagram of the DMA controller on the MAX32660.

An example of a burst DMA controller can be found on the MAX32660 (see Figure 4).
The upper path corresponds to data flow, and the lower path represents control/
status flow between the advanced high performance bus (AHB) and the DMA logic.
The DMA controller can behave as a buffer interface between the AHB and memory
or peripheral modules, depending on how it is configured. DMA logic sits between the
DMA buffer and each peripheral to independently manage each unique peripheral
bus during transactions. A DMA operation can move up to 32 bytes at a time, provided
the source/destination buffers can contain this much data. The buffer can hold up
to 16 MB and is configurable to transmit or receive I2C, SPI, I2S, and UART in addition
to internal memory transfers. Programming DMA control may vary slightly between
protocols, but the peripheral transactions are managed exclusively by the DMA
controller. An arbiter module controls the bus access restrictions between the four
DMA channels and the CPU, granting requests according to a priority system.

DMAC
Logic

SPI0 Rx/Tx
SPI1 Rx/Tx

I2C0 Rx/Tx
I2C1 Rx/Tx

UART0 Rx/Tx
UART1 Rx/Tx

DMAC FIFO
8 × 32

DMA IRQ0 -DMA IRQß

A
PB

 M
ai

n
I/

F

A
HB

A
PB

 N
od

e
I/

F
DMAC

Registers

https://www.maximintegrated.com/en/products/microcontrollers/MAX32660.html

VISIT ANALOG.COMFor regional headquarters, sales, and distributors or
to contact customer service and technical support,
visit analog.com/contact.

Ask our ADI technology experts tough questions, browse
FAQs, or join a conversation at the EngineerZone Online
Support Community. Visit ez.analog.com.

©2022 Analog Devices, Inc. All rights reserved.
Trademarks and registered trademarks are
the property of their respective owners.

Modern DMA Options
In summary, DMA is a critical feature for modern embedded systems that manage
an abundance of sensors and require high throughput, efficiency, and low power
operation. It behaves like a coprocessor dedicated exclusively to memory and
peripheral bus transactions.

Using DMA is imperative for many applications to minimize power consump-
tion and lighten processor loads. For example, health and wearable devices handle
large amounts of data throughput, but they also must conserve as much battery
charge as possible, all while handling sensitive data. Analog Devices offers

fast burst DMA architectures on microcontrollers well-equipped for low power
wearable designs, such as the MAX32660 and MAX32670. In addition, DARWIN
Arm microcontrollers such as the MAX32666 are built for wearable and IoT appli-
cations with integrated Bluetooth® 5. These devices have two 8-channel burst
DMA controllers with integrated support for event-based transactions. They
even feature best-in-class security hardware with a secure bootloader and trust
protection unit (TPU) for accelerating ECDSA, SHA-2, and AES encryption. From
the early IBM PCs to network cards, and now to secure, low power wearable and
IoT devices, DMA is an essential feature of modern digital systems.

About the Author
Brandon Hurst is a hardware and embedded firmware engineer working with the Training and Technical Services Group for
Maxim Integrated, now part of Analog Devices. He graduated with a bachelor’s in electrical engineering from Cal Poly, San
Luis Obispo and joined Maxim in January 2021. Previously, Brandon did an internship with both Maxim’s TTS team and the
Product Safety Engineering team at Apple, Inc. He can be reached at brandon.hurst@analog.com.

https://www.analog.com
https://www.analog.com/contact
https://ez.analog.com
https://www.analog.com
https://www.maximintegrated.com/en/products/microcontrollers/MAX32660.html
https://www.maximintegrated.com/en/products/microcontrollers/MAX32670.html
https://www.maximintegrated.com/en/products/microcontrollers/MAX32666.html

	Button 7:
	Page 1:

	Button 6:
	Page 1:

	Button 5:
	Page 1:

	Button 4:
	Page 1:

	Button 3:
	Page 1:

	Button 2:
	Page 1:

