
         

VISIT ANALOG.COM

Vol 58, No 1—February 2024

Enabling Robot Operating
Systems—Introducing
the ADI Trinamic Motor
Controller ROS1 Driver
Krizelle Paulene Apostol�, Software Systems Engineer,
Jamila Macagba�, Senior Software Systems Engineer, and
Maggie Maralit�, Software Systems Design Engineering Manager

Abstract
Robot Operating System (ROS) drivers were developed on Analog Devices prod-
ucts so that they can be readily used within a ROS ecosystem. This article will
give an overview on how to use and integrate these drivers in their applica-
tions, products, and systems (for example, autonomous navigation, safety
bubble maps, and data collection robots); and how doing this will enable them
to evaluate new technology immediately and avoid interoperability issues with
third-party products. Among all products that will be discussed here, the focus
will be on the recently released ROS driver for ADI Trinamic™ motor control-
lers—which are complete, board-level modules for embedded motion control,
equipped with ADI Trinamic motion control expertise and ADI’s analog process
technology and power design skills.1

What Is ROS?
ROS is robotics middleware containing a set of software libraries and powerful devel-
oper tools from drivers to state-of-the-art algorithms—upon which robotic systems or
applications can be developed. It is multidomain (for example, consumer, industrial,
automotive, etc.), and supports multiple platforms that is, Linux, Windows, MacOS, and
some embedded platforms)—plus it’s 100% open source with commercial options.
Support for ROS is abundant due to the dedicated resources from the global commu-
nity, giving users an easier path for their designs and applications.

How Does the Technology Work?
ROS started in 2007 and became one of the most popular prototyping platforms
for robotic development in fields such as self-driving cars, industrial robots, aerial
vehicles, and more. It has continuously evolved and now has two versions: ROS1
and ROS2.

ROS1 and ROS2 systems must be isolated but the ROS bridge enables communi-
cation and exchange of data between them. More info is available at the ros2/
ros1_bridge page.

Table 1. Major Differences of ROS1 and ROS22

Factors ROS1 ROS2

Communications protocol XMLRPC + TCPROS DDS

Architecture ROS master + distributed Fully decentralized

Build system Catkin (cmake-based) colcon/ament
(cmake-based)

Build output ros_ws/devel ros_ws/install

Parameters Global parameter server
Dynamic reconfigure Per-node parameters

Launch XML Python (+XML, YAML
alternatives)

Commands roslaunch, rosrun, rostopic,
etc.

ros2 launch, ros2 run,
ros2 topic, etc.

Platforms Primarily ubuntu Linux, MacOS, Windows

ROS Supported Platforms
ROS Noetic is the final version of ROS1 that will be supported until May 2025, while
ROS2 has continuously rolling development distributions since its introduction in
June 2020.

For a complete list, check these links for ROS1 supported platforms and ROS2 sup-
ported platforms.

https://www.analog.com
https://www.analog.com
https://www.analog.com/en/design-center/landing-pages/001/trinamic-support.html
https://www.analog.com/en/design-center/landing-pages/001/trinamic-support.html
https://ros.org/
https://github.com/ros2/ros1_bridge
https://github.com/ros2/ros1_bridge
https://www.ros.org/reps/rep-0003.html#platforms-by-distribution
https://www.ros.org/reps/rep-2000.html#platforms-by-distribution
https://www.ros.org/reps/rep-2000.html#platforms-by-distribution
https://ez.analog.com
https://www.youtube.com/user/AnalogDevicesInc
https://twitter.com/adi_news
https://www.linkedin.com/company/analog-devices
https://www.facebook.com/AnalogDevicesInc
https://flipboard.com/@AnalogDevices

2  Enabling Robot Operating Systems—Introducing the ADI Trinamic Motor Controller ROS1 Driver

ROS Basic Concepts
Some of the basic concepts of ROS, as shown in Figure 1, are packages, nodes,
topics, services, and messages.

/topic

<request> <response>

MessageNode

Service

ros_package

Figure 1. A ROS basic data flow.

Note: The ROS basic concepts discussed in the following paragraphs are similar
for both ROS1 and ROS2.

Package
The ROS package is the main organization system of ROS programs or nodes.
This is the most atomic build/release item in ROS. When creating a ROS package,
it’s important to set up a dedicated ROS workspace. This workspace is called the
catkin workspace, wherein catkin is the official build system of ROS.

Nodes
ROS nodes are the executable programs made in ROS. They are processes that
perform a specific task. ROS nodes can communicate with each other by use of
ROS client libraries such as rospy, a Python client library, and roscpp, a C++ client
library. Nodes can be a topic subscriber or/and a topic publisher. Nodes can also
provide or use a service.3

Topics
ROS topics are the channels of the data being generated (or in ROS terms, pub-
lished) by a ROS node.

In ROS, publisher nodes are the broadcasters of a topic, while subscriber nodes
are the listeners of a topic.

In Figure 2, generic_motor_control’s node is the broadcaster. /cmd_vel is the topic
that velocity_publisher publishes. This means that velocity_publisher provides
velocity information based on motor control (or command velocity).

While ros_application’s node is the listener, velocity_subscriber subscribes to the
topic /cmd_vel. This means that velocity_subscriber accesses or uses the velocity
information provided by velocity_publisher.

ros_applicationgeneric_motor_control

/wheel_velocity/cmd_velvelocity_
publisher

velocity_
subscriber

Figure 2. Publisher-subscriber.

Messages
While topics are the data channels, messages are the data in ROS-compatible
format applicable to different sensors.

The following are sample sensors and applicable to the ROS message format:

	X Time of flight (ToF) cameras: sensor_msgs/Image, sensor_msgs/PointCloud
	X Inertial measurement unit (IMU) sensor: sensor_msgs/Imu

	X Motor control: geometry_msgs/Twist
	X Wheel encoders: geometry_msgs/TwistStamped, geometry_msgs/

TwistWithCovarianceStamped

ROS topics communicate by sending messages (topic publisher) or receiving mes-
sages (topic subscriber) and must be on a matching data type.

For example, in Figure 2, the velocity information (command velocity) from the
velocity_publisher node wants to be accessed/used by the velocity_subscriber
node. If the topic publisher, velocity_publisher, uses data type geometry_msgs/
Twist, the topic subscriber, velocity_subscriber, should have the same data
type as well.

Services
The publisher-subscriber communication model is open-ended and not appli-
cable to reply interactions that are often required in a distributed system.4

Services are allowing nodes to communicate by sending a request and receiv-
ing a response. The publisher-subscriber communication model uses .srv files
wherein service descriptions, such as message type of request and response,
are specified.

Service is a two-way synchronous communication model wherein there
is a client and a server. The server node is the one that provides the service
while the client node is the one that sends the request and waits for a response
from the server node.

For example, in Figure 3, server_node provides a service, SetVelocity.srv, to
change command velocity, vel. The service accepts the velocity value in float32
format and returns the status in string format; “success” if the requested velocity
was set or “FAIL” if not.

SetVelocity.srv

float32 vel

string status

velocity_service_ros

<request>

<response>

Success vel = 2.5 m/s

client_node

server_node

Figure 3. Sample use of service.

The client_node sends a request to set the command velocity to 2.5 m/s. Once
server_node receives the request, it sends the response of “success”.

Integrating ADI Solutions into the
ROS Ecosystem
ADI is an official member of the ROS-Industrial Consortium—an open-source proj-
ect that extends the advanced capabilities of ROS software to industrial-relevant
hardware and applications.5 Being a part of this community, ADI has initially tar-
geted dedicated modules geared toward the industrial domain.

ADI has developed ROS drivers for different dedicated modules. To showcase
the developed drivers and leverage the capabilities of ROS, ADI developed the
Analog Devices Autonomous Mobot (ADAM) as an in-house autonomous mobile
platform (see Figure 4).

https://www.analog.com/en/education/education-library/videos/6317228969112.html

VISIT ANALOG.COM  3

Figure 4. The ADAM.

ADAM: Analog Devices Autonomous Mobot
ADAM is powered by ROS and is enabled by different ROS-powered devices. The
platform shows how ADI’s ROS drivers can be integrated into mobile robot applica-
tions—specifically autonomous navigation.

Figure 5 shows the high level hardware diagram of ADAM with different modules.
It mainly has the following devices connected:

	X ADIS16470 or IMU sensors based on multiaxis combinations of precision gyro-
scopes, accelerometers, magnetometers, and pressure sensors—which are
primarily used as sensing feedback to improve position/direction estimation.

	X ADBMS6948, a multicell battery monitor, measuring up to 16 series-connected
battery cells with very high measurement accuracy over the entire tempera-
ture range.

	X EVAL-ADTF3175D-NXZ or CMOS ToF camera offering the highest resolution in
the market, and can be complemented with depth computation and process-
ing, laser drivers, power management, and development tools with reference
firmware/software.

	X ADI Trinamic motor controllers, which are complete, board-level solutions for
embedded motion control, equipped with ADI Trinamic motion control exper-
tise and ADI’s analog process technology and power design skills.1

Figure 6 shows the high level ROS architecture of the ADAM using ROS drivers
and multiple application/algorithm nodes needed for autonomous navigation. The
IMU data (/imu/data_raw) and ADI Trinamic motor controller feedback (/tmc_info)
are used as inputs for pose estimation, resulting in the robot’s odometry (/odom).
The lidar data (/scan) is the primary input for the simultaneous localization and
mapping (SLAM) algorithm for generating a map; ToF data (/image_raw) can also
be used as input in other SLAM algorithms. The move_base node will then wait for
any goal pose from the user and send velocity commands (/cmd_vel) to the ADI
Trinamic motor controller to move the robot.

ADI Trinamic Motor Controller ROS Driver
ADI Trinamic motor controllers (TMCs) are complete, board-level solutions for
embedded motion control, equipped with ADI Trinamic motion control expertise
as well as ADI’s analog process technology and power design skills.1 Supporting
various types of motors like single-/multiple-axis stepper and brushless
DC (BLDC), the available interfaces include CAN, EtherCAT®, RS-232, RS-485 and
USB, and protocols supported range from Trinamic Motion Control Language
(TMCL™), CANopen®, over EtherCAT (CoE), CANopen or Modbus.6

An IDE called TMCL-IDE is available to assist the users to develop applications and
allow easy reprogramming of these modules. It uses either TMCL for standalone
operation or the standardized CANopen® protocol, and it allows users to set param-
eters, visualize data in real-time, and develop/debug standalone applications.

As TMCs enable a new class of intelligent actuators and as ROS becomes more
and more prevalent, especially in robotics, additional support like ROS drivers for
these modules were developed to extend use cases even further for manufactur-
ing and industrial automation. Specifically, these ROS drivers will be expected to:

	X Control the motors’ velocity, position, or torque
	X Monitor motor controller and motor information

The TMC ROS driver is similar to what TMCL-IDE offers except that it enables nodes
from a ROS-capable system to readily use these TMCs without installing any addi-
tional drivers. At the time this article is published, it is only able to support CAN
interface (specifically SocketCAN), although other interfaces are ongoing develop-
ment and planned to be supported soon.

ADI Trinamic Motor Controller
TMCM-xxxx-AGV

ADI CMOS ToF
EVAL-ADTF3175D-NXZ

Batteries
16-Channel BMS
ADBMS6948

Miniature MEMS IMU
ADIS16470

Runs the Whole Software Stack
Ubuntu-Based Host PC

Data Flow

Figure 5. A high level hardware diagram of the ADAM.

https://www.analog.com
https://www.analog.com/en/products/adis16470.html
https://www.analog.com/en/product-category/inertial-measurement-units.html
https://www.analog.com/en/products/adbms6948.html
https://www.analog.com/en/design-center/evaluation-hardware-and-software/evaluation-boards-kits/EVAL-ADTF3175.html
https://www.analog.com/en/product-category/time-of-flight-sensors-solutions.html
https://www.analog.com/en/product-category/embedded-motion-control-modules.html
https://www.analog.com/en/design-center/evaluation-hardware-and-software/motor-motion-control-software/tmcl-ide.html

4  Enabling Robot Operating Systems—Introducing the ADI Trinamic Motor Controller ROS1 Driver

The ADI Trinamic motor controller modules (TMCM) currently supported are
listed here.

Software Architecture
Figure 7 shows the high level software architecture of the adi_tmcl.

As seen in Figure 7, the adi_tmcl does not need any additional drivers because it
makes use of SocketCAN drivers already supported by default in most Linux-based

systems. Additionally, adi_tmcl has its own TMCL protocol interpreter, which
makes it able to understand TMCL-compliant send/receive commands requested
by the user. As the last layer, the tmcl_ros_node provides the direct interface on
the ROS system in the form of publishers, subscribers, and services. Each of these
offer certain functionalities configurable with a group of parameters detailed in
the following sections.

Figure 6. A high level ROS architecture of the ADAM’s navigation stack.

adi_imu_driver_ros application_1 * application_2

/odom/imu/data_raw

adi_tmcl

driver_1 * application_2 ** move_base **

/goal

/tmc_info

/cmd_vel/map/scan

tof_ros

/image_raw

Third-Party Navigation-Related Packages** Internally Developed Third-Party Packages*

adi_imu_driver_ros pose estimation adam_gui

adi_tmcl

laser_scan SLAM** move_base**

tof_ros

Figure 7. A high level software architecture of adi_tmcl.

USB

TMCM-XXXX

Motors

SocketCAN
Kernel Driver

amd64
UBUNTU 20.04

System
 APIs

adi_tmcl

SocketCAN
Wrapper

Wrapper
 APIs

Interpreter
APIs

Possible Other Algorithmic ROS Nodes (Navigation)

ROS Master

/tmc_info

adi_tmcl/TmcInfo

/cmd_vel

/cmd_trq

/cmd_relpos

/cmd_abspos

/tmcl_custom_cmd

/tmcl_gap

/tmcl_ggp

TMCL ROS
Node

TMCL Protocol
Interpreter

CAN-USB
(With SocketCAN)

std_msgs/Int32 std_msgs/Int32 adi_tmcl/TmcGapGgpAll

geometry_msgs/Twist std_msgs/Int32 adi_tmcl/TmcCustomCmd adi_tmcl/TmcGapGgpAll

https://github.com/analogdevicesinc/tmcl_ros

VISIT ANALOG.COM  5

Features
The adi_tmcl offers a range of features including:

1. Support for different TMC boards

2. One-time configuration of TMC modules using TMCL-IDE

3. A move/stop motor

4. The ability to get TMC/motor information

5. Execute custom TMC commands

6. The ability to get all axis parameter values

7. The ability to get all global parameter values

8. Support for multiple TMC board setup

9. Easy integration into ROS systems/applications

Stay tuned for an article in next month’s issue of Analog Dialogue, “Mastering ADI
Trinamic Motor Controllers with the ROS1 Driver,” which discusses the details of
these features with samples on how to utilize them.

Conclusion
ADI Trinamic motor controllers enable a new class of intelligent actuators. As ROS
became more and more prevalent, especially in robotics, additional support for
these modules, like ROS drivers, was developed to extend use cases even further
for manufacturing and industrial automation.

In this article, we showed how ROS extends devices to have:

	X Added value, like extendibility to industrial applications;
	X Easier interoperability with third-party products made possible by the ROS

communications framework;

	X Wider options for customers to leverage ADI products in their systems; and
	X The ability to evaluate new technology quickly and start using immediately.

For more information, visit ADI’s Industrial Robotics page.

References
1	“ADI Trinamic Hardware for Motor and Motion Control.” Analog Devices, Inc.

2	“ros2/ros2_documentation.” GitHub, Inc.

3“Understanding ROS Nodes.” ROS.org.

4“Services.” ROS.org.

5“ROS-Industrial.” ROS.org.

6“Industrial Communication Protocols and Interfaces for Motion Control
	Applications.” Analog Devices, Inc.

What’s Next?
	X Watch out for a deep-dive article on ADI Trinamic motor controller ROS1 driver
	X Watch out for a future article on ROS2 for ADI Trinamic motor controller
	X Download the ADI Trinamic motor controller ROS1 and ROS2 driver
	X Purchase ADI Trinamic motors and motor controller evaluation boards

https://www.analog.com
https://www.analog.com/en/resources/analog-dialogue/articles/mastering-adi-trinamic-motor-controllers.html
https://www.analog.com/en/resources/analog-dialogue/articles/mastering-adi-trinamic-motor-controllers.html
https://www.analog.com/robotics
https://www.analog.com/en/design-center/landing-pages/001/trinamic-support.html
https://github.com/ros2/ros2_documentation/tree/foxy
http://wiki.ros.org/ROS/Tutorials/UnderstandingNodes
http://wiki.ros.org/Services
https://rosindustrial.org/
https://www.analog.com/en/products/landing-pages/001/industrial-communication-protocols-interfaces.html
https://www.analog.com/en/products/landing-pages/001/industrial-communication-protocols-interfaces.html
https://github.com/analogdevicesinc/tmcl_ros
https://github.com/analogdevicesinc/tmcl_ros2
https://www.analog.com/en/parametricsearch/13099#/
https://www.analog.com/en/parametricsearch/13094#/

VISIT ANALOG.COMFor regional headquarters, sales, and distributors or
to contact customer service and technical support,
visit analog.com/contact.

Ask our ADI technology experts tough questions, browse
FAQs, or join a conversation at the EngineerZone Online
Support Community. Visit ez.analog.com.

©2024 Analog Devices, Inc. All rights reserved.
Trademarks and registered trademarks are
the property of their respective owners.

About the Author
Krizelle Paulene Apostol is a software systems engineer and part of the Philippine Development Center working with the Intelligent
Motion and Robotics Group at Analog Devices. She joined ADI in Cavite, Philippines in December 2019. She graduated from FAITH
Colleges with a bachelor’s degree in computer engineering. She has been involved in various projects that focus on ROS, Gazebo
simulations, firmware development, communication protocols, and algorithm development.

About the Author
Jamila “Jam” Aria Macagba is a senior software systems engineer and part of the Philippine Development Center working with
the Intelligent Motion and Robotics Group at Analog Devices. She joined ADI in Cavite, Philippines in July 2018 and graduated from
University of the Philippines Los Baños with a bachelor’s degree in electrical engineering. Her focus is on ROS driver development
and integration in ROS systems.

About the Author
Maggie is a software systems design engineering manager and part of the Philippine Development Center working with the Industrial
Motion and Robotics Group at Analog Devices, Inc. She joined ADI in Cavite, Philippines in April 2019. She graduated from University of
the Philippines in Los Baños, Laguna with a bachelor’s degree in computer science. She currently leads a group of engineers in the
Philippines site supporting projects on industrial robotics. Maggie previously worked as an application specialist at Hewlett-Packard
from 2009 to 2010; senior software engineer at Canon Information Technologies Phils., Inc. from 2010 to 2013; firmware development
engineer at Ionics EMS, Inc. from 2013 to 2015; and senior embedded software engineer at Continental Automotive Singapore from
2015 to 2019.

https://www.analog.com
https://www.analog.com/contact
https://ez.analog.com
https://www.analog.com

	Button 13:
	Page 1:

	Button 12:
	Page 1:

	Button 11:
	Page 1:

	Button 10:
	Page 1:

	Button 9:
	Page 1:

	Button 8:
	Page 1:

