
         

VISIT ANALOG.COM

Vol 58, No 3—July 2024

A Deep Dive into the
CANopen Protocol for
Low Power, Industrial
Motor Control
Atul Kumar, Applications Engineer

Abstract
A robust communication protocol and interface play a substantial role in
industrial motor control applications. Where multiple processor elements are
required to communicate continuously to accomplish complex tasks, CANopen®
has emerged as the popular technique among engineers in industrial drive
applications due to features such as easy integration. It is highly configurable,
providing efficient, and reliable real-time data exchange. This article provides
an in-depth understanding of CANopen from the perspective of low power
motor control applications.

Background of Controller Area Network
Developed in 1983 by Robert Bosch Gmbh, Controller Area Network (CAN) is a highly
robust communications protocol and interface. It was created to address the limi-
tations of conventional serial communication networks, like RS232, which were
unable to facilitate real-time communication between multiple controllers. The
automotive industry was the first to adopt CAN, as it required continuous and
simultaneous data transmission for multiple sensors. CAN allows multiple nodes
to communicate with each other using small messages, making it ideal for auto-
motive applications.

Over time, CAN gained popularity in various industries due to its proven robust-
ness and benefits. However, integrating multiple devices from different vendors
into a single system using the CAN protocol proved challenging and sometimes
impossible due to proprietary coding rules. To overcome this limitation, interna-
tional users of CAN in Automation (CiA) and manufacturers associations developed
a high layer protocol called CANopen.

In the following section, we will explore the CANopen protocol architecture and its
application in controlling a multi-axis motor driver. This article will delve into the
intricacies of this high layer communication protocol and its impact on the motor
and motion control domain. By analyzing a real-time communication log of ADI
Trinamic™ TMCM-6212 multi-axis motor controller/driver module with the QSH4218-
35-10-027 stepper motor we aim to provide readers with an understanding of the
CANopen protocol. Specifically, we will focus on the network management (NMT)
state and the client-server-based CANopen protocol. Additionally, case studies will
be presented to demonstrate how to decipher the communication log and deter-
mine the status of the drive.

CANopen Architecture
This section of the article explains various application principles of the CANopen
protocol, including NMT and SDO (service data object).

Network Management: NMT is a crucial communication principle in CANopen that
every CANopen-compatible device must adhere to. It operates as a state machine
and plays a vital role in coordinating applications within the CANopen framework.

Network Management State Machine Architecture: The NMT state machine is
illustrated in Figure 1, and is composed of three distinct states as detailed in
the following:

	X Initialization state
	X Preoperational state
	X Operational state

https://www.analog.com
https://www.analog.com
https://www.analog.com/en/products/tmcm-6212.html
https://www.analog.com/en/products/qsh4218.html
https://www.analog.com/en/products/qsh4218.html
https://ez.analog.com
https://www.youtube.com/user/AnalogDevicesInc
https://twitter.com/adi_news
https://www.linkedin.com/company/analog-devices
https://www.facebook.com/AnalogDevicesInc
https://flipboard.com/@AnalogDevices

2  A Deep Dive into the CANopen Protocol for Low Power, Industrial Motor Control

Initialization

ID/Boot-Up

Pre-Operational

Operational

Stopped

Figure 1. An NMT state machine.

The client node undertakes the pivotal role of overseeing the communication
status of associated server nodes across different operational states. This is
achieved through the implementation of the NMT mechanism. Two distinct meth-
odologies, namely heartbeat and node guarding, enable the client node to assess
the communication integrity of the server nodes. In the case of the TMCM-6212 the
heartbeat technique is employed to validate proper communication. Each node
emits a heartbeat signal at a user-configurable cyclic time interval, measured in
milliseconds, utilizing the object 1017h. This ensures that all nodes are active and
alive for communication.

Table 1. State Configuration in NMT Communication

Initializing Pre-Operational Operational Stopped

Boot-Up •

SDO • •

Emergency • •

Sync/Time • •

Heartbeat/Node-Guard • • •

PDO (Process Data Object) •

Table 1 shows the combination of all the communication objects used in differ-
ent communication states. When the device enters an initialization state after
power-on or reset, it generates a boot-up message. The device then transitions
to a preoperational state, where it is ready for the desired operation. In the pre-
operational state, all the nodes in the network can transfer all the objects related
to SDO, heartbeat/node guarding, emergency, and time/sync. In the operational
state, the PDO objects can be mapped in addition to all the objects available in the
preoperational state. Lastly, in the stopped state the device disables the commu-
nication of all the SDO and PDO objects, allowing only NMT commands.

Service Data Object: The SDO communication protocol is mainly used in the
preoperational state of the NMT state machine. It operates in a client-server
configuration, in which the client can access all the objects available in the

object dictionary of all connected servers (nodes). In this protocol, the cli-
ent always initiates a read/write transaction with the server and the server
acknowledges the completion of the task. This process ensures that every
transaction in SDO is acknowledged.

Figure 2 depicts a client-server-based configuration for the SDO protocol in a
multinode network. Each node is assigned a channel through which they can com-
municate with the client. In this case, the Trinamic TMCM-6212 sextuple stepper
motor driver/controller acts as a server, and the connected PC serves as the cli-
ent, initiating the read/write transaction with the specific node, that is, NODE-1 in
this case. While all nodes receive the SDO client message, only the intended node
will respond, while the other servers ignore the client request.

Node-N

SDO Server
580h + Node-ID

SDO Client
600h + Node-ID

58
1h

 =
 1

+
58

0h

60
1h

 =
 1

+
60

0h

Node-3

Node-2

TMCM-6212
Node-1

Client Response

Server Response

Figure 2. A multinode SDO configuration.

Service Data Object Datagram
Figure 2 illustrates the comprehensive structure of the SDO datagram. The SDO
header consists of the COB-ID (connection object ID), which is a unique num-
ber assigned for specific tasks such as read and write functionalities. Therefore,
two COB-IDs are required in SDO communication. The first COB-ID represents the
NODE-ID+ function code for the client’s upload/download request, which is 600h

+ NODE-ID. The second COB-ID, 580h+ NODE-ID, is used for the server’s response.

Specifier

COB-ID 1-Byte

1-Bit 1-Bit

CCS/SCS Toggle Do Not
Contain Data

SDO Datagram

Specifier Bit Datagram

Type of
Transfer

Data Size
Indicated

1-Bit 1-Bit 1-Bit 1-Bit 1-Bit 1-Bit
7 6 5 4 3 2 1 0

1-Byte 1-Byte 1-Byte 1-Byte 1-Byte 1-Byte 1-Byte

Index
Sub-Index Data

Figure 3. An SDO datagram structure.

The first byte in an SDO message, known as the specifier, plays a crucial role in
determining the nature of the message. It indicates whether the client intends
to write (download) or read (upload) the data and also signifies any errors in the
transaction through abort messages. The specifier byte is divided into eight bits,
which are shown in Figure 3. The three bits (7-5) known as the client command
specifier (CCS) provide key information about the nature of the message. The
client command specifier has different configurations depending on the cli-
ent’s operation, such as read, write, segmented/expedited transfers, or errors in
transactions. In the server’s response, the three bits of the specifier (SCS, sever
command specifier) determine the success of the transaction. Table 2 shows the

VISIT ANALOG.COM  3

various combinations of CCS and SCS bits for different operations. Bit 4 in the speci-
fier datagram is a toggle bit used in data transfers exceeding four bytes. Bits 3-2 do
not contain any data and are valid only if bits 0-1 are set. Bit 1 determines the type of
message transferred through the SDO channel, indicating whether it is a segmented
or expedited transfer. In the SDO datagram, as shown in Figure 3, the last four bytes
are dedicated to the data that needs to be transferred. I If the data exceeds four
bytes, it will be sent in a segmented manner. Alternatively, if the SDO datagram con-
tains the complete data, it is considered an expedited transfer. Therefore, if bit 1
is high it indicates an expedited transfer, while a low bit indicates a segmented
transfer. In the segmented transfer, the data is transferred in packets. The server
responds to the initial read/write request from the client by providing the data size
in the data field, and then the fourth bit (toggle bit) will start to toggle with the trans-
fer of each data packet to the client. Lastly, if bit 0 in the specifier datagram is set,
it indicates the data size in bits 3-2, as mentioned earlier.

Table 2. CCS and SCS Configuration

Operation Client Request (CCS) Server Response (SCS)

SDO Download 1 3

SDO Upload 2 2

SDO Download Segmented 0 1

SDO Upload Segmented 3 0

Bytes 2-3 and 4 in the SDO datagram correspond to the index and subindex bytes,
respectively, as shown in Figure 3. These bytes are used to access all the objects
available in the device’s object dictionary. The object dictionary contains all the
device parameters, allowing users to configure the device’s functionality based on
real-time application requirements. This concept of device profiling brings stan-
dardized behavior to devices, whether they are control devices like drives or a
simple I/O components. The last four bytes in the SDO datagram are dedicated to
the data that needs to be transferred through the SDO layer, as explained earlier.

In the event of an error, the SDO transmission will be aborted and the reason for
the transmission stoppage can be identified by referring to the error code expla-
nation provided in the manual of the target device. In this case, the CCS bits value
is 4, the index and subindex specify the affected parameters in the device during
the transmission, and the last four bytes indicate the error code.

Real-Time Communication Analysis
This section explains the SDO datagram using a real-time communication log
window while the machine is in a pre-operational state. The ADI Trinamic TMCM-
6212 sextuple stepper motor driver/controller4 is used in conjunction with the
QSH4218-35-10-027 [5] stepper motor. For this setup, maximum current of the
motor (Object 2003h) is set to 200. The upload and download transactions between
client and server are further explained using the messages highlighted in the log
window of the software interface of the targeted setup, as shown in Figure 4.

Figure 4. A CANopen IDE.

Case 1: Download Operation Between Client
and Server
Initiated by the client: 0x601: 2f 03 20 c8 00 00 00 (Figure 5).

SpecifierCOB-ID

0x601 2f

0 0

CCS Toggle Reserved Type of
Transfer

Data Size
Indicated

1 0 1 1 1 1
7 6 5 4 3 2 1 0

03 20 0 00 00 00 c8

Index
(2003 Max Current)

Sub-Index
Data

Figure 5. An initiate download request by the client.

Response by the server: 0x581: 60 03 20 00 00 00 00 (Figure 6).

SpecifierCOB-ID

0x581 60

0 1

SCS

1 Reserved

Reserved

7 6 5

03 20 0

Index
(2003 Max Current)

Sub-Index
Data

Figure 6. A download response by the server.

In the operation shown in Figure 6, the combination of CCS and SCS bits shows the
successful write operation from the client and the server’s response, also seen
in Table 2.

Case 2: Upload Operation Between Client
and Server
Initiated by the client: 0x601: 40 03 20 00 00 00 00 (Figure 7).

SpecifierCOB-ID

0x601 60

0 1

SCS

1 Reserved

Reserved

7 6 5

03 20 0

Index
(2003 Max Current)

Sub-Index
Data

Figure 7. An initiate upload request by the client.

https://www.analog.com

VISIT ANALOG.COMFor regional headquarters, sales, and distributors or
to contact customer service and technical support,
visit analog.com/contact.

Ask our ADI technology experts tough questions, browse
FAQs, or join a conversation at the EngineerZone Online
Support Community. Visit ez.analog.com.

©2024 Analog Devices, Inc. All rights reserved.
Trademarks and registered trademarks are
the property of their respective owners.

Response by the server: 0x581: 4f 03 20 00 c8 00 00 00 (Figure 8)

SpecifierCOB-ID

0x581 4f

0 1

SCS Toggle Reserved Type of
Transfer

Data Size
Indicated

0 0 1 1 1 1
7 6 5 4 3 2 1 0

03 20 0 00 00 00 c8

Index
(2003 Max Current)

Sub-Index
Data

Figure 8. An upload response by the server.

Conclusion
The combination of CCS and SCS bits indicates the successful upload opera-
tion between the client and server. The examples mentioned in this article can
be applied to other objects in the device’s object dictionary, providing insights
into the state of the machine. The main objective of this demonstration is to
empower users to decipher the communication log and monitor the drive’s
status. Users can troubleshoot errors in real time and explore the advanced

features of ADI Trinamic CANopen more efficiently. The integration of CANopen
protocol in ADI products offers customers the flexibility to integrate their own
PLC’s with ADI Trinamic modules, enabling the development of multivendor sys-
tems. This interface is particularly valuable for customers working on complex
applications such as, lab automation, robotics, liquid handling, semiconductor
handling, and more. The next article in this CANopen series will cover the in-depth
analysis of the process data object (PDO) CANopen protocol while exploring the
TMCM-6212’s more advanced features for motor control applications.

References
Olaf Pfeiffer, Andrew Ayre, and Christian Keydel. “Embedded Networking with CAN
and CANopen.” Copperhill Technologies Corporation, 2008.

“TMCM-6212 CANopen Firmware Manual.” Trinamic Motion Control, 2018.

About the Author
Atul Kumar is an applications engineer in Central Applications Dublin. His primary expertise is in motor control, closed-loop control
architecture for low power stepper motors, and BLDC/PMSM motors. He has done his postgraduate studies in Dublin City University
and joined Maxim Integrated (now a part of Analog Devices), as an associate application engineer in February 2022.

https://www.analog.com
https://www.analog.com/contact
https://ez.analog.com
https://www.analog.com
https://komaragiri.weebly.com/uploads/2/2/5/5/22557070/embedded_networking_with_can_and_canopen_9780976511625.pdf
https://komaragiri.weebly.com/uploads/2/2/5/5/22557070/embedded_networking_with_can_and_canopen_9780976511625.pdf
https://www.analog.com/media/en/dsp-documentation/software-manuals/TMCM-6212_CANopen_firmware_manual_Fw3.21_Rev1.04.pdf

	Button 13:
	Page 1:

	Button 12:
	Page 1:

	Button 11:
	Page 1:

	Button 10:
	Page 1:

	Button 9:
	Page 1:

	Button 8:
	Page 1:

