

VISIT ANALOG.COM

Vol 58, No 1—March 2024

Mastering ADI Trinamic
Motor Controllers with the
ROS1 Driver
Krizelle Paulene Apostol , Software Systems Engineer,
Jamila Macagba , Senior Software Systems Engineer, and
Maggie Maralit , Software Systems Design Engineering Manager

Abstract
In the article, “Enabling Robot Operating Systems—Introducing the Motor
Controller ROS1 Driver”, an overview of a new ADI TrinamicTM motor controller
(TMC) driver was discussed along with ways to integrate the device within a
robot operating system (ROS) ecosystem. The TMC ROS1 driver facilitates seam-
less communication between the TMC’s driver layer and the application layer
within the ROS framework. This advantage applies to the range of TMC boards it
supports. This article provides an in-depth exploration of the TMC ROS1 driver’s
capabilities, including motor control, information retrieval, command execu-
tion, parameter acquisition, and support for multiple setups. It also provides an
overview of integrating these motor controllers in embedded systems and appli-
cations, thereby utilizing the benefits offered by the ROS framework.

ADI Trinamic Motor Controller ROS1 Driver
ROS is a robotics middleware containing a set of software libraries and powerful devel-
oper tools from drivers to state-of-the-art algorithms—upon which robotic systems
or applications can be developed. ADI Trinamic motor controllers enable a new class
of intelligent actuators and as ROS became more and more prevalent, especially in
robotics, additional module support such as ROS drivers were developed to extend
usability for manufacturing and industrial automation applications. Analog Devices’
TMC ROS1 driver provides a functionality similar to the company’s Triaminic Motor
Control Language Integrated Development Environment (TMCL-IDE), but with a key
distinction: it allows nodes within a ROS-capable system to use TMCs without the
need for additional driver installations. Moreover, adi_tmcl incorporates its own TMCL
protocol interpreter, enabling it to interpret user-requested commands that comply
with the TMCL standard. The final layer, tmcl_ros_node, establishes a direct interface
with the ROS system, offering features like publishers, subscribers, and services. Each
of these functionalities can be customized using a set of parameters, which will be
discussed in detail in the following sections.

Features

1. Support for Variety of TMC Boards
TMC ROS driver or adi_tmcl was designed to support all commercially available
TMCs that adhere to the TMCL protocol. As of the publication of this article, it
currently supports the CAN interface (specifically SocketCAN). However, there are
ongoing developments to include support for other interfaces in the near future.
These TMCs encompass the ADI Trinamic PANdriveTM smart motors and modules,
which can further be categorized for stepper motors and brushless DC (BLDC)
motors. The use of ROS parameters enables adi_tmcl to seamlessly support dif-
ferent TMC boards. This allows the configuration of the tmcl_ros_node without
the need to rebuild the entire package.

Within the adi_tmcl/config directory, each ADI Trinamic motor controller module
(TMCM) is associated with two YAML files. These files, written in a human-read-
able data serialization language, contain ROS parameters and should be loaded
during execution:

 X adi_tmcl/config/autogenerated/TMCM-XXXX.yaml

This YAML file is autogenerated and contains module-specific param-
eters and is not recommended to be modified as it may cause the node to
perform differently.

 X adi_tmcl/config/TMCM-XXXX_Ext.yaml

This YAML file contains all parameters that users can modify to (1) commun-
cate with the board (for example, interface name), (2) enable control of motors,
and (3) change ROS topic names.

As an example, if you want to use TMCM-1636 (Figure 3), simply launch the code
shown in Figure 1.

Terminal

Launch using TMCM-1636
~/catkin_ws $ roslaunch adi_tmcl tmcm_1636.launch
To exit the node, press Ctrl + C

Figure 1. Launching TMCM-1636.

https://www.analog.com
https://www.analog.com
https://ros.org/
https://www.analog.com/en/design-center/landing-pages/001/trinamic-support.html
https://www.analog.com/en/design-center/evaluation-hardware-and-software/motor-motion-control-software/tmcl-ide.html
https://www.analog.com/en/product-category/pandrive-smart-motors.html
https://www.analog.com/en/product-category/embedded-motion-control-modules.html
https://www.analog.com/en/products/tmcm-1636.html
https://ez.analog.com
https://www.youtube.com/user/AnalogDevicesInc
https://twitter.com/adi_news
https://www.linkedin.com/company/analog-devices
https://www.facebook.com/AnalogDevicesInc
https://flipboard.com/@AnalogDevices

2 MASTeRING ADI TRINAMIC MOTOR CONTROLLeRS wITh The ROS1 DRIVeR

Where the adi_tmcl/launch/tmcm_1636.launch loads the YAML files dedicated for
TMCM-1636.

Tmcm_1636.launch

[…]
 <!—Launches node
 <node name="tmcl_ros_node" pkg="adi_tmcl" type="tmcl_ros_node"
 output="screen" required="true">
 <!-- Autogenerated YAML file containing TMCM-1636
 configurations -->
 <rosparam command="load" file="$(find adi_tmcl)
 /config/autogenerated/TMCM-1636.yaml" />
 <!-- User-generated YAML file containing ROS-specific parameters
 as well as user-set values for TMCM-1636 configurations -->
 <rosparam command="load" file="$(find adi_tmcl)/config/
 TMCM-1636_Ext.yaml" />
</node>
[…]

Figure 2. Code snippet to run TMC ROS driver with TMCM-1636.

V+ GND W

External 24 V
Power Supply

V U

3-Pin Motor
Connector

CAN-USB
(With SocketCAN) USBCAN

5-Pin Motor Connector (Encoder)

5-Pin Motor Connector (Hall)

Fgure 3. (Top) TMCM-1636 hardware connection diagram; (bottom) reference image for
actual setup.

To use TMCM-1260 (Figure 6), launch the following:

Terminal

Launch using TMCM-1260
~/catkin_ws $ roslaunch adi_tmcl tmcm_1260.launch
To exit the node, press Ctrl + C

Figure 4. Command to launch TMC ROS driver with TMCM-1260.

Where the adi_tmcl/launch/tmcm_1260.launch loads the YAML files dedicated for
TMCM-1260.

tmcm_1260.launch

[…]
 <!--Launches node -->
 <node name="tmcl_ros_node" pkg="adi_tmcl" type="tmcl_ros_node"
 output="screen" required="true">
 <!-- Autogenerated YAML file containing TMCM 1260
 configurations -->
 <rosparam command="load" file="$(find adi_tmcl)/config/
 autogenerated/TMCM-1260.yaml" />
 <!-- User-generated YAML file containing ROSspecific parameters
 as well as user-set values for TMCM-1260 configurations -->
 <rosparam command="load" file="$(find adi_tmcl)/config/
 TMCM-1260_Ext.yaml" />
</node>
[…]

Figure 5. Code snippet to run TMC ROS driver with TMCM-1260.

1

14

14

5

1

8

V+GND

CAN-USB
(With SocketCAN)

USB

4-Pin Motor
Connector

External 24 V
Power Supply

Figure 6. (Top) TMCM-1260 hardware connection diagram; (bottom) reference image for
actual setup.

The launch directory includes all the supported TMC boards and can be
viewed here.

https://www.analog.com/en/products/tmcm-1260.html
https://github.com/analogdevicesinc/tmcl_ros/tree/noetic

VISIT ANALOG.COM 3

2.	One-Time	Configuration	of	TMC	Modules	Using	
TMCL-IDE

Before using the TMC board via ROS, the board needs to be calibrated with the
motors being used. All calibration should be done using the TMCL-IDE and should
be stored in the EEPROM (otherwise the motors may not be controlled correctly).

 X For BLDC motor modules (for example, TMCM-1636)

 ■ For a run-through/tutorial of how the motor calibration is done in the
TMCL-IDE via its Wizard Pool feature, check this tutorial.

 ■ For a run-through/tutorial of how the proportional-integral (PI) tuning is
done in the TMCL-IDE via its PI tuning feature, check this tutorial.

 X For stepper motor modules (for example, TMCM-1260)

 ■ For a run-through/tutorial of how the calibration is done in the TMCL-IDE
via its Wizard Pool feature, check this tutorial.

After calibration and tuning, make sure to store all parameters in the board’s
EEPROM. This can be done via (1) store parameter, (2) STAP command, and/or
(3) creating and uploading a TMCL program and enabling auto start mode. Some
boards only have a few of these options supported.

After the configuration/tuning of the TMC and motor, the design of the TMC ROS
driver was simplified to control the motors based on the one-time configuration
using TMCL-IDE.

3. Move/Stop Motor
The TMC ROS driver moves/stops the motor by publishing in either of the
following topics:

 X /cmd_vel (geometry_msgs/Twist)—Sets the motor’s velocity
 X /cmd_abspos (std_msgs/Int32)—Sets the motor’s absolute position
 X /cmd_relpos (std_msgs/Int32)—Sets the motor’s relative position
 X /cmd_trq (std_msgs/Int32)—Sets the motor’s torque

Note: There are separate topics for different motors in a multiaxis TMC setup.

Users can connect their ROS systems to publish to these specific topics, enabling
them to control the movement of the motors. The choice of topic depends on
the particular application, TMC settings, and the type of motors being used. For
instance, in the case of a wheeled robot, the user might choose to set the velocity,
while for a gripper, setting the position would be more appropriate.

As an illustrative example, consider the script adi_tmcl/scripts/fake_cmd_vel.sh.
This straightforward script orchestrates the rotation of a motor in both clock-
wise and counter-clockwise directions, progressively increasing the velocity. To
execute this, follow the commands shown in Figure 7.

Terminal #1

~ $ cd ~/catkin_ws
~/catkin_ws $ source /opt/ros/noetic/setup.bash
~/catkin_ws $ source devel/setup.bash
~/catkin_ws $ roslaunch adi_tmcl tmcm_1260.launch
 # or $ roslaunch adi_tmcl tmcm_1636.launch

Terminal #2

~ $ cd ~/catkin_ws
~/catkin_ws $ source /opt/ros/noetic/setup.bash
~/catkin_ws $ source devel/setup.bash
~/catkin_ws $ rostopic echo /tmc_info_0

Terminal #3

~ $ cd ~/catkin_ws/src/adi_tmcl/scripts
~/catkin_ws/src/adi_tmcl/scripts $ sudo chmod +x fake_cmd_vel.sh
~/catkin_ws/src/adi_tmcl/scripts $./fake_cmd_vel.sh

Figure 7. Commands to test the velocity control of TMC ROS driver.

Notes:

 X Terminals 2 and 3 are best viewed side-by-side.
 X You may Ctrl-C the command in Terminal 1 and then Terminal 2 once

you’re done.
 X The command in Terminal 3 auto stops by itself.

To verify that the motor moved, Figure 8 shows a graph of the actual velocity
readback from the TMC (/tmc_info_0).

10.0

–10.0

–7.5

2.5

7.5

–5900–5920–5960 –5940

–5.0

–2.5

0.0

5.0

/tmc_info_0/velocity

–5880

–9 m/s

–6 m/s

–3 m/s

9 m/s

6 m/s

3 m/s

Figure 8. Actual velocity of the motor in m/s as plotted using RQT.

4.	Retrieval	of	TMC/Motor	Information
The system can retrieve information from the TMC ROS driver by subscribing to
the following topic:

 X /tmc_info (adi_tmcl/TmcInfo)—Gives the voltage, TMC status,
actual velocity, actual position, and actual torque information

Note: There are separate topics for different motors in a multiaxis TMC setup.

https://www.analog.com
https://www.youtube.com/watch?v=MASVD_2tNuo
https://www.youtube.com/watch?v=rfZAs-QdYlQ
https://www.youtube.com/watch?v=l6r63Q7Yr58o

4 MASTeRING ADI TRINAMIC MOTOR CONTROLLeRS wITh The ROS1 DRIVeR

Users can link their ROS systems to subscribe to these designated topics. This
allows them to monitor and potentially take action based on the parameter values.
For instance, in application-specific scenarios, one might choose to halt the sys-
tem upon detecting errors in the TMC status or execute a preprogrammed action
once the motor reaches a specific position.

As an example, adi_tmcl/scripts/fake_cmd_pos.sh is a simple script that will
rotate a motor clockwise and then counter-clockwise with increasing magnitude
of position. Execute the commands shown in Figure 9.

Terminal #1

~ $ cd ~/catkin_ws
~/catkin_ws $ source /opt/ros/noetic/setup.bash
~/catkin_ws $ source devel/setup.bash
~/catkin_ws $ roslaunch adi_tmcl tmcm_1260.launch
 # or $ roslaunch adi_tmcl tmcm_1636.launch

Terminal #2

~ $ cd ~/catkin_ws
~/catkin_ws $ source /opt/ros/noetic/setup.bash
~/catkin_ws $ source devel/setup.bash
~/catkin_ws $ rostopic echo /tmc_info_0

Terminal #3

~ $ cd ~/catkin_ws/src/adi_tmcl/scripts
~/catkin_ws/src/adi_tmcl/scripts $ sudo chmod +x fake_cmd_pos.sh
~/catkin_ws/src/adi_tmcl/scripts $./fake_cmd_pos.sh

Figure 9. Commands to test the position control of TMC ROS driver.

To verify that the motor moved, Figure 10 shows a graph of the actual position
readback from the TMC (/tmc_info_0)

1200

–400

400

800

–460–480–520 –500

–200

0

200

600

/tmc_info_0/position

–440

1000
+360° –360°

+360° –360°

+360° –360°

Figure 10. Actual position of the motor in degrees as plotted using RQT.

5. Execute Custom TMC Commands
The system can access and adjust TMC parameters by executing the
following feature:

 X tmcl_custom_cmd (adi_tmcl/TmcCustomCmd)—Gets/sets values of
the TMC’s axis parameters APs and global parameters (GPs)

Users have the option to integrate this service into their ROS systems to fulfill
specific application requirements. This functionality empowers users to config-
ure the TMC board directly from the ROS driver. For instance, a user may choose
to set the axis parameter (SAP) for maximum current, thereby adjusting the
permissible absolute current levels. However, users must possess a thorough
understanding of the parameters they are modifying through this feature, as
incorrect settings could potentially lead to TMC ROS driver failure. For this rea-
son, it is strongly advised to perform any configurations through TMCL-IDE.
Figure 11 provides an example of calling this service, showcasing a get axis
parameter (GAP) operation for DrvStatusFlags with instruction type 208.

Figure 11. Triggered tmcl_custom_cmd service via RQT.

6.	Access	All	Axis	Parameter	Values
The system can access values of the TMC axis parameters via the following:

 X tmcl_gap (adi_tmcl/TmcGapGgpAll)—Gets values of all TMC’s axis
parameters (APs) of specified motor/axis

Users can integrate their ROS systems with this capability to meet their applica-
tion-specific needs. For instance, this service can capture the current settings
and status of the TMC board, including APs such as encoder steps, PI tuning, com-
mutation mode, etc.).

Figure 12 shows a partial output example. By analyzing this result, users
can confirm whether the one-time configuration was correctly saved in the
board’s EEPROM.

VISIT ANALOG.COM 5

Figure 12. Triggered tmcl_gap_all service via RQT.

7.	 Access	All	Global	Parameter	Values
The system can access the values of the TMC global parameters through
the following:

 X tmcl_ggp (adi_tmcl/TmcGapGgpAll)—Gets values of all the TMC’s
global parameters (GPs)

This capability enables retrieval of the current configurations and status of the
TMC board. Some of the GPs that can be accessed include CAN bit rate, serial baud
rate, auto start mode and others.

Figure 13 displays a portion of the output obtained after executing this service.
This result allows users to confirm whether the one-time configuration has been
accurately stored in the board’s EEPROM.

Figure 13. Triggered tmcl_ggp_all via RQT.

8.	Multiple	TMC	Board	Setup
For bigger systems that may require multiple TMC boards (for example, a robotic
arm), the TMC ROS driver allows multiple device setups.

a. Multiple TMC Boards in Multiple CAN Channels

As illustrated in Figure 14, when a user has one CAN-USB per TMC board,
namespaces are added to differentiate the instance of each node. In this specific
use case, the comm_interface_name parameter needs to be updated accord-
ingly to ensure correct communication with the board.

amd64
UBUNTU 20.04

Other ROS
Nodes

(For Example,
Navigation)

USBcan0
CAN-USB

(With SocketCAN)

Board A
Motor A

Namespace: tmcm1

/tmcm1/tmcl_ros_node /tmcm1/cmd_abspos

std_msgs/Int32

USB

Board B
Motor B

Namespace: tmcm2

/tmcm2/tmcl_ros_node /tmcm2/cmd_abspos

std_msgs/Int32

USB

Board C
Motor C

Namespace: tmcm3

/tmcm3/tmcl_ros_node /tmcm3/cmd_abspos

std_msgs/Int32

ROS
Mastercan1

CAN-USB
(With SocketCAN)

can2
CAN-USB

(With SocketCAN)

Figure 14. Sample diagram of multiple TMC boards in multiple CAN channels.

https://www.analog.com

6 MASTeRING ADI TRINAMIC MOTOR CONTROLLeRS wITh The ROS1 DRIVeR

amd64
UBUNTU 20.04

Other ROS
Nodes

(For Example,
Navigation)

Namespace: tmcm1

/tmcm1/tmcl_ros_node /tmcm1/cmd_abspos

std_msgs/Int32

USBcan0
CAN-USB

(With SocketCAN)

Board B
Motor B

Namespace: tmcm2

/tmcm2/tmcl_ros_node /tmcm2/cmd_abspos

std_msgs/Int32

Namespace: tmcm3

/tmcm3/tmcl_ros_node /tmcm3/cmd_abspos

std_msgs/Int32

ROS
Master

Board A
Motor A

Board C
Motor C

Figure 16. Sample diagram of multiple TMC boards in single CAN channels.

The code in Figure 15 is a sample launch file for setting up this use case. With this
example, Motor A can be controlled by publishing to /tmcm1/cmd_abspos, Motor
B by publishing to /tmcm2/cmd_abspos, and Motor C by publishing to /tmcm3/
cmd_abspos.

b. Multiple TMC Boards in a Single CAN Channel

Another setup that is supported by the TMC ROS driver is multiple TMC boards
in a single CAN channel as illustrated in Figure 16. Much like the described sup-
port for multiple TMC boards, namespaces have been introduced to distinguish
each node instance. Keep the comm_interface_name consistent for all boards.
Adjust comm_tx_id and comm_rx_id to ensure accurate communication with
each board.

Figure 17 shows a sample launch file for setting up this use case. With this
example, Motor A can be controlled by publishing to /tmcm1/cmd_abspos, Motor
B by publishing to /tmcm2/cmd_abspos, and Motor C by publishing to /tmcm3/
cmd_abspos.

9.	Easy	Integration	into	ROS	Systems/Applications
With the message-passing system that ROS offers, bigger systems can lever-
age an effortless interchange of nodes (for example, drivers, algorithms). The
development of the TMC ROS driver extends this benefit to TMC boards, allowing
seamless integration into ROS systems/applications.

Figure 15. Code snippet to run multiple TMC ROS drivers using multiple CAN channels.

multiple_tmcm_multiple_can_channel.launch

[…]
<group ns="tmcm1">
 <node name="tmcl_ros_node" pkg="adi_tmcl" type="tmcl_ros_node" output="screen" required="true">
 <rosparam command="load" file="$(find adi_tmcl)/config/autogenerated/TMCM-1260.yaml"/>
 <rosparam command="load" file="$(find adi_tmcl)/config/TMCM-1260_Ext.yaml" />
 <param name="comm_interface_name" type="string" value="can0" />
 </node>
</group>
<group ns="tmcm2">
 <node name="tmcl_ros_node" pkg="adi_tmcl" type="tmcl_ros_node" output="screen" required="true">
 <rosparam command="load" file="$(find adi_tmcl)/config/autogenerated/TMCM-1260.yaml"/>
 <rosparam command="load" file="$(find adi_tmcl)/config/TMCM-1260_Ext.yaml" />
 <param name="comm_interface_name" type="string" value="can1"/>
 </node>
</group>
<group ns="tmcm3">
 <node name="tmcl_ros_node" pkg="adi_tmcl" type="tmcl_ros_node" output="screen" required="true">
 <rosparam command="load" file="$(find adi_tmcl)/config/autogenerated/TMCM-1260.yaml"/>
 <rosparam command="load" file="$(find adi_tmcl)/config/TMCM-1260_Ext.yaml" />
 <param name="comm_interface_name" type="string" value="can2"/>
 </node>
</group>
[…]

VISIT ANALOG.COM 7

a. Integration into AGVs/AMRs

Figure 18 illustrates how a navigation_node may control a mobile robot by
sending /cmd_vel with geometry_msg/Twist format. The motor_control-
ler will then send feedback through /wheel_velocity with geometry_msg/
Twist format, so that the navigation_node can recalibrate accordingly.

motor_controller navigation_node

geometry_msgs/Twist

Other Sensor
Data

/wheel_velocity /cmd_vel

geometry_msgs/Twist

/goal

Figure 18. Simplified architecture of an AGV/AMR.

By knowing where the navigation_node publishes and subscribes, the motor_
controller can easily be changed by the tmcl_ros_node (Figure 19). Similar to the
TMC information retrieval feature, adi_tmcl publishes real-time information on
the wheel velocity and the wheel_velocity_node transforms the wheel velocity
information from adi_tmcl/TmcInfo to geometry_msg/Twist.
Since the new architecture and its integrated TMC board conform with the correct
data formats, the mobile robot is expected to work the same.

b. Integration into Robotic Arms

To integrate TMC boards into a pick and place application with a robotic arm,
Figure 20 illustrates how multiple motors are needed to control the arm. Similar to

navigation_node

geometry_msgs/Twist

Other Sensor
Data

/wheel_velocity /cmd_vel

geometry_msgs/Twist

/goal

adi_tmcl

/tmc_infotmcl_ros_node

adi_tmcl/TmcInfo

Figure 19. Simplified architecture of AGV/AMR with a TMC ROS driver.

Figure 17. Code snippet to run multiple TMC ROS drivers using a single CAN channel.

multiple_tmcm_single_can_channel.launch

[…]
<group ns="tmcm1">
 <node name= "tmcl_ros_node" pkg="adi_tmcl" type="tmcl_ros_node" output="screen" required="true">
 <rosparam command="load" file="$(find adi_tmcl)/config/autogenerated/TMCM-1260.yaml" />
 <rosparam command="load" file="$(find adi_tmcl)/config/TMCM-1260_Ext.yaml" />
 <param name="comm_tx_id" type="int" value="1"/>
 <param name="comm_rx_id" type="int" value="2"/>
 </node>
</group>
<group ns="tmcm2">
 <node name="tmcl_ros_node" pkg="adi_tmcl" type="tmcl_ros_node" output="screen" required="true">
 <rosparam command="load" file="$(find adi_tmcl)/config/autogenerated/TMCM-1260.yaml" />
 <rosparam command="load" file="$(find adi_tmcl)/config/TMCM-1260_Ext.yaml" />
 <param name="comm_tx_id" type="int" value="3"/>
 <param name="comm_rx_id" type="int" value="4"/>
 </node>
</group>
<group ns="tmcm3">
 <node name="tmcl_ros_node" pkg="adi_tmcl" type="tmcl_ros_node" output="screen" required="true">
 <rosparam command="load" file="$(find adi_tmcl)/config/autogenerated/TMCM-1260.yaml" />
 <rosparam command="load" file="$(find adi_tmcl)/config/TMCM-1260_Ext.yaml" />
 <param name="comm_tx_id" type="int" value="5"/>
 <param name="comm_rx_id" type="int" value="6"/>
 </node>
</group>
[…]

https://www.analog.com

8 MASTeRING ADI TRINAMIC MOTOR CONTROLLeRS wITh The ROS1 DRIVeR

/goal

Other Sensor
Data

pick_and_place_node

Link
JointLink

Link

Joint

motor_controller_1 /feedback_1

motor_controller_2 /feedback_2

motor_controller_3 /feedback_3

/cmd_pos_1

/cmd_pos_3

/cmd_pos_2

Link
JointLink

Link

Joint

motor1/tmcl_ros_node

motor2/tmcl_ros_node

motor3/tmcl_ros_node

/motor1/tmc_info

/motor2/tmc_info

/motor3/tmc_info

/goal

Other Sensor
Data

pick_and_place_node

/motor1/cmd_pos

/motor3/cmd_pos

/motor2/cmd_pos

Figure 20. (Top) Robotic arm with generic motor controllers; (bottom) robotic arm with TMC boards.

the previous use case, the user needs to ensure that the pick_and_place_node
will subscribe/publish the expected data format.

A step-by-step guide to integrating TMC boards into ROS systems and how to
leverage the features discussed can be found here.

Conclusion
ADI’s TMC ROS1 driver facilitates seamless communication between the underlying
TMC driver layer and the application layer within a ROS-managed system. This
advantage applies to a range of supported TMC boards.

In this article, we conducted an in-depth exploration of the features offered by the
ADI Trinamic motor controller ROS1 driver, including:

 X Motor movement control
 X Retrieving motor and controller information
 X Executing TMC commands
 X Obtaining axis and global parameter values
 X Supporting setups with multiple TMC boards

All these capabilities are made possible by leveraging the ROS’ message-passing
system, enabling effortless integration of these motor controllers into ROS-based
systems and applications.

For more information, visit ADI’s Robotics page.

What’s Next?
 X Check out the article “Enabling Robot Operating Systems--Introducing the

ADI Trinamic Motor Controller ROS1 Driver”
 X Watch out for a future article on ROS2 for ADI Trinamic motor controller!
 X Download the Trinamic Motor Controller ROS1 Driver
 X Download the Trinamic Motor Controller ROS2 Driver
 X Purchase ADI Trinamic motor controller evaluation boards here
 X Purchase ADI Trinamic motors here

https://github.com/analogdevicesinc/tmcl_ros/blob/noetic/README.md
https://www.analog.com/robotics
https://github.com/analogdevicesinc/tmcl_ros
https://github.com/analogdevicesinc/tmcl_ros2
https://www.analog.com/en/parametricsearch/13094#/
https://www.analog.com/en/parametricsearch/13099#/

VISIT ANALOG.COMFor regional headquarters, sales, and distributors or
to contact customer service and technical support,
visit analog.com/contact.

Ask our ADI technology experts tough questions, browse
FAQs, or join a conversation at the engineerZone Online
Support Community. Visit ez.analog.com.

©2024 Analog Devices, Inc. All rights reserved.
Trademarks and registered trademarks are
the property of their respective owners.

About the Author
Krizelle Paulene Apostol is a software systems engineer and part of the Philippine Development Center working within the Sensing,
Motion, and Robotics Group at Analog Devices. She joined ADI in Cavite, Philippines in December 2019. She graduated from FAITH
Colleges with a bachelor’s degree in computer engineering. She has been involved in various projects that focus on ROS, Gazebo
simulations, firmware development, communication protocols, and algorithm development.

About the Author
Jamila “Jam” Aria Macagba is a senior software systems engineer and part of the Philippine Development Center working within
the Sensing, Motion, and Robotics Group at Analog Devices. She joined ADI in Cavite, Philippines in July 2018 and graduated from
University of the Philippines Los Baños, with a bachelor’s degree in electrical engineering. Her focus is on ROS driver development
and integration in ROS systems.

About the Author
Maggie Maralit is a software systems design engineering manager and part of the Philippine Development Center working within the
Sensing, Motion, and Robotics Group at Analog Devices, Inc. She joined ADI in Cavite, Philippines in April 2019. She graduated from
University of the Philippines in Los Baños, Laguna with a bachelor’s degree in computer science. She currently leads a group of
engineers in the Philippines site supporting projects on industrial robotics. Maggie previously worked as an application specialist at
Hewlett-Packard from 2009 to 2010; senior software engineer at Canon Information Technologies Phils., Inc. from 2010 to 2013; firm-
ware development engineer at Ionics EMS, Inc. from 2013 to 2015; and senior embedded software engineer at Continental Automotive
Singapore from 2015 to 2019.

https://www.analog.com
https://www.analog.com/contact
https://ez.analog.com
https://www.analog.com

	Button 13:
	Page 1:

	Button 12:
	Page 1:

	Button 11:
	Page 1:

	Button 10:
	Page 1:

	Button 9:
	Page 1:

	Button 8:
	Page 1:

