ANALOG SHARC+ Dual-Core
DEVICES DSP with ARM Cortex-A55

ADSP-SC395/5€596/SCa98

ABOUT ADSP-SC595/SC596/SC598 SILICON ANOMALIES

These anomalies represent the currently known differences between revisions of the SHARC+® ADSP-SC595/SC596/SC598 product(s) and
the functionality specified in the ADSP-SC595/SC596/SC598 data sheet(s) and the Hardware Reference book(s).

SILICON REVISIONS

A silicon revision number with the form "-x.x" is branded on all parts. The REVID bits <31:28> of the TAPCO_IDCODE register can be
used to differentiate the revisions as shown below.

Silicon REVISION | TAPCO_IDCODE.REVID
0.0 b#0000

ANOMALY LIST REVISION HISTORY

The following revision history lists the anomaly list revisions and major changes for each anomaly list revision.

Date Anomaly List Revision | Data Sheet Revision | Additions and Changes

05/25/2024 | E A Added Anomaly 20000128

11/14/2022 | D PrE Added Anomalies 20000126, Revised 20000119

08/01/2022 | C PrE Added Datasheet Revision PrE

04/25/2022 | B PrD Added Anomalies 20000103, 20000119, 20000120, 20000121,
20000123, 20000124

08/27/2021 | A PrC Initial Version

SHARC+ and SHARC are registered trademarks of Analog Devices, Inc.

NR004873E Document Feedback

Informatlon furmshed by Analog Dewces is believed to be accurate and reliable.

, NO resp bility is d by Analog Devices for its use, nor for any
mfrmgements of patents or other rights of third parties that may result from its use. A
Specifications subject to change without notice. No license is granted by implication or One Analog Way, W|Im|ngton, M_A 01887 U.S.A.
otherwise under any patent or patent rights of Analog Devices. Trademarks and ©2024 Analog Devices, Inc. All rights reserved.
registered trademarks are the property of their respective owners. Technical Support www.analog.com

http://www.analog.com
http://www.analog.com/ADSP-SC595
http://www.analog.com/ADSP-SC596
http://www.analog.com/ADSP-SC598
http://www.analog.com
http://www.analog.com/en/content/technical_support_page/fca.html
https://form.analog.com/Form_Pages/feedback/documentfeedback.aspx?doc=ADSP-SC595_SC596_SC598_anomaly_list.pdf&product=ADSP-SC595%20ADSP-SC596%20ADSP-SC598&rev=E

ADSP-SC395/SC3296/SC398

SUMMARY OF SILICON ANOMALIES

The following table provides a summary of ADSP-SC595/SC596/SC598 anomalies and the applicable silicon revision(s) for each anomaly.

No. | ID Description Rev
0.0
1 20000002 | Data Forwarding from Rn/Sn to DAG Register May Fail in Presence of Stalls X
2 20000003 | Transactions on SPU and SMPU MMR Regions May Cause Errors X
3 20000031 | GP Timer Generates First Interrupt/Trigger One Edge Late in EXTCLK Mode X
4 20000062 | Writes to the SPI_SLVSEL Register Do Not Take Effect X
5 20000069 | PCSTK and MODE1STK Loads Do Not Occur If Next Instruction Is L2 or L3 Access X
6 20000072 | Floating-Point Computes Targeting FO Register Can Cause Pipeline Stalls X
7 20000096 | Type 18a USTAT Instructions Fail When Following Specific Code Sequence X
8 20000103 | Unreliable SPDIF Receiver Clock Output Pulse Width at Sample Rates Above 96KHz X
9 20000114 | Circular Buffering in FIR Accelerator may not work properly in "burst access of length 16 words" mode X
10 | 20000117 | DMC PHY Calibration issue X
11 | 20000118 | FIR accelerator may produce wrong output for tap length greater than 1024 (multi-iteration mode) with X
prefetch buffer feature enabled.
12 | 20000119 | END bit error may occur during eMSI data transfers due to clock gating X
13 | 20000120 | eMMC boot may fail for specific boot streams which cause clock gating scenario X
14 | 20000121 | eMMC device identification may fail during eMMC boot X
15 | 20000123 | Boot failure with Ignore Block in Page Mode X
16 | 20000124 | DMC Init routine not usable in Boot ROM X
17 | 20000126 | Incorrect bit field values in EMSI_CAP2 register X
18 | 20000128 Elxplici('; core write to IRPTL register can cause pending FIRx/IIRx accelerator channel completion interrupt to be X
cleare

Key: x = anomaly exists in revision
.= Not applicable

NR004873E | Page2of 14 | May 2024

http://www.analog.com/ADSP-SC595
http://www.analog.com/ADSP-SC596
http://www.analog.com/ADSP-SC598

ADSP-SC395/5€596/SCa98

DETAILED LIST OF SILICON ANOMALIES

The following list details all known silicon anomalies for the ADSP-SC595/SC596/SC598 including a description, workaround, and
identification of applicable silicon revisions.

1. 20000002 - Data Forwarding from Rn/Sn to DAG Register May Fail in Presence of Stalls:

DESCRIPTION:
An instruction involving a DAG operation such as address generation or modify following a type5a instruction may fail under the
following conditions:
1. The type5a instruction updates the source register of the subsequent DAG operation.
2. The type5a instruction uses the same source register to both load to the DAG register and store the result of the compute operation.
3. The DAG operation follows within six instructions of the type5a instruction.
4. The pipeline is stalled due to a data/control dependency or an L1 memory bank conflict.

When these conditions are met, the type5a instruction produces the expected result and updates the DAG register correctly; however, the
data forwarded to the DAG is incorrect, and the DAG register used as the destination in the subsequent DAG operation is incorrectly
updated.

Consider the following type5a instruction sequence:

r2 =r2-r13, i4=r2; // r2 is destination of conpute AND source of DAG | oad

if eq junp targetl,; /1 Dependency on previous instruction stalls the pipe

nop;

nop;

nop;

nop;

i5 = b2w (i4); /1 Uses source register (i4) stored to by typeba instruction

NoughkwhR

In the above case, i 5 (line 7) is updated with an incorrect value, even though i 4 (line 1) contains the correct value. The same would be
true if the instruction on line 7 appeared anywhere in lines 3 through 6.

WORKAROUND:
There are two potential workarounds for this issue:
1. Split the type5a instruction which conforms to the use case into two separate instructions.
2. Avoid using the relevant DAG register in a DAG operation within six instructions of the type5a instruction.

This workaround may be built into the development tool chain and/or into the operating system source code. For tool chains and
operating systems supported by Analog Devices, please consult the "Silicon Anomaly Tools Support" help page in the applicable
documentation and release notes for details.

For all other tool chains and operating systems, see the appropriate supporting documentation for details.

APPLIES TO REVISION(S):
0.0

2. 20000003 - Transactions on SPU and SMPU MMR Regions May Cause Errors:

DESCRIPTION:
Non-secure reads or writes to the upper half of each SPU and SMPU instance's MMR space will be erroneously blocked and cause a bus
error when configured as a non-secure slave.

For each instance of the SPU and SMPU, the affected MMR address range can be calculated as follows:
« Lower bound = Instance Address Offset + 0x800
+ Upper bound = Instance Address Offset + OXFFF

WORKAROUND:
Do not access the documented system MMR ranges from a non-secure slave.

APPLIES TO REVISION(S):
0.0

NR004873E | Page3of 14 | May 2024

http://www.analog.com/ADSP-SC595
http://www.analog.com/ADSP-SC596
http://www.analog.com/ADSP-SC598

ADSP-SC395/SC596/SCa98

3. 20000031 - GP Timer Generates First Interrupt/Trigger One Edge Late in EXTCLK Mode:

DESCRIPTION:

When any GP Timer is configured in External Clock mode, the first interrupt/trigger should occur when the corresponding

TI MER_DATA | LAT bit sets after the TI MER_TMRn__CNT register reaches the value programmed in the TI MER_TMRn_ PERregister.
Instead, the interrupt/trigger and the setting of the TI MER_DATA _| LAT bit occur one signal edge later. At this point, the

TI MER_TMRn__CNT register will have rolled over to 1. Subsequent interrupts/triggers occur after the correct number of edges.

For example, if T| MER_TMRn_PER=7, the first interrupt/trigger will occur after the timer pin samples eight edges. From that point
forward, interrupts/triggers will correctly occur every seven signal edges.

WORKAROUND:
For interrupts/triggers to occur every n edges detected on the timer pin, the TI MER_TMRn_PERregister must be configured to n-1 for
the initial event and then reprogrammed to n for subsequent events, as shown in the following pseudocode:

TI MER_TMRn_PER = n- 1; /1 Configure PERIOD register with n-1
TI MER_RUN SET = 1; /1l Enable the tinmer
TI MER_TMRn_PER = n; /1 Configure PERICOD register with n

The second write to the TI MER_TMRn_PERregister does not take effect until the 2nd period; therefore, this sequence can be performed
when the timer is first enabled.

APPLIES TO REVISION(S):
0.0

4. 20000062 - Writes to the SPI_SLVSEL Register Do Not Take Effect:

DESCRIPTION:
A single write to the SPI _SLVSEL register should change the state of the register and cause the modified software-controlled SPI slave
selects to assert or de-assert. Instead, a single write to SPI _SLVSEL has no effect.

WORKAROUND:
Any write to SPI _SLVSEL should be done twice (back-to-back) with the same value in order for the change to take effect.

APPLIES TO REVISION(S):
0.0

5. 20000069 - PCSTK and MODE1STK Loads Do Not Occur If Next Instruction Is L2 or L3 Access:

DESCRIPTION:
Writes to the PCSTK and MODE1 STK registers may not happen correctly if the next instruction is an access to a non-L1 memory location,
as in the following code sequence:

1: MODE1STK = rO0;
2: PCSTK = dm(0,i6); // i6 points to L2 or L3 nenory space
3: px2 = dm0,i6);

Because i 6 points to non-L1 memory in this sequence, the MODE1STK write on line 1 fails due to the use of i 6 on line 2, and the write to
PCSTK on line 2 also fails because of the same use of i 6 on line 3.

WORKAROUND:
Insert a NOP; instruction between the write to the PCSTK/MODELSTK register and the next memory access instruction.

This workaround may be built into the development tool chain and/or into the operating system source code. For tool chains and
operating systems supported by Analog Devices, please consult the "Silicon Anomaly Tools Support" help page in the applicable
documentation and release notes for details.

For all other tool chains and operating systems, see the appropriate supporting documentation for details.

APPLIES TO REVISION(S):
0.0

NR004873E | Page4of 14 | May 2024

http://www.analog.com/ADSP-SC595
http://www.analog.com/ADSP-SC596
http://www.analog.com/ADSP-SC598

ADSP-SC395/5€596/SCa98

6. 20000072 - Floating-Point Computes Targeting FO Register Can Cause Pipeline Stalls:

DESCRIPTION:
Any floating-point compute instruction with FO as the destination register will cause pipeline stalls when followed immediately by a no-
operand or single-operand compute instruction with Rx as the unused source register, as in the following code sequence:

FO = PASS F4;
R10 = PASS R11; // Y operand is not used. Flushed to O in opcode by assenbl er.

WORKAROUND:
There are two possible workarounds:
1. Do not use the FO register as the destination in the above code sequence.
2. Ensure that the instruction that immediately follows the compute operation is not of the form described in the code example above.

APPLIES TO REVISION(S):
0.0

7. 20000096 - Type 18a USTAT Instructions Fail When Following Specific Code Sequence:

DESCRIPTION:

Type 18a ISA/VISA register bit manipulation instructions (Bl T SET,BI T CLR BI T TG, BI T TST,andBI T XOR) using either USTAT
register can fail when immediately following an external memory (EXT_MEM) or system MMR (SMMR) read-write sequence and a read of a
core memory-mapped register (CMMR) involving the same USTAT register. Consider the following pseudo-code sequence:

1: USTAT# = dn(EXT_MEM SMWR); // EXT_MEM or SMVR read to USTAT1 or USTAT2

2: dm EXT_MEM SMVR) = USTAT#; // EXT_MEM or SMMR wite fromthe sane USTAT register

3: USTAT# = dn({CMWR) ; /1 CWR read to the same USTAT register

4: bit <op> USTAT# <dat a32>; /'l <op> = SET| CLR| TG | TST| XOR, using the sanme USTAT register

In this code sequence, the type 18a instruction in line 4 erroneously performs the bit operation on the value loaded to the USTAT register
in instruction 1 rather than performing the operation on the expected value loaded in instruction 3.

WORKAROUND:
Insert a NOP; instruction before the type 18a instruction in the above code sequence to avoid the issue.

APPLIES TO REVISION(S):
0.0

8. 20000103 - Unreliable SPDIF Receiver Clock Output Pulse Width at Sample Rates Above 96KHz:

DESCRIPTION:

When the sampling rate of the SPDIF receiver input stream (FS_Rate) is above 96 KHz, the positive pulse width of the SPDIF receiver TDM
output clock (SPDIF_RX_TDMCLK_O) can be as low as the period of the SPDIF receiver module clock, and the negative pulse width can be
as high as one SPDIF receiver module clock period less than the ideal clock period. As a result, audio peripherals such as the ASRC, SPORT,
and DAI pins may not function properly when SPDIF_RX_TDMCLK_O is used as the clock source.

WORKAROUND:
Do not use the SPDIF_RX_TDMCLK_O output clock as the source for external peripherals when the FS rate is above 96 KHz.

The Precision Clock Generator (PCG) can be used to divide the clock down such that audio peripherals like the ASRC, SPORT, and DAI pins
may function internally; however, the clock and frame sync outputs from the PCG will still exhibit the duty cycle problem and must not be
used to interface with external components.

APPLIES TO REVISION(S):
0.0

NR004873E | Page5of14 | May 2024

http://www.analog.com/ADSP-SC595
http://www.analog.com/ADSP-SC596
http://www.analog.com/ADSP-SC598

ADSP-SC395/SC596/SCa98

9. 20000114 - Circular Buffering in FIR Accelerator may not work properly in "burst access of length 16
words" mode:

DESCRIPTION:

FIR DMA engine must detect burst transfer which may cross circular buffer boundary (limited by B and B+L) in advance and must prevent
launching a burst access. Instead it must split and launch individual accesses near the circular buffer boundary. This does not happen
when "burst access of length 16" words is enabled because of failure in circular buffer boundary detection in that mode. Due to this the
burst access crosses the circular buffer boundary and results in unexpected data being loaded into FIR Accelerator.

The problem is not applicable when burst access of length 16 is disabled. Note that burst 16 mode is enabled by default and the bit
FIR_CTL1.BURST_16_DIS should be set to disable this feature.

WORKAROUND:
1. Align end address of the Input buffers to 4KB boundary. In this case 4kB boundary detection takes effect and FIR DMA engine splits

the burst access crossing 4KB boundary into individual accesses near the circular buffer boundary.
2. Disable burst 16 feature by setting FIR_CTL1.BURST_16_DIS bit. Disabling it will not affect functional results but may result in loss of

overall accelerator performance.

APPLIES TO REVISION(S):
0.0

NR004873E | Page 6of 14 | May 2024

http://www.analog.com/ADSP-SC595
http://www.analog.com/ADSP-SC596
http://www.analog.com/ADSP-SC598

ADSP-SC395/5€596/SCa98

10. 20000117 - DMC PHY Calibration issue:

DESCRIPTION:
DMC PHY calibration procedure may not work as expected sometimes with the existing DMC PHY programming model. Because of this,
the driver impedance and ODT calibration may not happen correctly. This may result in DDR access failures.

WORKAROUND:
The recommended workaround code for PHY calibration requires some additional PHY register programming. The following
programming sequence should be used for DMC PHY calibration to avoid the issue:

1. Program 0x00000000 to the DMC_DDR_CA_CTL register.

2. Program 0x00000000 to the DMC_DDR_ROOT_CTL register.

3. Program 0x00000000 to the DMC_DDR_SCRATCH_3 register.

4. Program 0x00000000 to the DMC_DDR_SCRATCH_2 register.

5. Program 0x04010000 to the DMC_DDR_ROOT_CTL register.

6. Wait for 2500 DCLK cycles.

7. Program 0x10000002 to the DMC_DDR_CA_CTL register.

8. Wait for 2500 DCLK cycles.

9. Program 0x00000000 to the DMC_DDR_CA_CTL register.

10. Program 0x00000000 to the DMC_DDR_ROOT_CTL register.

11. Program 0x00001000 to the DMC_DDR_SCRATCH_3 register.

12. Program 0x00000000 to the DMC_DDR_SCRATCH_2 register.

13. Wait for 2500 DCLK cycles.

14. Program 0x04010000 to the DMC_DDR_ROOT_CTL register.

15. Wait for 2500 DCLK cycles.

16. Program 0x10000002 to the DMC_DDR_CA_CTL register.

17. Wait for 2500 DCLK cycles.

18. Program 0x00000000 to the DMC_DDR_CA_CTL register.

19. Program 0x00000000 to the DMC_DDR_ROOT_CTL register.

20. Program 0x00000000 to the DMC_DDR_SCRATCH_3 register.

21. Program the DMC_DDR_SCRATCH_2.IMPWRADD bit field [7:0] with the drive strength of the address and command signals. For
example, for programming a drive strength of 100 Ohm, write 0x64 into this bit field.

22. Program the DMC_DDR_SCRATCH_2.IMPWRDAQ bit field [15:8] with the drive strength of the DQ, DQS, DM and clock signals. For
example, for programming a drive strength of 90 Ohm, write 0x5A into this bit field.

23. Program the DMC_DDR_SCRATCH_2.IMPRTT bit field [23:16] with the adjusted On Die Termination (ODT) for the Data and DQS signals
for the read operation. Due to a correction factor, program this field to 80% of the equivalent ODT.DMC_DDR_ZQ_CTLO.IMPRTT value =
ODT*2*0.8 For example, if a 50 Ohm terminating resistance is required on the data pads to match the trace impedance to the board
impedance, there will be two 50 Ohm resistance data pads in parallel. The value is programmed to 100 0.8 = 80.
24. Program 0x04010000 to the DMC_DDR_ROOT_CTL register.

25. Wait for 2500 DCLK cycles.

26. Program 0x0C000002 to the DMC_DDR_CA_CTL register.

27. Wait for 2500 DCLK cycles.

28. Program 0x00000000 to the DMC_DDR_CA_CTL register.

29. Program 0x00000000 to the DMC_DDR_ROOT_CTL register.

30. Program 0x00000000 to the DMC_DDR_SCRATCH_3 register.

31. Program 0x30000000 to the DMC_DDR_SCRATCH_2 register.

32. Program 0x04010000 to the DMC_DDR_ROOT_CTL register.

33. Wait for 2500 DCLK cycles.

34. Program 0x10000002 to the DMC_DDR_CA_CTL register.

35. Wait for 2500 DCLK cycles.

36. Program 0x00000000 to the DMC_DDR_CA_CTL register.

37.Program 0x00000000 to the DMC_DDR_ROOT_CTL register.

38. Program 0x00000000 to the DMC_DDR_SCRATCH_3 register.

39. Program 0x00000000 to the DMC_DDR_SCRATCH_2 register.

40. Program 0x00000000 to the DMC_DDR_SCRATCH_3 register.

41. Program 0x00000000 to the DMC_DDR_SCRATCH_2 register.

42. Program 0x04010000 to the DMC_DDR_ROOT_CTL register.

43. Wait for 2500 DCLK cycles.

44, Program 0x10000002 to the DMC_DDR_CA_CTL register.

45. Wait for 2500 DCLK cycles.

46. Program 0x00000000 to the DMC_DDR_CA_CTL register.

47.Program 0x00000000 to the DMC_DDR_ROOT_CTL register.

48. Program 0x00000000 to the DMC_DDR_SCRATCH_3 register.

49. Program 0x00000000 to the DMC_DDR_SCRATCH_2 register.

50. Program 0x00000000 to the DMC_DDR_SCRATCH_3 register.

NR004873E | Page7of 14 | May 2024

http://www.analog.com/ADSP-SC595
http://www.analog.com/ADSP-SC596
http://www.analog.com/ADSP-SC598

ADSP-SC395/SC596/SCa98

51. Program 0x50000000 to the DMC_DDR_SCRATCH_2 register.

52. Program 0x04010000 to the DMC_DDR_ROOT_CTL register.

53. Wait for 2500 DCLK cycles.

54. Program 0x10000002 to the DMC_DDR_CA_CTL register.

55. Wait for 2500 DCLK cycles.

56. Program 0x00000000 to the DMC_DDR_CA_CTL register.

57.Program 0x00000000 to the DMC_DDR_ROOT_CTL register.

58. Program 0x0C000004 to the DMC_DDR_CA_CTL register.

59. Wait for 2500 DCLK cycles.

60. Program BITM_DMC_DDR_ROOT_CTL_TRIG_RD_XFER_ALL to the DMC_DDR_ROOT_CTL register.
61. Wait for 2500 DCLK cycles.

62. Program 0x00000000 to the DMC_DDR_CA_CTL register.

63. Program 0x00000000 to the DMC_DDR_ROOT_CTL register.

64. Calculate ODT PU and PD values as shown below and 'OR' that to pREG_DMCO0_DDR_SCRATCH_2 register.

stat_value = (((*pREG_DMCO_DDR_SCRATCH_7 & 0x0000FFFFu)<<16) | ((*pREG_DMCO_DDR_SCRATCH_6 & OxFFFF0000u)>>16));

drv_pu = stat_value & 0x0000003Fu;

drv_pd = (stat_value>>12) & 0x0000003Fu;

odt_pu = (drv_pu * ClkDgsDrvimpedance)/ ROdt;

odt_pd = (drv_pd * CIkDgsDrvimpedance)/ ROdt;

*pREG_DMCO_DDR_SCRATCH_2 |= ((TuL<<24) | ((drv_pd & 0x0000003Fu)) | ((odt_pd & 0x0000003Fu)<<6) | ((drv_pu &
0x0000003Fu)<<12) | ((odt_pu & 0x0000003Fu)<<18));

Here, ClkDgsDrvimpedance is the value of the drive strength of the DQ, DQS, DM and clock signals programmed to
DMC_DDR_SCRATCH_2 register in step #22.

ROdt is the value of the (ODT) for the Data and DQS signals for the read operation programmed to DMC_DDR_SCRATCH_2 register in step
#23.

65. Program 0x0C010000 to the DMC_DDR_ROOT_CTL register.
66. Wait for 2500 DCLK cycles.

67. Program 0x08000002 to the DMCO_DDR_CA_CTL register.
68. Wait for 2500 DCLK cycles.

69. Program 0x00000000 to the DMC_DDR_CA_CTL register.
70. Program 0x00000000 to the DMC_DDR_ROOT_CTL register.
71. Program 0x04010000 to the DMC_DDR_ROOT_CTL register.
72. Wait for 2500 DCLK cycles.

73. Program 0x80000002 to the DMC_DDR_CA_CTL register.
74. Wait for 2500 DCLK cycles.

75. Program 0x00000000 to the DMC_DDR_CA_CTL register.
76. Program 0x00000000 to the DMC_DDR_ROOT_CTL register.

Reference C code for DMC PHY calibration:

#i ncl ude <sys/pl atform h>

/* Additional Register Address */

#defi ne pREG DMCO_DDR_SCRATCH_2 ((volatile uint32_t*)0x31071074)
#defi ne pREG _DMC0_DDR_SCRATCH_3 ((volatile uint32_t*)0x31071078)
#def i ne pREG_DMCO_DDR_SCRATCH_6 ((volatile uint32_t*)0x31071084)
#def i ne pREG DMCO_DDR_SCRATCH 7 ((volatile uint32_t*)0x31071088)

uint32_t stat_val ue = 0xOu;
uint32_t drv_pu , drv_pd, odt_pu, odt_pd;
uint32_t RGQdt, C kDgsDrvl npedance, AddrDrvl npedance;

ROdt = 120ul; /* 75 ohns of On Die Termination (CODT) for the Data and DQS signals for the
read operation. (75*2*0.8) */

Cl kDgsDr vl npedance = 90ul; /* The drive strength of the DQ DQS, DM and clock signals */

Addr Dr vl npedance = 100ul; /* The drive strength of the address and command signals */

*pREG_DMC0_DDR_CA CTL = 0xOul ;

* pREG_DMCO_DDR_ROOT_CTL = 0xOul ;
* pREG_DMCO_DDR_SCRATCH 3 = 0xOul ;
* pREG_DMCO_DDR_SCRATCH 2 = 0xOul ;

NR004873E | Page8of 14 | May 2024

http://www.analog.com/ADSP-SC595
http://www.analog.com/ADSP-SC596
http://www.analog.com/ADSP-SC598

ADSP-SC395/5€596/SCa98

*pREG_DMCO_DDR_ROOT_CTL = 0x04010000ul ;
dntdel ay(2500u) ;

*pREG _DMCO_DDR CA CTL = 0x10000002ul ;
dntdel ay(2500u);

*pREG_DMCO_DDR_CA_CTL = 0xOu;
*pREG_DMCO_DDR_ROOT_CTL = 0xO0u;
*pREG_DMCO_DDR_SCRATCH 3 = 0Ox1ul <<12;

* pREG_DMOO_DDR_SCRATCH_2

oxO0ul ;

dntdel ay(2500u) ;
*pREG_DMCO_DDR_ROOT_CTL = 0x04010000ul ;
drcdel ay(2500u) ;
*pREG _DMCO_DDR_CA CTL = 0x10000002ul ;
dntdel ay(2500u) ;
*pREG_DMCO_DDR_CA CTL = 0xO0ul ;
*pREG_DMCO_DDR_ROOT_CTL = 0xOul ;
*pREG_DMCO_DDR_SCRATCH 3 = 0xO0ul ;
*pREG_DMCO_DDR_SCRATCH 2 = ((RQdt & BI TM DMC_DDR_ZQ CTLO_I MPRTT) <<
Bl TP_DMC_DDR ZQ CTLO_I MPRTT) | ((d kDgsDr vl npedance & BI TM DMC_DDR _ZQ CTLO_I MPWRDQ) <<
Bl TP_DMC_DDR_ZQ CTLO_| MPWRDQ)
((Addr Drvl npedance & Bl TM DMC_DDR ZQ CTLO_| MPWRADD) << BI TP_DMC DDR ZQ CTLO_| MPRADD) ;

*pREG_DMOO_DDR_ROOT_CTL = 0x04010000ul ;
dncdel ay(2500u) ;

* pREG_DMCO_DDR_CA_CTL

0x00C000002ul ;

dntdel ay(2500u) ;
*pREG_DMO0_DDR_CA CTL = 0xOul ;
*pREG_DMO0_DDR_ROOT_CTL = 0xOul ;

*pREG_DMOO_DDR_SCRATCH_3

oxO0ul ;

*pREG_DMCO_DDR_SCRATCH_2 = 0x30000000ul ;
*pREG_DMCO_DDR_ROOT_CTL = 0x04010000ul ;
drcdel ay(2500u) ;

*pREG _DMCO_DDR _CA CTL = 0x10000002ul ;
dntdel ay(2500u) ;

*pREG_DMCO_DDR_CA CTL = 0xO0ul ;
*pREG_DMCO_DDR_ROOT_CTL = 0xOul ;

* pREG_DMCO_DDR_SCRATCH_3

0xO0ul ;

* pREG_DMO0_DDR_SCRATCH 2 = 0xOul ;
*pREG_DMCO_DDR SCRATCH 3 = 0xO0ul ;
*pREG_DMC0_DDR_SCRATCH_2 = 0xOul ;

*pREG_DMCO_DDR_ROOT_CTL = 0x04010000ul ;
drcdel ay(2500u) ;

*pREG _DMCO_DDR_CA CTL = 0x10000002ul ;
dntdel ay(2500u) ;

*pREG_DMCO_DDR_CA CTL = 0xO0ul ;
*pREG_DMCO_DDR_ROOT_CTL = 0xOul ;

* pREG_DMCO_DDR_SCRATCH_3

0xO0ul ;

* pREG_DMCO_DDR_SCRATCH 2 = 0xOul ;
* pREG_DMCO_DDR_SCRATCH_3 = 0xOul ;
* pREG_DMOO0_DDR_SCRATCH 2 = 0x50000000ul ;

*pREG_DMCO_DDR_ROOT_CTL = 0x04010000ul ;
drcdel ay(2500u) ;

*pREG_DMCO_DDR _CA CTL = 0x10000002ul ;
dntdel ay(2500u) ;

*pREG_DMC0_DDR_CA _CTL = Ou;
*pREG_DMCO_DDR_ROOT_CTL = Ou;
*pREG_DMCO_DDR_CA CTL = 0x0C000004u;
dntdel ay(2500u) ;

*pREG_DMCO_DDR _ROOT_CTL = Bl TM DMC_DDR ROOT_CTL_TRI G RD_XFER ALL;
dntdel ay(2500u);
*pREG_DMCO_DDR_CA_CTL = Ou;
*pREG_DMCO_DDR_ROOT_CTL = 0u;

/* cal culate ODT PU and PD val ues */

stat _val ue = ((*pREG_DMCO_DDR_SCRATCH 7 & 0x0000FFFFu) <<16);
stat_val ue | = (*pREG DMCO_DDR SCRATCH 6 & O0xFFFF0000u) >>16;

drv_pu
drv_pd

stat_val ue & 0x0000003Fu;
(stat_val ue>>12) & 0x0000003Fu;

NR004873E | Page9of 14 | May 2024

http://www.analog.com/ADSP-SC595
http://www.analog.com/ADSP-SC596
http://www.analog.com/ADSP-SC598

ADSP-SC395/SC596/SCa98

odt _pu (drv_pu * C kDgsDrvl npedance)/ ROdt;

odt _pd (drv_pd * C kDgsDr vl npedance)/ ROdt;

*pREG _DMCO_DDR _SCRATCH 2 | = ((1lulL<<24)
((drv_pd & 0x0000003Fu))
((odt_pd & 0x0000003Fu) <<6)
((drv_pu & 0x0000003Fu) <<12)
((odt _pu & 0x0000003Fu) <<18));

*pREG_DMC0_DDR_ROOT_CTL = 0x0C010000u;
dntdel ay(2500u) ;

*pREG _DMCO_DDR_CA CTL = 0x08000002u;
dntdel ay(2500u) ;

*pREG _ DMCO_DDR CA CTL = Ou;
*pREG_DMC0_DDR_ROOT_CTL Ou;
*pREG_DMCO_DDR_ROOT_CTL = 0x04010000u;
drcdel ay(2500u) ;

*pREG_DMCO_DDR_CA CTL = 0x80000002u;
dntdel ay(2500u) ;

*pREG_DMC0_DDR_CA _CTL = Ou;
*pREG_DMCO_DDR_ROOT_CTL = Ou;

APPLIES TO REVISION(S):
0.0

11. 20000118 - FIR accelerator may produce wrong output for tap length greater than 1024 (multi-iteration
mode) with prefetch buffer feature enabled.:

DESCRIPTION:

In case of multi-iteration mode (tap length >1024), the output of current iteration is computed by combining the intermediate output of
the previous iteration and the MAC result of the current iteration. If starting bytes of the output buffer fall in the same prefetch line (of size
64 Bytes) as ending bytes of the input or coefficient buffer, these bytes are prefetched during coefficient or data read phase of the
previous iteration. During the intermediate output write to memory, it is therefore expected that the prefetch buffer is invalidated. Due to
this anomaly, prefetch buffer invalidation doesn't occur which results in stale output data being loaded in the next iteration during
intermediate output read which may result in wrong combined output data.

The problem is not applicable when prefetch buffer feature is disabled or when the output buffer is not placed in same prefetch line as
either the input data or coefficient buffer when in multi-iteration mode (tap length >1024).

WORKAROUND:
1. Make sure that the separation between Output Buffer and Input/Coefficient Buffer is minimum of two prefetch lines(128 bytes).
2. Disable prefetch buffer feature by clearing FIR_CTL1.PFB_EN bit. Disabling it will not affect functional results but may result in loss of
overall accelerator performance.

APPLIES TO REVISION(S):
0.0

NR004873E | Page 100f 14 | May 2024

http://www.analog.com/ADSP-SC595
http://www.analog.com/ADSP-SC596
http://www.analog.com/ADSP-SC598

ADSP-SC395/5€596/SCa98

12. 20000119 - END bit error may occur during eMSI data transfers due to clock gating:

DESCRIPTION:

During eMSI data transfers if the eMSI clock is stopped in between the data transfer due to FIFO full condition (which may happen for
multi-block read commands where data requested is greater than eMSI FIFO size) or due to deliberate programming of the eMSI
controller to stop the eMSI clock, the END bit error will occur due to incorrect sampling of the data block END bit by the controller.

WORKAROUND:
1. Use single block read command instead of multi-block read command for SDR and DDR mode of operations.

2. eMSl clock gating in multi-block read transfers for SDR and DDR mode of operations can be avoided in two ways:
2.1 AteMSI Controller level:

a. For Pre-defined transfers: If DMA mode is set to ADMA, provide sufficient number of transfer descriptors and if DMA mode is
set to SDMA, update the System Address Register (EMSI _SDVA_ADDR/ EVMSI _ADMA_ADDR_LO) as soon as DMA interrupt
status bit (EMSI _| STAT_DMA_| NTERRUPT) is set.

Note: This is applicable to version 3.00 and above SD cards (SD cards supporting CMD23 (Pre-defined transfers)).

b. For Open-ended transfers: If DMA mode is set to ADMA, provide sufficient number of transfer descriptors. If DMA mode is
set to SDMA, update the System Address Register (EMSI _SDMA_ADDR/ EMSI _ ADMA_ADDR_L O as soon as DMA interrupt
status bit (EMSI _I STAT_DMA _| NTERRUPT) is set and terminate the transfers using STOP_TRANSMISSION (CMD12)
command as soon as transfer complete status bit (EMSI _| STAT_XFER_COVPLETE) is set for both DMA mode. In SDMA
and ADMA2 DMA modes, if EMSI_BLKCNT.VALUE is = 0 and EMSI_TRNSFRMODE. BLOCK_COUNT_EN is disabled then there
is no option to deterministically abort the data transfer because in this case EMSI_ISTAT_XFER_COMPLETE won't be set.
Note: This workaround is not applicable to SD cards.

2.2 At System level:
Increasing eMSI Quality of Service (QoS) priority to 12 in SCB will mitigate the END bit error in the SDR and DDR mode of data
transfer operations. eMSI QoS priority can be increased as shown in the below code:

SCBO_SDI @0_I B WRI TE_QOS = 0xC;
Both (2.1 and 2.2) workarounds will not be applicable if eMSI clock is gated by deliberate programming.

3. In the SDR mode (not applicable to DDR mode operations), multi-block read data transfer operations, enabling the eMSI tuning logic
will ensure that END bit error will not occur even if eMSI clock is gated during the data transfers. eMSI tuning logic can be enabled as
in shown below code:

PADSO_PCF® | = Bl TM_PADS_PCFG0_EMS|I _TUNI NG _EN;
PADSO_PCFGL | = ENUM PADS_PCFGL_| NV4;

Note: This workaround is not applicable to SD card operations.
Refer to the 'eMSI Controller Timing - SDR Mode (Clock Tunning Logic Enabled)' table in the datasheet for timing requirement
specification.

APPLIES TO REVISION(S):
0.0

NR004873E | Page 110f 14 | May 2024

http://www.analog.com/ADSP-SC595
http://www.analog.com/ADSP-SC596
http://www.analog.com/ADSP-SC598

ADSP-SC395/SC596/SCa98

13. 20000120 - eMMC boot may fail for specific boot streams which cause clock gating scenario:

DESCRIPTION:

eMMC boot may fail from user/boot area partition due to an END bit error occurring during the boot process. Some boot streams where
boot data processing takes more time in boot kernel, boot ROM can gate eMSI clock to pause the reading of more data from eMMC
device. This clock gating causes END bit error (anomaly 20000119) resulting in boot failure. This is applicable for both power-on reset and
boot ROM API calls for eMMC boot.

WORKAROUND:
1. Program the emmcMasterBootCmd parameters in OTP for power-on reset boot:
a. Update the emmcMasterBootCmd parameters in OTP to enable safe boot from user area partition. emmcMasterBootCmd for
enabling safe boot from user area partition:

emtMast er Boot Cnd = (0x9u<<Bl TP_ROM BCVD_SPI M DEVI CE) | ENUM_ROM BCVD_EMSI _BUSW D 8BI T
| BI TM_ROM BCVD _EMSI _HI SPEEDENABLE | ENUM_ROM BCMD_ENMSI _SDRMODE DDR |
Bl TM_ ROM BCMD _ENMSI _ SAFEBOOT;

b. Don't program emmcMasterBootCmd to enable boot from boot area partition.

2. In eMMC ROM API boot:
a. For SDR mode (not applicable for DDR mode of boot operations) of eMMC boot operations from user/boot area partition eMSI
tuning logic can be enabled before eMMC Boot ROM API call. eMSI tuning logic can be enabled as shown in below code:

PADSO_PCF®) | = Bl TM_PADS_PCFGO_EMSI _TUNI NG EN;
PADSO_PCFGL | = ENUM_PADS_PCFGL_| Nv4;

Refer to the 'eMSI Controller Timing - SDR Mode (Clock Tunning Logic Enabled)' table in the datasheet for timing requirement
specification.
b. For SDR/DDR mode of eMMC boot operations, boot in safe boot mode from user area partition.

APPLIES TO REVISION(S):
0.0

14. 20000121 - eMMC device identification may fail during eMMC boot:

DESCRIPTION:

eMMC device identification for some eMMC devices may fail during power-on or ROM API boot operations from user area partition,
resulting in eMMC boot failure. This is due to boot ROM not able to provide 74 free-running clock cycles after the clock (of frequency less
than or equal to 400 kHz) supplied to eMMC device, as recommended by JEDEC specifications.

WORKAROUND:

Most of the eMMC devices are still able to boot, as they don't need 74 free-running clock cycles after the clock (of frequency less than or
equal to 400 kHz) supplied to eMMC device as recommended by JEDEC specifications. Please contact eMMC device vendors for more
information.

APPLIES TO REVISION(S):
0.0

NR004873E | Page 120f 14 | May 2024

http://www.analog.com/ADSP-SC595
http://www.analog.com/ADSP-SC596
http://www.analog.com/ADSP-SC598

ADSP-SC395/5€596/SCa98

15. 20000123 - Boot failure with Ignore Block in Page Mode:

DESCRIPTION:
When page mode (ROM_BFLAG_PAGEMODE) is enabled in device boot, boot process will fail in the presence of ignore (BFLAG_IGNORE)

block, when byte count from the target address of the payload, crosses the 1024 bytes page boundary due to loss of synchronization
between source pointer and internal temp buffer. Also in non-secure host boot modes, when page mode is enabled, ignore block payload
is processed from internal temp buffer instead of discarding it. This makes the boot rom fail to process ignore block as it is intended for.

Therefore, the issue is applicable for the following cases:
1. Non Secure device and host boot modes with page mode enabled i.e. ROM_BFLAG_PAGEMODE is set in Global Flags in adi_rom_Boot().

2. Secure device boot.

WORKAROUND:
1. Do not use ignore blocks in the boot-stream for the above-mentioned cases.

APPLIES TO REVISION(S):
0.0

16. 20000124 - DMC Init routine not usable in Boot ROM:

DESCRIPTION:
DMC initialization in Boot ROM can not be performed through OTP programming or Boot ROM API call due to the existing PHY calibration

issue as captured in Anomaly ID: 20000117.

WORKAROUND:
1. DMC can be initialized properly through initcode or from user's application.

APPLIES TO REVISION(S):
0.0

17. 20000126 - Incorrect bit field values in EMSI_CAP2 register:

DESCRIPTION:
EMSI_CAP2 register denotes information specific to the eMSI controller implementation. eMSI controller does not support SDR50, SDR

104, and DDR 50 speed modes. But EMSI_CAP?2 register's SDR50_SUPPORT (0th) bit field, SDR104_SUPPORT (1st) bit field, and
DDR50_SUPPORT (2nd) bit field are incorrectly reporting them as supported.

WORKAROUND:
Software should not rely on these bit fields.

APPLIES TO REVISION(S):
0.0

18. 20000128 - Explicit core write to IRPTL register can cause pending FIRx/IIRx accelerator channel
completion interrupt to be cleared:

DESCRIPTION:
Any BIT SET IRTPL <data32>; and BIT CLR IRTPL <data32>; instruction, regardless of the value of the argument, will clear any pending
FIRx/IIRx accelerator channel completion interrupt latched in the IRPTL register when executed. This can result in FIRx/IIRx channel

completion interrupt miss.

WORKAROUND:
1. Do not use BIT SET IRPTL <data32>; and BIT CLR IRPTL <data32>; instruction to generate or ignore interrupts, if FIRx/IIRx accelerators

are used.
2. Use System Event Controller (SEC) to manage FIRx/IIRx accelerator channel completion interrupts if IRPTL must be explicitly written to

manage other interrupts.

APPLIES TO REVISION(S):
0.0

NR004873E | Page 130f 14 | May 2024

http://www.analog.com/ADSP-SC595
http://www.analog.com/ADSP-SC596
http://www.analog.com/ADSP-SC598

ADSP-SC395/SC596/SCa98

This page intentionally left blank.

©2024 Analog Devices, Inc. All rights reserved. Trademarks and

registered trademarks are the property of their respective owners. ANALOG www.analo g.com

DEVICES

NR004873E | Page 140f 14 | May 2024

http://www.analog.com/ADSP-SC595
http://www.analog.com/ADSP-SC596
http://www.analog.com/ADSP-SC598
http://www.analog.com
http://www.analog.com

	About ADSP-SC595/SC596/SC598 Silicon Anomalies
	Summary of Silicon Anomalies
	Detailed List of Silicon Anomalies
	20000002 - Data Forwarding from Rn/Sn to DAG Register May Fail in Presence of Stalls
	20000003 - Transactions on SPU and SMPU MMR Regions May Cause Errors
	20000031 - GP Timer Generates First Interrupt/Trigger One Edge Late in EXTCLK Mode
	20000062 - Writes to the SPI_SLVSEL Register Do Not Take Effect
	20000069 - PCSTK and MODE1STK Loads Do Not Occur If Next Instruction Is L2 or L3 Access
	20000072 - Floating-Point Computes Targeting F0 Register Can Cause Pipeline Stalls
	20000096 - Type 18a USTAT Instructions Fail When Following Specific Code Sequence
	20000103 - Unreliable SPDIF Receiver Clock Output Pulse Width at Sample Rates Above 96KHz
	20000114 - Circular Buffering in FIR Accelerator may not work properly in "burst access of length 16 words" mode
	20000117 - DMC PHY Calibration issue
	20000118 - FIR accelerator may produce wrong output for tap length greater than 1024 (multi-iteration mode) with prefetch buffer feature enabled.
	20000119 - END bit error may occur during eMSI data transfers due to clock gating
	20000120 - eMMC boot may fail for specific boot streams which cause clock gating scenario
	20000121 - eMMC device identification may fail during eMMC boot
	20000123 - Boot failure with Ignore Block in Page Mode
	20000124 - DMC Init routine not usable in Boot ROM
	20000126 - Incorrect bit field values in EMSI_CAP2 register
	20000128 - Explicit core write to IRPTL register can cause pending FIRx/IIRx accelerator channel completion interrupt to be cleared

