
Getting Started with
ADSP-BF537 EZ-KIT Lite®

 Revision 1.1, April 2006

Part Number
82-000865-02

Analog Devices, Inc.
One Technology Way
Norwood, Mass. 02062-9106 a

Copyright Information
©2006 Analog Devices, Inc., ALL RIGHTS RESERVED. This document
may not be reproduced in any form without prior, express written consent
from Analog Devices, Inc.

Printed in the USA.

Limited Warranty
The EZ-KIT Lite evaluation system is warranted against defects in materi-
als and workmanship for a period of one year from the date of purchase
from Analog Devices or from an authorized dealer.

Disclaimer
Analog Devices, Inc. reserves the right to change this product without
prior notice. Information furnished by Analog Devices is believed to be
accurate and reliable. However, no responsibility is assumed by Analog
Devices for its use; nor for any infringement of patents or other rights of
third parties which may result from its use. No license is granted by impli-
cation or otherwise under the patent rights of Analog Devices, Inc.

Trademark and Service Mark Notice
The Analog Devices logo, VisualDSP++, the VisualDSP++ logo, Blackfin,
the CROSSCORE logo, EZ-KIT Lite, and EZ-Extender are registered
trademarks of Analog Devices, Inc.

All other brand and product names are trademarks or service marks of
their respective owners.

Regulatory Compliance
The ADSP-BF537 EZ-KIT Lite evaluation system has been certified to
comply with the essential requirements of the European EMC directive
89/336/EEC (inclusive 93/68/EEC) and, therefore, carries the “CE”
mark.

The ADSP-BF537 EZ-KIT Lite evaluation system had been appended to
Analog Devices Development Tools Technical Construction File refer-
enced “DSPTOOLS1” dated December 21, 1997 and was awarded CE
Certification by an appointed European Competent Body and is on file.

The EZ-KIT Lite evaluation system contains ESD
(electrostatic discharge) sensitive devices. Electro-
static charges readily accumulate on the human
body and equipment and can discharge without
detection. Permanent damage may occur on devices
subjected to high-energy discharges. Proper ESD
precautions are recommended to avoid performance
degradation or loss of functionality. Store unused
EZ-KIT Lite boards in the protective shipping
package.

CONTENTS
PREFACE

Purpose of This Manual ... xii

Intended Audience .. xiii

Manual Contents .. xiii

What’s New in This Manual ... xiv

Technical or Customer Support .. xiv

Supported Processors ... xv

Product Information ... xv

MyAnalog.com .. xv

Processor Product Information .. xvi

Related Documents .. xvi

Online Technical Documentation .. xvii

Accessing Documentation From VisualDSP++ xviii

Accessing Documentation From Windows xix

Accessing Documentation From Web xix

Printed Manuals ... xix

VisualDSP++ Documentation Set ... xix

Hardware Tools Manuals ... xx

Processor Manuals ... xx
Getting Started with ADSP-BF537 EZ-KT Lite v

CONTENTS
Data Sheets .. xx

Notation Conventions ... xxi

PROGRAMMING ADSP-BF537 EZ-KIT LITE WITH
VISUALDSP++

Part 1: Connecting to EZ-KIT Lite and First Program 1-2

Part 2: Analyzing Performance and Memory Hierarchy Impact 1-9

Part 3: Working with Blackfin Voltage Regulator 1-15

Listing 1-1. Part 1 of Exercise 1 .. 1-16

Listing 1-2. Part 2 of Exercise 1 .. 1-19

Listing 1-3. Part 3 of Exercise 1 .. 1-23

RUNNING A TCP/IP APPLICATION ON AN ADSP-BF537
EZ-KIT LITE

Part 1: A Primer on TCP/IP, OS Threads and Semaphores, and Sockets API
2-2

Part 2: Creating a TCP/IP Application and Connecting to a DHCP Server
2-3

Part 3: Communicating with Sockets API 2-6

Listing 2-1. Caesar_Cipher_ThreadType::Run() Implementation ... 2-9

Listing 2-2. Caesar_Cipher_ThreadType() Implementation 2-11

Listing 2-3. VDK::Thread Implementation 2-11

Listing 2-4. lwip_sysboot_threadtype_RunFunction() Implementation
2-12

CONTROLLING A REAL-TIME APPLICATION VIA
vi Getting Started with ADSP-BF537 EZ-KT Lite

CONTENTS
TCP/IP

Part 1: Creating an Audio Pass-through Application with VDK 3-2

Part 2: Controlling Pass-through Volume via Telnet 3-7

Part 3: Tuning Application .. 3-13

Part 4: Running Application from Flash Memory 3-15

Listing 3-1. Caesar_Cipher_ThreadType::Run() New Implementation 3-19

What Is Next? ... 3-21

CREATING A TCP/IP APPLICATION

TCP/IP Framework .. A-1

TCP/IP Communications ... A-2

VisualDSP++ Kernel (VDK) Overview ... A-3

BSD Socket API ... A-3

1. Create Sockets .. A-4

2. Host Waits for Client ... A-4

3. Client Connects with Host ... A-4

4. Host Acknowledges Client .. A-5

5. Inter-Process Communications A-5

6. Close Connection .. A-5

INDEX
Getting Started with ADSP-BF537 EZ-KT Lite vii

CONTENTS
viii Getting Started with ADSP-BF537 EZ-KT Lite

PREFACE

Thank you for purchasing the ADSP-BF537 EZ-KIT Lite®, Analog

Devices, Inc. evaluation system for ADSP-BF537 Blackfin® processors.

The Blackfin processors are embedded processors that support a Media
Instruction Set Computing (MISC) architecture. This architecture is the
natural merging of RISC, media functions, and digital signal processing
(DSP) characteristics towards delivering signal processing performance in
a microprocessor-like environment.

The evaluation board is designed to be used in conjunction with the Visu-
alDSP++® development environment to test the capabilities of the
ADSP-BF537 Blackfin processors. The VisualDSP++ development envi-
ronment gives you the ability to perform advanced application code
development and debug, such as:

• Create, compile, assemble, and link application programs written
in C++, C and ADSP-BF537 assembly

• Load, run, step, halt, and set breakpoints in application program

• Read and write data and program memory

• Read and write core and peripheral registers

• Plot memory

Access to the ADSP-BF537 processor from a personal computer (PC) is
achieved through a USB port or an optional JTAG emulator. The USB
interface provides unrestricted access to the ADSP-BF537 processor and
the evaluation board peripherals. Analog Devices JTAG emulators offer
Getting Started with ADSP-BF537 EZ-KT Lite ix

faster communication between the host PC and target hardware. Analog
Devices carries a wide range of in-circuit emulation products. To learn
more about Analog Devices emulators and processor development tools,
go to http://www.analog.com/dsp/tools/.

ADSP-BF537 EZ-KIT Lite provides example programs to demonstrate
the capabilities of the evaluation board.

The ADSP-BF537 EZ-KIT Lite installation is part of the Visu-
alDSP++ installation. The EZ-KIT Lite is a licensed product that
offers an evaluation (temporary) license. Once the evaluation
license expires, VisualDSP++ restricts simulator and emulator con-
nections and limits the size of a user program to 20 KB of internal
memory.

The board features:

• Analog Devices ADSP-BF537 processor

Performance up to 600 MHz
182-pin mini-BGA package
25 MHz crystal CLKIN oscillator

• Synchronous dynamic random access memory (SDRAM)

MT48LC32M8 – 64 MB (8M x8-bits x 4 banks) x 2 chips

• Flash memory

4MB (2M x 16-bits)

• Analog audio interface

AD1871 96 kHz analog-to-digital codec (ADC)
AD1854 96 kHz digital-to-audio codec (DAC)
1 input stereo jack
1 output stereo jack
x Getting Started with ADSP-BF537 EZ-KT Lite

http://www.analog.com/dsp/tools/

Preface
• Ethernet interface

10-BaseT (10 Mbits/sec) and 100-BaseT (100 Mbits/sec)
Ethernet Medium Access Controller (MAC)
SMSC LAN83C185 device

• Controller Area Network (CAN) interface

Philips TJA1041 high-speed CAN transceiver

• National Instruments Educational Laboratory Virtual Instrumen-
tation Suite Interface (ELVIS)

LabVIEW™-based virtual instruments

Multifunction data acquisition device

Bench-top workstation and prototype board

• Universal asynchronous receiver/transmitter (UART)

ADM3202 RS-232 line driver/receiver
DB9 female connector

• LEDs

9 LEDs: 1 power (green), 1 board reset (red), 6 general pur-
pose (amber), and 1 USB monitor (amber)

• Push buttons

5 push buttons: 1 reset, 3 programmable flags with
debounce logic
1 programmable flag without debounce logic
Getting Started with ADSP-BF537 EZ-KT Lite xi

Purpose of This Manual
• Expansion interface

All processor signals

• Other features

JTAG ICE 14-pin header

The EZ-KIT Lite board has flash memory with a total of 4 MB. The flash
memory can be used to store user-specific boot code, allowing the board
to run as a stand-alone unit. The board has 64 MB of SDRAM, which can
be used at runtime.

SPORT0 interfaces with the audio circuit, facilitating development of audio
signal processing applications. SPORT0 also connects to an off-board con-
nector for communication with other serial devices.

The UART of the processor connects to an RS-232 line driver and a DB9
female connector, providing an interface to a PC or other serial device.

Additionally, the EZ-KIT Lite board provides access to all of the proces-
sor’s peripheral ports. Access is provided in the form of a three-connector
expansion interface.

For information about the hardware components of the EZ-KIT Lite,
refer to the ADSP-BF537 EZ-KIT Lite Evaluation System Manual.

Purpose of This Manual
The Getting Started with ADSP-BF537 EZ-KT Lite familiarizes users with
the hardware capabilities of the evaluation system and demonstrates how
to access these capabilities in the VisualDSP++ environment.

EZ-KIT Lite users should use this manual in conjunction with the
ADSP-BF537 EZ-KIT Lite Evaluation System Manual, which describe the
evaluation system’s components in greater detail.
xii Getting Started with ADSP-BF537 EZ-KT Lite

Preface
Intended Audience
The primary audience of this manual is a programmer with some experi-
ence in desktop and/or embedded programming, but with little or no
experience with the Blackfin architecture and/or VisualDSP++. A working
knowledge of the C and C++ programming languages will be extremely
helpful in understanding the examples and source code blocks referenced
in this manual.

Manual Contents
The manual consists of:

• Exercise 1, “Programming ADSP-BF537 EZ-KIT Lite with Visu-
alDSP++” on page 1-1
Provide instructions for connecting the EZ-KIT Lite to a PC and
writing a C program to perform two sorting algorithms.

• Exercise 2, “Running a TCP/IP application on an ADSP-BF537
EZ-KIT Lite” on page 2-1
Provides instruction for creating a TCP/IP application using the
open source LwIP stack and VisualDSP++ Kernel.

• Exercise 3, “Controlling a real-time application via TCP/IP” on
page 3-1
Provides instructions for creating a complex application with audio
pass-through VDK threads that operate concurrently and indepen-
dently with the TCP/IP stack’s operations.

• Appendix A, “Creating a TCP/IP Application” on page A-1
Familiarizes the user with the concepts utilized in creation of a
TCP/IP application.
Getting Started with ADSP-BF537 EZ-KT Lite xiii

What’s New in This Manual
What’s New in This Manual
The Getting Started with ADSP-BF537 EZ-KT Lite has been updated for
VisualDSP++ 4.5.

Technical or Customer Support
You can reach Analog Devices, Inc. Customer Support in the following
ways:

• Visit the Embedded Processing and DSP products Web site at
http://www.analog.com/processors/technicalSupport

• E-mail tools questions to
processor.tools.support@analog.com

• E-mail processor questions to
processor.support@analog.com (World wide support)

processor.europe@analog.com (Europe support)

processor.china@analog.com (China support)

• Phone questions to 1-800-ANALOGD

• Contact your Analog Devices, Inc. local sales office or authorized
distributor

• Send questions by mail to:
Analog Devices, Inc.

One Technology Way

P.O. Box 9106

Norwood, MA 02062-9106

USA
xiv Getting Started with ADSP-BF537 EZ-KT Lite

http://www.analog.com/processors/technicalSupport
mailto:processor.tools.support@analog.com
mailto:processor.support@analog.com
mailto:processor.europe@analog.com
mailto:processor.china@analog.com

Preface
Supported Processors
The ADSP-BF537 EZ-KIT Lite evaluation system supports the Analog
Devices ADSP-BF537 Blackfin processors.

Product Information
You can obtain product information from the Analog Devices Web site,
from the product CD-ROM, or from the printed publications (manuals).

Analog Devices is online at www.analog.com. Our Web site provides infor-
mation about a broad range of products—analog integrated circuits,
amplifiers, converters, and digital signal processors.

MyAnalog.com
MyAnalog.com is a free feature of the Analog Devices Web site that allows
customization of a Web page to display only the latest information on
products you are interested in. You can also choose to receive weekly
e-mail notifications containing updates to the Web pages that meet your
interests. MyAnalog.com provides access to books, application notes, data
sheets, code examples, and more.

Registration:

Visit www.myanalog.com to sign up. Click Register to use MyAnalog.com.
Registration takes about five minutes and serves as means for you to select
the information you want to receive.

If you are already a registered user, just log on. Your user name is your
e-mail address.
Getting Started with ADSP-BF537 EZ-KT Lite xv

http://www.analog.com
http://www.myanalog.com

Product Information
Processor Product Information
For information on embedded processors and DSPs, visit our Web site at
www.analog.com/processors, which provides access to technical publica-
tions, data sheets, application notes, product overviews, and product
announcements.

You may also obtain additional information about Analog Devices and its
products in any of the following ways.

• E-mail questions or requests for information to
processor.support@analog.com (World wide support)
processor.europe@analog.com (Europe support)
processor.china@analog.com (China support)

• Fax questions or requests for information to
1-781-461-3010 (North America)
+49-89-76903-157 (Europe)

Related Documents
For information on product related development software and hardware,
see these publications:

Table 1. Related Processor Publications

Title Description

ADSP-BF536/ADSP-BF537 Embedded Proces-
sor Data Sheet

General functional description, pinout, and
timing.

ADSP-BF537 Blackfin Processor Hardware Ref-
erence

Description of internal processor architecture
and all register functions.
xvi Getting Started with ADSP-BF537 EZ-KT Lite

http://www.analog.com/processors
mailto:processor.support@analog.com
mailto:processor.europe@analog.com
mailto:processor.china@analog.com

Preface
If you plan to use the EZ-KIT Lite board in conjunction with a
JTAG emulator, also refer to the documentation that accompanies
the emulator.

All documentation is available online. Most documentation is available in
printed form.

Visit the Technical Library Web site to access all processor and tools man-
uals and data sheets:
http://www.analog.com/processors/resources/technicalLibrary.

Online Technical Documentation
Online documentation comprises the VisualDSP++ Help system, software
tools manuals, hardware tools manuals, processor manuals, the Dinkum
Abridged C++ library, and Flexible License Manager (FlexLM) network

Table 2. Related VisualDSP++ Publications

Title Description

ADSP-BF537 EZ-KIT Lite Evaluation System

Manual

Description of the ADSP-BF537 EZ-KIT Lite’s
hardware and software components.

VisualDSP++ User’s Guide Description of VisualDSP++ features and
usage.

VisualDSP++ Assembler and Preprocessor Man-
ual

Description of the assembler function and
commands.

VisualDSP++ C/C++ Complier and Library
Manual for Blackfin Processors

Description of the complier function and com-
mands for Blackfin processors.

VisualDSP++ Linker and Utilities Manual Description of the linker function and com-
mands.

VisualDSP++ Loader and Utilities Manual Description of the loader/splitter function and
commands.
Getting Started with ADSP-BF537 EZ-KT Lite xvii

http://www.analog.com/processors/resources/technicalLibrary

Product Information
license manager software documentation. You can easily search across the
entire VisualDSP++ documentation set for any topic of interest. For easy
printing, supplementary .pdf files of most manuals are also provided.

Each documentation file type is described as follows.

If documentation is not installed on your system as part of the software
installation, you can add it from the VisualDSP++ CD-ROM at any time
by running the Tools installation. Access the online documentation from
the VisualDSP++ environment, Windows® Explorer, or the Analog
Devices Web site.

Accessing Documentation From VisualDSP++

To view VisualDSP++ Help, click on the Help menu item or go to the
Windows task bar and navigate to the VisualDSP++ documentation via
the Start menu.

To view ADSP-BF537 EZ-KIT Lite Help, which is part of the Visu-
alDSP++ Help system, use the Contents or Search tab of the Help
window.

File Description

.chm Help system files and manuals in Help format

.htm or

.html
Dinkum Abridged C++ library and FlexLM network license manager software doc-
umentation. Viewing and printing the .html files requires a browser, such as
Internet Explorer 5.01 (or higher).

.pdf VisualDSP++ and processor manuals in Portable Documentation Format (PDF).
Viewing and printing the .pdf files requires a PDF reader, such as Adobe Acrobat
Reader (4.0 or higher).
xviii Getting Started with ADSP-BF537 EZ-KT Lite

Preface
Accessing Documentation From Windows

In addition to any shortcuts you may have constructed, there are many
ways to open VisualDSP++ online Help or the supplementary documenta-
tion from Windows.

Help system files (.chm) are located in the Help folder, and .pdf files are
located in the Docs folder of your VisualDSP++ installation CD-ROM.
The Docs folder also contains the Dinkum Abridged C++ library and the
FlexLM network license manager software documentation.

Your software installation kit includes online Help as part of the Win-
dows® interface. These help files provide information about VisualDSP++
and the ADSP-BF537 EZ-KIT Lite evaluation system.

Accessing Documentation From Web

Download manuals at the following Web site:
http://www.analog.com/processors/resources/technicalLibrary/man-

uals.

Select a processor family and book title. Download archive (.zip) files,
one for each manual. Use any archive management software, such as Win-
Zip, to decompress downloaded files.

Printed Manuals
For general questions regarding literature ordering, call the Literature
Center at 1-800-ANALOGD (1-800-262-5643) and follow the prompts.

VisualDSP++ Documentation Set

To purchase VisualDSP++ manuals, call 1-603-883-2430. The manuals
may be purchased only as a kit.
Getting Started with ADSP-BF537 EZ-KT Lite xix

http://www.analog.com/processors/resources/technicalLibrary/manuals
http://www.analog.com/processors/resources/technicalLibrary/manuals

Product Information
If you do not have an account with Analog Devices, you are referred to
Analog Devices distributors. For information on our distributors, log onto
http://www.analog.com/salesdir/continent.asp.

Hardware Tools Manuals

To purchase EZ-KIT Lite and in-circuit emulator (ICE) manuals, call
1-603-883-2430. The manuals may be ordered by title or by product
number located on the back cover of each manual.

Processor Manuals

Hardware reference and instruction set reference manuals may be ordered
through the Literature Center at 1-800-ANALOGD (1-800-262-5643),
or downloaded from the Analog Devices Web site. Manuals may be
ordered by title or by product number located on the back cover of each
manual.

Data Sheets

All data sheets (preliminary and production) may be downloaded from the
Analog Devices Web site. Only production (final) data sheets (Rev. 0, A,
B, C, and so on) can be obtained from the Literature Center at
1-800-ANALOGD (1-800-262-5643); they also can be downloaded from
the Web site.

To have a data sheet faxed to you, call the Analog Devices Faxback System
at 1-800-446-6212. Follow the prompts and a list of data sheet code
numbers will be faxed to you. If the data sheet you want is not listed,
check for it on the Web site.
xx Getting Started with ADSP-BF537 EZ-KT Lite

http://www.analog.com/salesdir/continent.asp

Preface
Notation Conventions
Text conventions used in this manual are identified and described as
follows.

Example Description

Close command
(File menu)

Titles in reference sections indicate the location of an item within the
VisualDSP++ environment’s menu system (for example, the Close
command appears on the File menu).

{this | that} Alternative required items in syntax descriptions appear within curly
brackets and separated by vertical bars; read the example as this or
that. One or the other is required.

[this | that] Optional items in syntax descriptions appear within brackets and sepa-
rated by vertical bars; read the example as an optional this or that.

[this,…] Optional item lists in syntax descriptions appear within brackets
delimited by commas and terminated with an ellipse; read the example
as an optional comma-separated list of this.

.SECTION Commands, directives, keywords, and feature names are in text with
letter gothic font.

filename Non-keyword placeholders appear in text with italic style format.

Note: For correct operation, ...
A Note provides supplementary information on a related topic. In the
online version of this book, the word Note appears instead of this

symbol.

Caution: Incorrect device operation may result if ...
Caution: Device damage may result if ...
A Caution identifies conditions or inappropriate usage of the product
that could lead to undesirable results or product damage. In the online
version of this book, the word Caution appears instead of this symbol.

Warning: Injury to device users may result if ...
A Warning identifies conditions or inappropriate usage of the product
that could lead to conditions that are potentially hazardous for the
devices users. In the online version of this book, the word Warning
appears instead of this symbol.
Getting Started with ADSP-BF537 EZ-KT Lite xxi

Notation Conventions
Additional conventions, which apply only to specific chapters, may
appear throughout this document.
xxii Getting Started with ADSP-BF537 EZ-KT Lite

1 PROGRAMMING
ADSP-BF537 EZ-KIT LITE WITH
VISUALDSP++

In Exercise 1, you will connect your personal computer (PC) to the

ADSP-BF537 EZ-KIT Lite evaluation system and write a simple C lan-
guage program to perform two sorting algorithms. You will be presented
with techniques to graphically visualize the effects of the sorts. Next, you
will measure the Blackfin processor’s performance and learn how the pro-
gram’s placement (within the processor memory hierarchy) impacts the
performance. Finally, you will study the processor performance in terms
of speed and voltage trade-offs.

In the exercise, you will learn about the following concepts.

• VisualDSP++ sessions and target types

• Plot windows

• Project configurations

• Benchmarking code with a Blackfin processor’s cycle counter and
real-time clock

• Statistical profiling

• Blackfin processor’s memory hierarchy, cache, and direct L1 mem-
ory placement

• Blackfin processor’s voltage regular and Processor Library
accessibility
Getting Started with ADSP-BF537 EZ-KT Lite 1-1

Part 1: Connecting to EZ-KIT Lite and First Program
Part 1: Connecting to EZ-KIT Lite and First
Program

Install VisualDSP++ on a PC with Windows 2000 or Windows XP oper-
ating system; connect the EZ-KIT Lite to the PC using the provided
cable; and install your license as outlined in the VisualDSP++ Installation
Quick Reference Card.

The illuminated amber LED (labeled USB_MONITOR, found near the USB
jack) indicates that the connection between the PC and EZ-KIT Lite is
established successfully.

From the Start menu, navigate to the VisualDSP++ environment via the
Programs menu. After a second or two, the main VisualDSP++ window
appears on the screen. When VisualDSP++ launches for the first time, it
does not connect to any session (Figure 1-1).

Figure 1-1. VisualDSP++ Main Window
1-2 Getting Started with ADSP-BF537 EZ-KT Lite

Programming ADSP-BF537 EZ-KIT Lite with VisualDSP++
VisualDSP++ is able to connect to a number of different debug sessions,
where each session has its own application and benefits. The session types
available with VisualDSP++ are1:

• EZ-KIT Lite. This is the dedicated USB connection between the
PC and EZ-KIT Lite. An EZ-KIT connection is simple to manage
and is part of the EZ-KIT Lite. However, the connection is avail-
able with the kit only. Once your custom hardware board is
available for development, you use an emulator session (described
below) to connect to the custom hardware.

• Simulator. This is a software model of the processor. Simulators
offer unique advantages, the first is that no external hardware is
required, a great benefit when using VisualDSP++ on the road.
Furthermore, simulators offer a unique insight to the internal
workings of the processor (pipelines, caches, and more), which is
not possible with hardware-based sessions. The downside is that a
simulator is several orders of magnitude slower than actual hard-
ware. The software model simulates only the processor, making it
difficult to accurately simulate a complex system that involves
more than the processor.

VisualDSP++ includes two types of Blackfin simulators:
a cycle-accurate interpreted and a functional compiled. A
cycle-accurate simulator is a completely accurate model of the
Blackfin processor and allows you to fully visualize the inner-work-
ings of the processor. The compiled simulator sacrifices the
detailed view but allows you to simulate much more quickly, mil-
lions of cycles per second, depending on the speed of your PC.

For a more comprehensive discussion and exercises concerning
simulators’ unique features, refer to VisualDSP++ Getting Started
Guide, available in VisualDSP++ Help system.

1 Third-party software may add additional session types.
Getting Started with ADSP-BF537 EZ-KT Lite 1-3

Part 1: Connecting to EZ-KIT Lite and First Program
• Emulator. This is a JTAG emulator, the ideal device for connect-
ing to hardware, giving the best performance and maximum
flexibility. A separate module from the PC and EZ-KIT Lite, an
emulator provides a high-bandwidth connection between the PC
and device being debugged. Currently, Analog Devices offers USB-
and PCI- based emulators. An emulator is required to connect to
any non-EZ-KIT Lite hardware.

• Legacy target. This is a target created in VisualDSP++ 4.0 or a
prior version.

Throughout these exercises, we use the EZ-KIT Lite connection.

To connect to the EZ-KIT Lite, select Session –> New Session, which
launches the Session Wizard (Figure 1-2).

Figure 1-2. Session Wizard
1-4 Getting Started with ADSP-BF537 EZ-KT Lite

Programming ADSP-BF537 EZ-KIT Lite with VisualDSP++
1. On the Select Processor page, select ADSP-BF537 in Choose a
target processor. Ensure Blackfin is selected as Processor family.
Click Next.

2. On the Select Connection Type page, select EZ-KIT Lite. Click
Next.

3. On the Select Platform page, select ADSP-BF537 EZ-KIT Lite via
Debug Agent from Select your platform. Specify your own or
accept the default name as Session name. Click Next.

4. On the Finish page, click Finish. The new ADSP-BF537 EZ-KIT
Lite session is created.

Now it is time to start our first C program. “Listing 1-1. Part 1 of Exercise
1” on page 1-16 is the C program we start and expand throughout this
exercise. The program randomizes and sorts two arrays using classic sort-
ing algorithms: the bubble sort and the quick sort. If you are familiar with
the algorithms, you know that the quick sort, true to its name, is the faster
of the two algorithms (on average, O(n log n) versus O(n2)).

To spare you from typing in the program, the entire Exercise 1 source
code is included on the VisualDSP++ distribution CD. The part 1 pro-
gram is in the …\Blackfin\Examples\ADSP-BF537 EZ-Kit Lite\Getting
Started Examples\Part_1_1 directory, with … corresponding to your
VisualDSP++ installation directory. The default installation directory is
C:\Program Files\Analog Devices\VisualDSP 4.5.

Open the project file for the first part of Exercise 1 by selecting
File–>Open–>Project, browsing to the exercise directory, and selecting
the Sorts_1_1.dpj project file1. Once the project is opened, you can view
its source code by double-clicking the Sorts.c icon in the Project window.

1 If your PC is used by multiple VisualDSP++ users and/or you do not have write privileges, copy the
entire Getting Started Examples folder to a location you can use without influencing other users.
Getting Started with ADSP-BF537 EZ-KT Lite 1-5

Part 1: Connecting to EZ-KIT Lite and First Program
Build and load the program to the EZ-KIT Lite using the Project –>
Build Project command (or use the F7 hotkey). The program is now
loaded. Observe the blue bar on the first instruction in the main()
function.

To visualize the activity discussed in the exercise, create two plot windows,
one for the out_b array and one for the out_m array.

To create a plot window for the out_b array:

1. Select the View–>Debug Windows–>Plot–>New menu item.
The Plot Configuration dialog box appears.

2. Change Title to Monitoring out_b.

3. Type out_b in the Address field.

4. Type 128 (the length of the out_b array) in the Count field.

5. Change Data to int (the type of our data).

6. Click Add, then click OK.

Repeat this procedure to create a plot window for the out_m variable1,
adjusting steps 2 and 3 accordingly. Once the plot windows are created,
adjust them to comfortable sizes. Your plot windows look similar to the
plot in Figure 1-3.

Note that both plot windows are flat at zero because the arrays are
zero-initialized by VisualDSP++. Watch VisualDSP++ update the win-
dows as we step into the program.

1 Note that you can add both plots to a single window. However, this is undesirable when two plots
have the same results, causing the plot lines to overwrite each other.
1-6 Getting Started with ADSP-BF537 EZ-KT Lite

Programming ADSP-BF537 EZ-KIT Lite with VisualDSP++
Issue the Debug–>Step Over command (or use the F10 hotkey) three
times to highlight a call to the bubble_sort() function, the next instruc-
tion to execute. The two plot windows show the random values to which
the arrays are initialized. Step Over again to observe that the out_b array is
now sorted. Step Over one more time to observe that out_m is also sorted.

Note that the part 1 project uses the debug configuration (Figure 1-4).

Figure 1-3. Plot Window

Figure 1-4. Project Debug Configuration
Getting Started with ADSP-BF537 EZ-KT Lite 1-7

Part 1: Connecting to EZ-KIT Lite and First Program
The debug configuration is one of the two configurations VisualDSP++
provides for projects. You can create more configurations. A configuration
is a set of project build options, similar, in concept, to a Makefile target. It
is often desirable to maintain different types of configurations for your
system. For example, while debugging, you may want to include trace or
other debugging information, which is not desired in the released product.
A VisualDSP++ configuration allows you to create alternate build settings
without “upsetting” the build settings of your final product.

VisualDSP++ automatically adds two configurations for every project it
creates. These configurations are:

• Debug. Used for functional debugging of your system. Compiler
optimizations are off, giving you and the debugger the most linear
and easily-debugged code.

• Release. Used for your production system. Compiler optimizations
are on and maximally aggressive, sacrificing readability and some
debugger support.

At this point, feel free to experiment with the debugger further, familiariz-
ing yourself with the windows and basic mechanics of running, halting,
stepping, and reloading. C language debugging windows, such as local
variable and expression monitors, stack window, and others are available
under View–>Debug Windows.
1-8 Getting Started with ADSP-BF537 EZ-KT Lite

Programming ADSP-BF537 EZ-KIT Lite with VisualDSP++
Part 2: Analyzing Performance and
Memory Hierarchy Impact

Once you have familiarized yourself with basic VisualDSP++ operations, it
is time to use VisualDSP++ to analyze and tweak the program’s perfor-
mance. Close the part 1 project with File–>Close–>Project. Open the
new project, …\Blackfin\Examples\ADSP-BF537 EZ-Kit Lite\Getting
Started Examples\Part_1_2\Sorts_1_2.dpj. The part 2 project builds on
the program discussed in the previous exercise.

“Listing 1-2. Part 2 of Exercise 1” on page 1-19 includes new lines of code
(delineated in italics). This example’s code has been, for now, placed into
external SDRAM to better demonstrate the effects of memory placement.
Since the exercise concerns run-time code performance, we use the com-
piler to optimize the project.

Select the release configuration for the project by choosing the Release
configuration from the drop-down box (Figure 1-5).

Figure 1-5. Project Release Configuration
Getting Started with ADSP-BF537 EZ-KT Lite 1-9

Part 2: Analyzing Performance and Memory Hierarchy Impact
Then use Project–>Build Project (or use the F7 hotkey) to build the opti-
mized version of the program.

Now you can benchmark and profile the program by:

• Taking advantage of the built-in cycle counters of the Blackfin pro-
cessor by including some benchmark-gathering code in the
program.

• Using the real-time clock of the ADSP-BF537 processor. This
clock measures “human-scale” time (seconds, minutes, and so on).

Both cycle count and real-time are being measured because, as we
learn later, the relationship between the values is not necessarily a
constant multiplier.

• Using the statistical profiler. The statistical profiler is a unique tool
that polls the Blackfin processor hundreds of times in a second.
The data is used to paint a statistical view of the program to deter-
mine where the program spends the majority of its time.

The profiler has a distinct advantage over traditional profiling tech-
niques because it operates non-intrusively (tradition profiling
techniques require an instrumentation of your project), requiring
zero overhead and not influencing your program’s operation. How-
ever, because the profiling is statistical in nature, it cannot be relied
on as a code coverage tool, and it cannot show caller information.
For this kind of analysis, traditional, instrumented profiling is also
available.

For the part 2 program, we use statistical profiling. Enable the statistical
profiler by selecting Tools–>Statistical Profiling–> New Profile. Move
and resize the new window until the viewing space is comfortable to con-
tinue the exercise.
1-10 Getting Started with ADSP-BF537 EZ-KT Lite

Programming ADSP-BF537 EZ-KIT Lite with VisualDSP++
Run the program using Debug –>Run (or use the F5 hotkey). The pro-
grams may take 30 seconds or more to run to completion (by design).
When the program runs, its status information displays in the lower-right
corner of the VisualDSP++ main window (Figure 1-6).

When the program completes, the Console page of the Output window
displays an informative message (in green text, similar to “xx seconds in
approx. xxxx cycles”). The message is the output of the printf() call
placed at the end of the main() function. Take a note of the timing pre-
sented. Now look at the statistical profiling window (Figure 1-7).

Results may vary slightly on your computer.

Not surprisingly, the vast majority of the project’s time is spent in the
bubble sort algorithm.

Figure 1-6. Program Status Information
Getting Started with ADSP-BF537 EZ-KT Lite 1-11

Part 2: Analyzing Performance and Memory Hierarchy Impact
The Blackfin processor has a memory hierarchy, with a small amount of
internal SRAM (L1) flexible in its configuration. You can configure the
SRAM as a cache for slower external SDRAM or as “straight” memory for
completely optimal, zero latency, access speed. The fact is, the
Sorts_1_2.dpj program currently is running under somewhat artificial
“worse case” conditions. The program’s code has been placed into external
SDRAM, while internal memory of the Blackfin processor remains com-
pletely unused.

The next steps demonstrate how the proper utilization of the memory
hierarchy of the Blackfin processor can dramatically improve the program
performance. The “easiest” way to improve the performance is to enable
the instruction cache1 of the Blackfin processor.

Figure 1-7. Statistical Profiling: Initial Results

1 The Blackfin processor also has a data cache, but its discussion is beyond this exercise. Refer to the
ADSP-BF537 Blackfin Processor Hardware Reference for more information.
1-12 Getting Started with ADSP-BF537 EZ-KT Lite

Programming ADSP-BF537 EZ-KIT Lite with VisualDSP++
To enable the instruction cache:

1. In the Project–>Project Options dialog box, navigate to the Star-
tup Code Settings–>Cache and Memory Protection dialog box
(Figure 1-8).

2. Change Instruction cache memory to Enable instruction cache
and click OK to save the changes.

3. Rebuild and rerun your program.

There is a dramatic improvement in the program’s performance, reflected
by the output of the printf() statement. The statistical profiling win-
dow’s results are largely unchanged. Note that since this is a statistical
view, minor differences between the program runs are expected.

Another way to tune the performance of a Blackfin processor is to place
key algorithms into internal memory. In this program, bubble_sort() is
the “key algorithm” in that it consumes the majority of the Blackfin’s pro-

Figure 1-8. Cache Dialog Box
Getting Started with ADSP-BF537 EZ-KT Lite 1-13

Part 2: Analyzing Performance and Memory Hierarchy Impact
cessing power. You can demonstrate the effect of placing the key
algorithm in internal memory by, first, “undoing” the cache set-up and,
then, placing the bubble_sort() function into L1 internal memory:

1. In the Project–>Project Options dialog box, navigate to the Star-
tup Code Settings–>Cache and Memory Protection dialog box
and change Instruction cache memory to Disable cache and dis-
able memory protection.

2. In the sorts.c file, go to the declaration of bubble_sort() and add
the section qualifier to place this function (and this function only)
into internal L1 memory:
section("L1_code") void bubble_sort(int *v,

unsigned int length)

3. Build and run your program to completion. Now observe that the
overall performance is better than the first, non-cached run, but
not as good as the cached run because a significant portion of the
program still runs from external memory without the benefit of a
cache.

The statistical profile shows an interesting effect of the change: the
bubble_sort() function no longer uses the largest percentage of the pro-
cessor time—quick_sort() is now the most time-consuming portion of
the application (Figure 1-9).

If quick_sort() is moved to internal memory as well, overall execution
time again improves and the relative speed of bubble_sort() versus
quick_sort() returns to the expected ratio.

The exercise program is small enough to fit entirely into internal memory
of the processor. In this scenario, VisualDSP++ places the program into
internal memory by default. However, this is not likely to be the case for a
complex application, where the techniques utilized in this exercise come
into play. The optimal memory configuration varies from an application
to application, possibly involving a blend of caching and direct L1
placement.
1-14 Getting Started with ADSP-BF537 EZ-KT Lite

Programming ADSP-BF537 EZ-KIT Lite with VisualDSP++
Part 3: Working with Blackfin Voltage
Regulator

All Blackfin processors, including the ADSP-BF537, include an on-chip
voltage regulator that allows you to control the processor’s power con-
sumption and clock. The trade-off is non-linear, that is, an increase in
clock frequency requires a larger voltage which is non-linearly greater than
the clock frequency gain. Conversely, dropping the clock frequency cre-
ates an even greater drop in the required voltage (see the
ADSP-BF536/ADSP-BF537 Embedded Processor Data Sheet for specifics).
VisualDSP++ allows you to easily change the voltage and clock speed in a
running application. The remainder of this exercise uses the System Ser-
vices Library to run the application at a variety of voltage levels.

Close the part 2 project and open the project …\Blackfin\Exam-
ples\ADSP-BF537 EZ-Kit Lite\Getting Started

Examples\Part_1_3\Sorts_1_3.dpj. Again, the new project builds on the
project of the previous exercise, but now with the entire application load-
ing into L1 memory of the ADSP-BF537 processor. “Listing 1-3. Part 3 of
Exercise 1” on page 1-23 delineates the new lines of code in italics. Signif-

Figure 1-9. Statistical Profiling: Results after Moving bubble_sort()
Getting Started with ADSP-BF537 EZ-KT Lite 1-15

Listing 1-1. Part 1 of Exercise 1
icantly, the bulk of the main() function is placed in a loop. The goal is to
effectively run the previous exercise at four different voltages (see the
voltage_levels struct declared above main()).

You again use the Release configuration for this exercise. Build and run
the program. It takes a full minute or more to run the program to comple-
tion, using printf() to output a table of results to the VisualDSP++
Console window. The results are shown in Figure 1-10.

Results may vary slightly on your computer.

The key observation are:

• As voltage increases, execution time decreases

• Cycle count remains constant regardless of the voltage.

Listing 1-1. Part 1 of Exercise 1
/*

* Getting Started With the ADSP-BF537 EZ-KIT Lite

* Part 1, Exercise 1

*/

#include <stdlib.h>

#define NUM_ITERATIONS 1

#define ARRAY_LENGTH 128

Figure 1-10. Sorts Results in Console Window
1-16 Getting Started with ADSP-BF537 EZ-KT Lite

Programming ADSP-BF537 EZ-KIT Lite with VisualDSP++
/* Initialize two arrays to the same set of random values */

void randomize_arrays (int *v1, int *v2, unsigned int length)

{

unsigned int i;

for (i = 0; i < length; ++i)

{

v1[i] = v2[i] = rand () % 1024;

}

}

/* A standard bubble sort algorithm, O(n^2) */

void bubble_sort (int *v, unsigned int length)

{

unsigned int i, j;

for (i = 0; i < length - 1; ++i)

{

for (j = i + 1; j < length; ++j)

{

if (v[i] > v[j])

{

int temp = v[i];

v[i] = v[j];

v[j] = temp;

}

}

}

/* A standard quick sort algorithm, O(n*log(n)) */

void quick_sort (int *v, unsigned int p, unsigned int r)

{

if (p < r)

{

unsigned int x, i, j, q;

x = v[p];

i = p - 1;
Getting Started with ADSP-BF537 EZ-KT Lite 1-17

Listing 1-1. Part 1 of Exercise 1
j = r + 1;

for (;;)

{

do { --j; } while (v[j] > x);

do { ++i; } while (v[i] < x);

if (i < j)

{

int temp = v[i];

v[i] = v[j];

v[j] = temp;

}

else

{

q = j;

break;

}

}

quick_sort (v, p, q);

quick_sort (v, q + 1, r);

}

}

int out_b[ARRAY_LENGTH];

int out_m[ARRAY_LENGTH];

void main (){

int i;

srand (22);

for (i = 0; i < NUM_ITERATIONS; ++i)

{

randomize_arrays (out_b, out_m, ARRAY_LENGTH);

bubble_sort (out_b, ARRAY_LENGTH);

quick_sort (out_m, 0, ARRAY_LENGTH - 1);

}

}

1-18 Getting Started with ADSP-BF537 EZ-KT Lite

Programming ADSP-BF537 EZ-KIT Lite with VisualDSP++
Listing 1-2. Part 2 of Exercise 1
/*

 * Getting Started With the ADSP-BF537 EZ-KIT Lite

 * Part 1, Exercise 2

 */

#include <stdlib.h>

#include <stdio.h>

#include <ccblkfn.h>

#include <cdefbf533.h>

#include <sysreg.h>

#include <time.h>

#define NUM_ITERATIONS 5000

#define ARRAY_LENGTH 128

void start_real_time_clock(void);

unsigned int get_real_time_clock_in_seconds(void);

/* Helper function to enable the real-time clock and reset it to

time "zero" */

#define WAIT_FOR_RTC_WRITE_COMPLETE()

{while (*pRTC_ISTAT & 0x8000); }

void start_real_time_clock ()

{

if (!*pRTC_PREN)

{

*pRTC_PREN = 1;

WAIT_FOR_RTC_WRITE_COMPLETE();

}

Getting Started with ADSP-BF537 EZ-KT Lite 1-19

Listing 1-2. Part 2 of Exercise 1
*pRTC_STAT = 0;

WAIT_FOR_RTC_WRITE_COMPLETE();

}

/* Help function to get the number of seconds since "zero" time.

* Only works up to one hour of time. */

unsigned int get_real_time_clock_in_seconds ()

{

unsigned int clock = *pRTC_STAT;

/* second */

unsigned int seconds = (clock & 0x3f);

/* minutes */

seconds += 60 * (clock & 0xfc0) >> 6;

return seconds;

}

/* Initialize two arrays to the same set of random values */

void randomize_arrays (int *v1, int *v2, unsigned int length)

{

unsigned int i;

for (i = 0; i < length; ++i)

{

v1[i] = v2[i] = rand () % 1024;

}

}

/* A standard bubble sort algorithm, O(n^2) */

/* section("L1_code") */

void bubble_sort (int *v, unsigned int length)
1-20 Getting Started with ADSP-BF537 EZ-KT Lite

Programming ADSP-BF537 EZ-KIT Lite with VisualDSP++
{

unsigned int i, j;

for (i = 0; i < length - 1; ++i)

{

for (j = i + 1; j < length; ++j)

{

if (v[i] > v[j])

{

int temp = v[i];

v[i] = v[j];

v[j] = temp;

}

}

}

}

/* A standard quick sort algorithm, O(n*log(n)) */

void quick_sort (int *v, unsigned int p, unsigned int r)

{

if (p < r)

{

unsigned int x, i, j, q;

x = v[p];

i = p - 1;

j = r + 1;

for (;;)

{

do { --j; } while (v[j] > x);

do { ++i; } while (v[i] < x);

if (i < j)

{

Getting Started with ADSP-BF537 EZ-KT Lite 1-21

Listing 1-2. Part 2 of Exercise 1
int temp = v[i];

v[i] = v[j];

v[j] = temp;

}

else

{

q = j;

break;

}

}

quick_sort (v, p, q);

quick_sort (v, q + 1, r);

}

}

int out_b[ARRAY_LENGTH];

int out_m[ARRAY_LENGTH];

void main ()

{

clock_t cycles_begin, cycles_end;

unsigned long seconds_begin, seconds_end;

unsigned long display_cycles_end;

volatile unsigned int time_end;

int i;

srand (22);

start_real_time_clock ();

cycles_begin = clock ();

for (i = 0; i < NUM_ITERATIONS; ++i)

{

int j;
1-22 Getting Started with ADSP-BF537 EZ-KT Lite

Programming ADSP-BF537 EZ-KIT Lite with VisualDSP++
randomize_arrays (out_b, out_m, ARRAY_LENGTH);

bubble_sort (out_b, ARRAY_LENGTH);

quick_sort (out_m, 0, ARRAY_LENGTH - 1);

}

cycles_end = clock () - cycles_begin;

display_cycles_end = (unsigned long)(cycles_end / 1000000);

time_end = get_real_time_clock_in_seconds ();

printf ("Completed in %d seconds and approx. %u million

cycles.\n", time_end, display_cycles_end);

}

Listing 1-3. Part 3 of Exercise 1
/*

 * Getting Started With the ADSP-BF537 EZ-KIT Lite

 * Part 1, Exercise 3

 */

#include <stdlib.h>

#include <stdio.h>

#include <ccblkfn.h>

#include <cdefbf537.h>

#include <sysreg.h>

#include <time.h>

#include <services/adi_pwr.h>

#define NUM_ITERATIONS 50000

#define ARRAY_LENGTH 128

/* Helper function to enable the real-time clock and reset it to

time "zero" */
Getting Started with ADSP-BF537 EZ-KT Lite 1-23

Listing 1-3. Part 3 of Exercise 1
#define WAIT_FOR_RTC_WRITE_COMPLETE()

{ while (! (*pRTC_ISTAT & 0x8000)); }

void start_real_time_clock ()

{

if (!*pRTC_PREN)

{

*pRTC_PREN = 1;

WAIT_FOR_RTC_WRITE_COMPLETE();

}

*pRTC_STAT = 0;

WAIT_FOR_RTC_WRITE_COMPLETE();

}

/* Helper function to get the number of seconds since zero time.

* Only works up to one hour of time. */

unsigned int get_real_time_clock_in_seconds ()

{

unsigned int clock = *pRTC_STAT;

/* seconds */

unsigned int seconds = (clock & 0x3f);

/* minutes */

seconds += 60 * ((clock & 0xfc0) >> 6);

return seconds;

}

/* Initialize two arrays to the same set of random values */

void randomize_arrays (int *v1, int *v2, unsigned int length)

{

1-24 Getting Started with ADSP-BF537 EZ-KT Lite

Programming ADSP-BF537 EZ-KIT Lite with VisualDSP++
unsigned int i;

for (i = 0; i < length; ++i)

{

v1[i] = v2[i] = rand () % 1024;

}

}

/* A standard bubble sort algorithm, O(n^2) */

void bubble_sort (int *v, unsigned int length)

{

unsigned int i, j;

for (i = 0; i < length - 1; ++i)

{

for (j = i + 1; j < length; ++j)

{

if (v[i] > v[j])

{ int temp = v[i];

v[i] = v[j];

v[j] = temp;

}

}

}

}

/* A standard quick sort algorithm, O(n*log(n)) */

void quick_sort (int *v, unsigned int p, unsigned int r)

{

if (p < r)

{

unsigned int x, i, j, q;

x = v[p];
Getting Started with ADSP-BF537 EZ-KT Lite 1-25

Listing 1-3. Part 3 of Exercise 1
i = p - 1;

j = r + 1;

for (;;)

{

do { --j; } while (v[j] > x);

do { ++i; } while (v[i] < x);

if (i < j)

{

int temp = v[i];

v[i] = v[j];

v[j] = temp;

}

else

{

q = j;

break;

}

}

quick_sort (v, p, q);

quick_sort (v, q + 1, r);

}

}

int out_b[ARRAY_LENGTH];

int out_m[ARRAY_LENGTH];

ADI_PWR_COMMAND_PAIR ezkit_init[] =

{

/*600Mhz ADSP-BF537 EZ-KIT Lite */

{ADI_PWR_CMD_SET_EZKIT, (void*)ADI_PWR_EZKIT_BF537_600MHZ},

/* command to terminate the table */

{ADI_PWR_CMD_END,0 }
1-26 Getting Started with ADSP-BF537 EZ-KT Lite

Programming ADSP-BF537 EZ-KIT Lite with VisualDSP++
};

typedef struct

{

ADI_PWR_VLEV v;

const char *n;

} voltage_levels_type;

voltage_levels_type voltage_levels[] =

{

{ ADI_PWR_VLEV_085, "0.85" },

{ ADI_PWR_VLEV_095, "0.95" },

{ ADI_PWR_VLEV_105, "1.05" },

{ ADI_PWR_VLEV_125, "1.25" },

};

void main ()

{

unsigned long long cycles_begin, cycles_end;

unsigned long seconds_begin, seconds_end;

unsigned long display_cycles_end;

volatile unsigned int time_end;

int i, v;

adi_pwr_Init(ezkit_init);

srand (22);

printf("%20s%20s%20s\n","Voltage","Seconds","Cycles (x 1m)");

for (v = 0; v < sizeof (voltage_levels) / sizeof (

voltage_levels_type); ++v)

{

adi_pwr_SetMaxFreqForVolt (voltage_levels[v].v);
Getting Started with ADSP-BF537 EZ-KT Lite 1-27

Listing 1-3. Part 3 of Exercise 1
start_real_time_clock ();

cycles_begin = clock ();

for (i = 0; i < NUM_ITERATIONS; ++i)

{

randomize_arrays (out_b, out_m, ARRAY_LENGTH);

bubble_sort (out_b, ARRAY_LENGTH);

quick_sort (out_m, 0, ARRAY_LENGTH - 1);

}

cycles_end = clock () - cycles_begin;

display_cycles_end = (unsigned long)(cycles_end / 1000000);

time_end = get_real_time_clock_in_seconds ();

printf ("%20s%20u%20u\n", voltage_levels[v].n,

time_end, display_cycles_end);

}

}

1-28 Getting Started with ADSP-BF537 EZ-KT Lite

2 RUNNING A TCP/IP
APPLICATION ON AN
ADSP-BF537 EZ-KIT LITE

In Exercise 2, you will use VisualDSP++ to create a bare-bones TCP/IP

application using the open source LwIP stack and VisualDSP++ Kernel
(VDK). Then, you will connect the EZ-KIT Lite to the Ethernet network,
receive an IP address from a Dynamic Host Configuration Protocol
(DHCP) server, and ping the EZ-KIT from another computer. Finally,
you will implement a simple Caesar Cipher program and run the program
via telnet.

In the exercise, you will learn about the following concepts.

• TCP/IP and the LwIP stack

• VDK and its relationship to LwIP

• TCP/IP project type

• Determining Ethernet Media Access Control (MAC) and IP
addresses

• Sockets programming and input/output management
Getting Started with ADSP-BF537 EZ-KT Lite 2-1

Part 1: A Primer on TCP/IP, OS Threads and Semaphores, and
Sockets API
Part 1: A Primer on TCP/IP, OS Threads
and Semaphores, and Sockets API

The ADSP-BF537 EZ-KIT Lite includes an on-chip 10/100 Mbits/sec
Ethernet MAC. The interface is exposed on the board, providing an easy
connection between the EZ-KIT Lite and an existing TCP/IP network.
VisualDSP++ includes an open source TCP/IP software stack, LwIP,
ported to the Blackfin architecture. This stack relies on the presence of an
underlying operating system, and the VisualDSP++ Kernel serves as the
operating system. Therefore, the EZ-KIT Lite and VisualDSP++ provide
out of the box software and hardware connection for TCP/IP
networking.1

The LwIP stack’s interface to both VDK and underlying EZ-KIT Lite
hardware is well-abstracted into libraries with defined APIs. This makes
the EZ-KIT Lite and VisualDSP++ a good test and evaluation vehicle for
your application. The application can be ported later to alternative hard-
ware and/or operating systems without modifying the internals of the
LwIP stack. Furthermore, the LwIP stack is programmed using the indus-
try-standard Berkley Socket (or just “sockets”) APIs, so existing code bases
can be quickly adapted to LwIP.

If you are unfamiliar with the basic concepts surrounding TCP/IP, operat-
ing system threads, or sockets, a primer can be found in “Creating a
TCP/IP Application” on page A-1.

1 Some third parties provide operating systems and/or TCP/IP stack solutions that can be more fea-
ture-rich than VisualDSP++.
2-2 Getting Started with ADSP-BF537 EZ-KT Lite

Running a TCP/IP application on an ADSP-BF537 EZ-KIT Lite
Part 2: Creating a TCP/IP Application
and Connecting to a DHCP Server

VisualDSP++ includes a TCP/IP project type to handle the creation of a
framework for your TCP/IP-aware application. The generated project is a
working application that:

1. Initializes all hardware and software needed to service the stack.

2. Reads the unique MAC address from your EZ-KIT Lite’s firmware.
The MAC address uniquely identifies your hardware from every
other Ethernet-aware device in the world.

3. Connects to your network’s DHCP server and receives an IP
address. The IP address is used to connect to the target board.

4. Continues running the application.

To start, physically connect the ADSP-BF537 EZ-KIT Lite hardware to
the 10/100 Mbits/sec network (the same network your PC connects to)
and then create the TCP/IP support software application using the sup-
plied non-cross-over cable.

To create a skeleton TCP/IP application:

1. Select File–>New–>Project to start a Project Wizard.
On the Project: General page, choose the name and directory for
the project, then select TCP/IP Stack application using LwIP and
VDK as the project type (Figure 2-1). Click Next.

2. On the Project: Output Type page, set ADSP-BF537 Blackfin
Processor as the processor type. Output type should be left as Exe-
cutable file. Click Next.
Getting Started with ADSP-BF537 EZ-KT Lite 2-3

Part 2: Creating a TCP/IP Application and Connecting to a
DHCP Server
3. On the LwIP Wizard page, Click Next.

4. On the Add Startup Code/LDF page, ensure Add an LDF and
startup code is selected. Click Finish to close the wizard.

The LwIP stack, as distributed with VisualDSP++, relies on the
presence of a DHCP server on your network. If your network does
not support DHCP, the LwIP library must be rebuilt using a static
IP address assigned by the network administrator. For specifics
regarding rebuilding the LwIP library with a static IP address, refer
to the LWIP_UserGuide.doc file in the …\Black-
fin\lib\src\lwip\docs directory.

VisualDSP++ creates the skeleton application. Build the project with
Project–>Build. Once the project is built and loaded to the EZ-KIT Lite,
run the example. Within a few seconds, output is emitted in the Visu-
alDSP++ console window, similar to:

Figure 2-1. VDK Project with LwIP TCP/IP Stack
2-4 Getting Started with ADSP-BF537 EZ-KT Lite

Running a TCP/IP application on an ADSP-BF537 EZ-KIT Lite
IP ADDRESS xxx.xxx.xxx.xxx

Leave the EZ-KIT Lite running. Now, “ping” the EZ-KIT Lite from your
PC. Open a Command Prompt window (DOS application) and type the
following command, using the IP address reported in the VisualDSP++
Console page (Output window):

ping xxx.xxx.xxx.xxx

Again, the EZ-KIT Lite’s IP address is assigned by the DHCP server.

Because network configurations are dynamic, the IP address can
change from run to run. Remember to check the address each time
the program runs.

The output of the ping command is emitted in the Command Prompt
window with output similar to Figure 2-2.

Examine the source code of this skeleton application in the Project win-
dow. The lwip_sysboot_threadtype.c file is worthy of examination
because the file needs to be modified in order to add functionality to the
stack.

Specifically, open the source file and scroll to (or search for) the function
lwip_sysboot_threadtype_RunFunction(). Observe the comment block,

Figure 2-2. Ping Output
Getting Started with ADSP-BF537 EZ-KT Lite 2-5

Part 3: Communicating with Sockets API
/**

* Add Application Code here

**/

where, in the next exercise, you will insert code to add functionality to the
application.

The remainder of the source code is this file is beyond the scope of this
book’s exercises. The code relies heavily on the System Services Library
that is touched upon in the previous exercises.

Part 3: Communicating with Sockets API
Now it is time to add functionality to the created application. First, you
create a simple Caesar Cipher program, then run the program, and access
it from the computer via telnet. The Caesar Cipher is a simple data
encryption algorithm, which increments each input letter by a value (the
increment of one is used in this implementation). The letter A becomes B,
B becomes C, and so forth. The algorithm wraps at the end of the alphabet,
with Z becoming A.

To enable multiple clients (computers) to connect concurrently to the
same host (the EZ-KIT Lite), TCP/IP applications typically use multiple
operating system threads of execution:

1. The main application thread begins polling the port number(s) rel-
evant to the application.

2. When a client connects, a new “worker” thread is spawned to inter-
act with the client.

3. Meanwhile, the main application thread continues polling for new
connections.
2-6 Getting Started with ADSP-BF537 EZ-KT Lite

Running a TCP/IP application on an ADSP-BF537 EZ-KIT Lite
The following procedure creates a Caesar Cipher application from the
skeleton template. The steps implement a thread to interact with the cli-
ent, producing a Caesar Cipher on input received from the client.
Alternatively, the project
…\Blackfin\Examples\ADSP-BF537 EZ-Kit Lite\Getting Started Exam-

ples\Part_2_1\Caesar_Cipher.dpj can be loaded to the PC if you are
unconcerned about the details herein and want to avoid typing in source
code. (If you load the project, skip the following procedure).

To create a new thread type, Caesar_Cipher_ThreadType:

1. From the Kernel tab of VisualDSP++ Project window, navigate to
Kernel–>Threads–>Thread Types. Right-click and select New
thread type. Type Caesar_Cipher_ThreadType in the Name field,
leave Source File and Header File as is, automatic source code gen-
eration as Yes, and leave the Language as C++ (Figure 2-3).

2. Click OK. The new thread displays in the VisualDSP++ Kernel
tab.

Figure 2-3. New Kernel Thread Type
Getting Started with ADSP-BF537 EZ-KT Lite 2-7

Part 3: Communicating with Sockets API
3. Switch back to the Project tab and open the newly-created source
file Caesar_Cipher_ThreadType.cpp. Replace the method
Caesar_Cipher_ThreadType::Run() with the contents of “Listing
2-1. Caesar_Cipher_ThreadType::Run() Implementation” on
page 2-9. Next, replace the constructor
Caesar_Cipher_ThreadType::Caesar_Cipher_ThreadType() with
the contents of “Listing 2-2. Caesar_Cipher_ThreadType() Imple-
mentation” on page 2-11. The new lines of code are delineated in
italics.

4. Open Caesar_Cipher_ThreadType.h and add a few new member
variables (see “Listing 2-3. VDK::Thread Implementation” on
page 2-11).

5. Go back to Caesar_Cipher_ThreadType.cpp and add #include
<lwip/sockets.h> near the top of the file, with the other #include
directives, to make the sockets API “known” to this source file.

6. Open the source file lwip_sysboot_threadtype.c. Add the follow-
ing line to the top of the file: VDK_ThreadID g_AttenuatorID.

7. Replace the function lwip_sysboot_threadtype_RunFunction()
with the contents of “Listing 2-4.
lwip_sysboot_threadtype_RunFunction() Implementation” on
page 2-12. The new lines of code are delineated in italics.

Build and run the new project. As described earlier, the assigned IP
address is echoed to VisualDSP++ Console page.

Open the Command Prompt window again. This time, use the telnet
application to connect to the EZ-KIT Lite:

telnet xxx.xxx.xxx.xxx
2-8 Getting Started with ADSP-BF537 EZ-KT Lite

Running a TCP/IP application on an ADSP-BF537 EZ-KIT Lite
Once connected, you receive the welcome message implemented in
Caesar_Cipher_ThreadType::Run(). Type characters in the console win-
dow—the letters A through Z (upper and lower case) are incremented by
one, while non-letters are echoed back undisturbed (see Figure 2-4).

When finished, close the telnet session with Ctrl +], then type quit at the
telnet prompt.

You can test the EZ-KIT Lite’s capability to handle multiple concurrent
connections by opening multiple Command Prompt windows and run-
ning a telnet session in each of the windows. If you have access to multiple
computers on the same network, this is another means to effectively dem-
onstrate the ability to maintain multiple concurrent connections.

Listing 2-1.
Caesar_Cipher_ThreadType::Run()
Implementation

void

Caesar_Cipher_ThreadType::Run()

{

static char *pszWelcome = "Welcome to Blackfin. Type letters

\"A\" though \"Z\" and I will encrypt them.\xa\xd";

if (0 >= send (m_iSocket, pszWelcome, strlen (pszWelcome),

0))

return;

Figure 2-4. Telnet Command Prompt
Getting Started with ADSP-BF537 EZ-KT Lite 2-9

Listing 2-1. Caesar_Cipher_ThreadType::Run() Implementation
while (1)

{

int iCount;

if ((iCount = recv (m_iSocket, m_vInBuf, sizeof (

m_vInBuf) / sizeof (char), 0)) >= 1)

{

int iCharNum;

char c;

for (iCharNum = 0; iCharNum < iCount; ++iCharNum)

{

c = m_vInBuf [iCharNum];

if ((c >= 'A' && c <= 'Y') || (c >= 'a' && c <=

'y'))

++c;

else if (c == 'Z' || c == 'z')

c -= ('Z' - 'A');

m_vOutBuf [iCharNum] = '\x8'; /* telnet back-

space control character to overwrite the character sent */

m_vOutBuf [iCharNum + iCount] = c;

}

 if (send (m_iSocket, m_vOutBuf, iCount * 2, 0) <= 0)

break;

}

else

{

break;

}

}

close (m_iSocket);

}

2-10 Getting Started with ADSP-BF537 EZ-KT Lite

Running a TCP/IP application on an ADSP-BF537 EZ-KIT Lite
Listing 2-2. Caesar_Cipher_ThreadType()
Implementation

Caesar_Cipher_ThreadType::Caesar_Cipher_ThreadType(VDK::Thread::

ThreadCreationBlock &tcb)

: VDK::Thread(tcb)

{

m_iSocket = (int) tcb.user_data_ptr;

}

Listing 2-3. VDK::Thread Implementation
class Caesar_Cipher_ThreadType : public VDK::Thread

{

public:

Caesar_Cipher_ThreadType(VDK::Thread::ThreadCreationBlock&);

virtual ~Caesar_Cipher_ThreadType();

virtual void Run();

virtual int ErrorHandler();

static VDK::Thread* Create(VDK::Thread::ThreadCreationBlock&);

/* The following declarations are specific to this example */

protected:

int m_iSocket;

char m_vInBuf[16];

char m_vOutBuf[16*2];

int m_iBufLen;

};
Getting Started with ADSP-BF537 EZ-KT Lite 2-11

Listing 2-4. lwip_sysboot_threadtype_RunFunction()
Implementation
Listing 2-4.
lwip_sysboot_threadtype_RunFunction()
Implementation

void

lwip_sysboot_threadtype_RunFunction(void **inPtr)

{

char ip[32];

/* Initializes the TCP/IP Stack and returns */

if(system_init() == -1)

{

printf("Failed to initialize system\n");

return;

}

/* start stack */

start_stack();

/*

* For debug purposes, printf() IP address to the VisualDSP++

* console window. Likely not needed in final application.

*/

memset(ip,0,sizeof(ip));

if(gethostaddr(0,ip))

{

printf("IP ADDRESS: %s\n",ip);

}

/**

* Add Application Code here

**/
2-12 Getting Started with ADSP-BF537 EZ-KT Lite

Running a TCP/IP application on an ADSP-BF537 EZ-KIT Lite
{

struct sockaddr_in saddr;

int listenfd;

if (0 > (listenfd = socket (AF_INET, SOCK_STREAM, 0)))

{

printf ("Call to socket() failed.\n");

abort();

}

memset (&saddr, 0, sizeof (saddr));

saddr.sin_family = AF_INET;

saddr.sin_addr.s_addr = htonl (INADDR_ANY);

saddr.sin_port = htons (23); /* listening on port 23

(well-known default "telnet") */

if (-1 == bind (listenfd, (struct sockaddr*) &saddr,

sizeof(saddr)))

{

printf ("Call to bind() failed.\n");

abort();

}

if (-1 == listen (listenfd, 0))

{

printf ("Call to listen() failed.\n");

abort();

}

for (;;)

{

struct sockaddr cliaddr;

int clilen;

int iSocket;
Getting Started with ADSP-BF537 EZ-KT Lite 2-13

Listing 2-4. lwip_sysboot_threadtype_RunFunction()
Implementation
iSocket = accept (listenfd, &cliaddr, &clilen);

if (-1 == iSocket)

{

printf ("Call to accept() failed.\n");

abort();

}

VDK_ThreadCreationBlock TCB = {

kCaesar_Cipher_ThreadType,

(VDK_ThreadID)0,

0,

(VDK_Priority)0,

(void *) iSocket,

0

};

if (UINT_MAX == VDK_CreateThreadEx (&TCB))

{

printf("Call to VDK_CreateThreadEx()failed.\n");

abort();

}

}

}

/* Put the thread's exit from "main" HERE */

/* A thread is automatically Destroyed when it exits its run

function */

}

2-14 Getting Started with ADSP-BF537 EZ-KT Lite

3 CONTROLLING A REAL-TIME
APPLICATION VIA TCP/IP

In Exercise 3 you will build upon the Ethernet application constructed in

the previous exercise. The application is augmented with audio
pass-through VDK threads that operate concurrently with and indepen-
dently from the stack. Then you will modify the stack’s functionality to
change, on the fly, the audio pass-through volume.

In this exercise, you will learn:

• How to manage an audio encoder and decoder with device drivers

• How to use VDK history views to examine and trace system
behavior

• How thread priorities impact system behavior

• How threads communicate with VDK messages
Getting Started with ADSP-BF537 EZ-KT Lite 3-1

Part 1: Creating an Audio Pass-through Application with VDK
Part 1: Creating an Audio Pass-through
Application with VDK

The ADSP-BF537 EZ-KIT Lite includes both an analog-to-digital con-
verter (ADC) and digital-to-analog converter (DAC). These converters
allow the EZ-KIT Lite to digitize an incoming audio signal, perform oper-
ations on the signal, and convert the signal back to analog, allowing you to
hear the results.

The most elementary type of audio application is a pass-through. The
audio signal is digitized, brought into the Blackfin processor, and then
simply converted back to analog with no alteration of the audio stream
performed. While this basic program does not seem to have any practical
application, its source code can serve as a framework, a useful starting
point, for creating a “serious” application.

In this exercise, we start with a program that features the Caesar Cipher
algorithm from page 2-6 and augment the program with an audio
pass-through that is running concurrently and independently from the
Caesar Cipher.

First, the EZ-KIT Lite hardware is connected to the network, audio
source, and audio destination:

1. Connect the EZ-KIT Lite to the network as described in Exercise 2
on page 2-3.

2. Connect an audio source to the mini-din (mini-headphone) con-
nector on the EZ-KIT Lite. The connector is labeled LINE IN. Any
two-channel stereo audio source is suitable for the exercise, but the
most convenient source is your PC (for example, playing back an
3-2 Getting Started with ADSP-BF537 EZ-KT Lite

Controlling a real-time application via TCP/IP
MP3 file). If your audio source uses a mini-din connector for out-
put, you can connect the source to the EZ-KIT Lite with the
provided connector.

3. Connect an audio destination, such as the provided headphones, to
the mini-din connector on the EZ-KIT Lite. The connector is
labeled LINE OUT.

Your completed hardware interconnections look similar to the diagram in
Figure 3-1.

Next, load the project …\Blackfin\Examples\ADSP-BF537 EZ-Kit
Lite\Getting Started Examples\Part_3_1\TalkThrough_3_1.dpj to the
EZ-KIT Lite. Build and run the application. While the application is run-
ning, enable the audio playback on your audio source. You hear the

Figure 3-1. EZ-KIT Lite Connection Diagram

HEADPHONES

LINE OR
HEADPHONE

OUT

TO ROUTER, HUB,
ETC. ETHERNET

LI
 N

E
 O

U
T

LI
N

E
 I

N

Getting Started with ADSP-BF537 EZ-KT Lite 3-3

Part 1: Creating an Audio Pass-through Application with VDK
output on the output device connected to the EZ-KIT Lite. Concurrently,
use the telnet session and Caesar Cipher algorithm to communicate to the
EZ-KIT Lite, as described in Exercise 2 on page 2-6.

If you hear no sound, confirm that the Blackfin processor is run-
ning. Double-check all audio connections. Ensure the volume on
the audio source is not muted and turned up to a suitable level.

Taking the EZ-KIT Lite “out of the circuit”, by connecting the
audio source directly to the audio destination, may also be helpful
when troubleshooting the application. If the problem persists, con-
sult the ADSP-BF537 EZ-KIT Lite Evaluation System Manual and
confirm that all of the DIP switches are in the correct positions.

While the pass-through application is running, examine its relation to the
existing Caesar Cipher application from Exercise 2. Switch to the Kernel
tab of the Project window to see three new thread types added to the Cae-
sar Cipher (Figure 3-2).

These new thread types are:

• Input to manage the audio input to the ADSP-BF537 processor.

• Output to manage the audio output from the ADSP-BF537
processor.

• Attenuator to manage volume control in software and move data
from the input thread to the output thread. Right now, the volume
control functionality is dormant because we have no means (yet) of
getting volume control messages to the attenuator thread.

Note that three threads, one for each new type, are created after the stack
is up by creating the threads in the
lwip_sysboot_threadtype_RunFunction() function.

Observe that the relative thread priorities are different between the audio
thread types and Ethernet thread types, with the audio thread types being
given a lower number (higher priority). Proper assignment of thread prior-
3-4 Getting Started with ADSP-BF537 EZ-KT Lite

Controlling a real-time application via TCP/IP
ity is a hallmark of a good application design and often is one of the most
important system-level design decisions. In this case, it is more important
to service the audio stream, which receives around 24,000 samples (or data
points) per second, than to service the Ethernet stack, which is operating
on a “human” scale and perhaps a few keystrokes (data points) per second.

Figure 3-2. New Caesar Cipher Thread Types

Getting Started with ADSP-BF537 EZ-KT Lite 3-5

Part 1: Creating an Audio Pass-through Application with VDK
Furthermore, considerably more processing is done per data point within
the Ethernet software. If the Ethernet stack is given a higher priority, the
keystroke processing may take too much time, leaving the audio stream
un-serviced for an appreciable amount of time. Ultimately, this can result
in audible clicks in the final audio output whenever a key is pressed,
degrading the user experience.

The software interface to the DAC (an AD1854) and ADC (an AD1871)
converters is managed by device drivers written specifically for these
devices (Figure 3-3).

Figure 3-3. AD1871 and AD1854 Device Drivers
3-6 Getting Started with ADSP-BF537 EZ-KT Lite

Controlling a real-time application via TCP/IP
The source code for the drivers is part of your project and is available for
examination in AD1854.cpp and AD1871.cpp. Luckily, the complexity of
device intercommunication is abstracted by these device drivers, allowing
interaction with the device without needing to understand its underlying
complexity.

A message is a form of inter-thread communication that is available within
VDK. Messages have a type (header) and an arbitrarily-sized payload
(body), allowing data of any type and length to be shared between threads.
The audio-processing threads use messages to communicate amongst
themselves.

Part 2: Controlling Pass-through Volume
via Telnet

The example in its current state includes an audio pass-through and a
Caesar Cipher operating concurrently but independently. The next step is
to control the audio pass-through via the Ethernet connection. At this
point, we remove the Caesar Cipher algorithm and replace it with control
code that allow you to change the output volume of the application via
Ethernet. Communications between the stack thread and the output
thread are managed by a new message.

If you are unconcerned about implementation details, close the current
project, load the project …\Blackfinkl\Examples\ADSP-BF537 EZ-Kit
Lite\Getting Started Examples\Part_3_2\TalkThrough_3_2.dpj, and
skip the procedure to upgrade the application with inter-thread messages.

You must close the project from the previous exercise (part 1 of
exercise 3) before opening the part 2 project.
Getting Started with ADSP-BF537 EZ-KT Lite 3-7

Part 2: Controlling Pass-through Volume via Telnet
To generate VOL_CHANGE messages:

1. Open the Caesar_Cipher_ThreadType.cpp file.

2. Replace the implementation of
Casesar_Cipher_ThreadType::Run() with the contents of “Listing
3-1. Caesar_Cipher_ThreadType::Run() New Implementation” on
page 3-19.

Note how the characters + (plus) and – (minus) are used to change
the variable volume in the range of 0.0 and 48.0 (inclusive), with
zero being no volume (mute) and 48.0 being maximum volume.
After changing the variable, its value is passed to the audio threads
by posting a VOL_CHANGE message. Since the entire payload of the
message is the volume change only (a four-byte float), the message
has a size of four bytes, with the payload being the volume value
itself. VOL_CHANGE is declared in AudioMsg.h, so the header file must
be #include’d in Caesar_Cipher_ThreadType.cpp.

Build and run the project. When the audio output starts, telnet to the
EZ-KIT Lite and use the + and – on your keyboard to change the volume
of the output. Now you are running an interactive real-time application
(audio pass-through) that communicates through a TCP/IP connection.

Now we use monitoring and analysis tools to understand the application’s
behavior. We already are familiar with the statistical profiler used in the
earlier exercise. Using the statistical profiler, we will show that the applica-
tion spends the majority of its time in the VDK::IdleThread functions.
The Idle Thread is where a VDK application goes when all the processing
is complete. It represents the amount of spare capacity available for other
work to be done in the system.

Halt the EZ-KIT Lite with Debug–>Halt. We can now examine the
behavior of the system’s thread with the View–>VDK Windows–>History
menu item. The VDK State History viewer displays the recent history of
the application. Resize the window to a comfortable size. Turn on the leg-
end by right-clicking in the window and selecting Legend. The window
3-8 Getting Started with ADSP-BF537 EZ-KT Lite

Controlling a real-time application via TCP/IP
looks similar to the window in Figure 3-4. The X axis represents time,
while the Y axis represents system threads, one row for a thread. You rec-
ognize some of the threads created earlier in this exercise by name, as well
as a kCaesar_Cipher_ThreadType if you halt the EZ-KIT Lite while con-
necting via telnet. Other threads (kADI_TOOLS_IOEThreadType) are
unfamiliar to you. These threads are maintained by the LwIP Ethernet
library.

Figure 3-4. VDK State History Window of Talk-Through Activity
Getting Started with ADSP-BF537 EZ-KT Lite 3-9

Part 2: Controlling Pass-through Volume via Telnet
The graph in Figure 3-4 visualizes the statistical profiling data. Green ver-
tical lines indicate a change between two threads; the thread running at
any given time is also green. Thus, we can see that the Idle Thread gets
the most activity, with intermittent activity among the three audio
threads. To zoom in on any particular time slice, move the mouse to the
edge of the range you want to zoom in on, then click and drag the mouse
to the other edge of the range.

Now, zoom in on one of the bursts of audio thread activity to visualize the
interaction between the audio threads (a relevant portion shown in
Figure 3-5). In the figure, you can see a regular pattern in the dataflow

Figure 3-5. Audio Thread Interaction Detail
3-10 Getting Started with ADSP-BF537 EZ-KT Lite

Controlling a real-time application via TCP/IP
from the Input thread, through to the Attenuator thread, to the Output
thread, and back to the Attenuator. The colored arrows represent various
VDK events (refer to the legend for details).

It is also interesting to look at the interaction between the Caesar Cipher
thread and the audio threads when the volume change messages are pro-
cessed. It is highly unlikely that you are able to halt the processor in the
midst of this activity (which occurs once or twice a second). Instead, we
will set a breakpoint at a key location in the program. Open the
Caesar_Cipher_ThreadType.cpp file and place a breakpoint at the
instruction

if (0 >= send (m_iSocket, m_vOutBuf, strlen (m_vOutBuf), 0))

at the end of the Caesar_Cipher_ThreadType::Run() member function,
around line 72. You can set a breakpoint by positioning the cursor on the
desired line and pressing the F9 key. (Note the red circle placed in the gut-
ter bar of the source code window).

To reset your program, choose the Debug–>Reset menu item, then
File–>Reload Program. If you still are connecting via telnet, terminate the
session by pressing Ctrl+] and typing quit in the DOS window. Run the
program.

TIP: After halting this application (any application), you may find
it impossible to run the program again and pick up where you left
off. Typically, this is because various interrupts in the system went
un-serviced when you halted, placing the application into an
unknown state. When in doubt, reset and reload.

As previously done, wait for the assigned IP address to appear in the con-
sole window and then telnet to that address. You get the welcome
message. Then press the + key. VisualDSP++ quickly halts at the just-set
breakpoint (the audio pass-through, of course, also stops). Going back to
the VDK State History window, notice an interesting flurry of activity on
Getting Started with ADSP-BF537 EZ-KT Lite 3-11

Part 2: Controlling Pass-through Volume via Telnet
the right hand-side of the display, worthy of some discussion. Zoom in on
the activity detail, which looks similar to that in Figure 3-6. Information
in the window, reading left-to-right, can be interpreted as:

1. The LwIP stack (thread ID 4, then 2) receives the keystroke from
the Ethernet peripheral.

2. The stack’s processing is interrupted temporarily by the processing
of an audio block (threads ID 6–8). This interruption happens
because the audio processing thread has a higher priority than the
Ethernet threads. After servicing the audio, execution resumes in
the Ethernet thread.

Figure 3-6. Volume Change Thread Interaction
3-12 Getting Started with ADSP-BF537 EZ-KT Lite

Controlling a real-time application via TCP/IP
3. The LwIP stack services the keystroke by passing it to our Caesar
Cipher thread (thread ID 9). Control moves between thread IDs 9
and 2 to get the keystroke to the worker thread.

4. The Caesar Cipher thread posts a message (VOL_CHANGE) to the
Attenuator (thread ID 7), where it is serviced.

5. In the meantime, another block of audio has become ready to pro-
cessor. Rather than returning to the (lower priority) Caesar Cipher
thread, control moves to the Input thread, and the block of audio
is processed much like it was in step 2.

6. When the audio block is finished, control returns to the lower pri-
ority Caesar Cipher thread. Our breakpoint was set just after this
point.

Part 3: Tuning Application
While we have plenty of available spare capacity in the application as is, it
is worth revisiting optimization techniques introduced in the earlier chap-
ters. The three “easy” ways to performance-tune this application are:

1. Turning on the compiler’s optimizations

2. Enabling the ADSP-BF537 processor’s instruction cache

3. Increasing the speed at which the processor runs

Click the Target Load page of the VDK State History window. Observe
the percentage load over time. In its current non-optimized state, average
load is around 25%, sometimes peaking to 100% for brief periods of time
when processing Ethernet packets.

Firstly, let us turn on the compiler’s optimizations. Switch from the
Debug to the Release configuration, then build, load and run the applica-
tion. After a few seconds of audio, halt and revisit the Target Load page.
Getting Started with ADSP-BF537 EZ-KT Lite 3-13

Part 3: Tuning Application
Note that now utilization is modestly less, around 20%. The improve-
ment was not considerable since the processor spent only a minority of its
time in our code, so there was little gain to be made.

Next, enable cache. To do so, start with a custom start-up component:

1. Select Project–>Add to Project–>New System Component. Click
Next at the Welcome screen.

2. Select Yes at Add Startup Code, then click Next.

3. Change Instruction cache memory to Instruction cache. Click
Finished for now (we will return to the start-up later in this
exercise).

As before, build and run the project. After a few seconds of audio, halt and
return to Target Load. Average utilization has lowered to around 15%.

Finally, we will increase the speed of the ADSP-BF537 processor. By
default, the EZ-KIT Lite operates at around 270 MHz. We’ll use the cus-
tom start-up wizard again to increase the voltage supplied to the part (and,
thus, the clock rate of the processor):

1. Select Project–>Project Options and navigate to the Startup Code
Settings–>Processor Clock and Power dialog box.

2. Enable Configure clock and power settings. Leave EZ-KIT as
ADSP-BF537 EZ-KIT. Set Clock and power settings to Optimize for
speed. Click OK.

3. Because we need to make VDK aware of the change, from the Ker-
nel page of the Project window, navigate to Kernel–>System–
>Clock Frequency. Change the clock frequency value to
600 (MHz).

Build, run, listen, and halt as before. You can see a modest improvement
in performance.
3-14 Getting Started with ADSP-BF537 EZ-KT Lite

Controlling a real-time application via TCP/IP
If you still have the statistical profiling window open, you may have
noticed that VDK::HistoryBuffer::AddEntry() function consumes
upward of 5% of the processor’s capacity (which is a significant fraction of
the processing our application is using). The function is the history-gath-
ering routine within VDK. We can eliminate the impact of the function
by going to the Kernel page, navigating to Kernel–>System, and setting
Instrumentation to None. Note, however, that you no longer can use the
VDK state history displays introduced earlier in this exercise.

Part 4: Running Application from Flash
Memory

The ADSP-BF537 EZ-KIT Lite is able to load your application to the
flash memory using the Flash Programmer utility. The utility runs the
program directly from the processor’s memory without using the Visu-
alDSP++ tool suite. In part 4 of exercise 3, the TalkThrough example will
be placed into and run from the flash memory.

Before placing the application into the flash memory, create a loader
(.ldr) file. Loader files are boot-loadable files created from processor exe-
cutable (.dxe) files. The Project Options dialog box is used to specify the
loader file settings.
Getting Started with ADSP-BF537 EZ-KT Lite 3-15

Part 4: Running Application from Flash Memory
To create a loader file for the TalkThrough example, do the following.

1. Open the project file …\Blackfin\Examples\ADSP-BF537 EZ-Kit
Lite\Getting Started Examples\Part_3_2\TalkThrough_3_2.dpj.

2. From the Project menu, select Project Options.

• In the Project tree control, select the General node. On the
Project page, select Loader file as the project target type.

• In the Project tree control, select the Load node. On the
Load Options page set:

Boot Mode to Flash/PROM,
Boot Format to Intel hex,
Output Width to 16-bit,
Initialization file to
…\Blackfin\ldr\INIT_CODE_BF537_EZ-KIT_LITE.dxe.

3. Click OK to save the changes as your project options.

4. Rebuild the project file.

Now the created loader file is ready to be placed into the flash memory.
To place the file using the Flash Programmer:

1. Select Flash Programmer from the Tools menu. The Flash Pro-
grammer dialog box (Figure 3-7) appears on the screen.

2. On the Driver tab, use Browse to locate the driver file …\Black-
fin\Examples\ADSP-BF537 EZ-Kit Lite\Flash

Programmer\BF537EzFlashDriver.dxe

3. Click Load Driver to load the driver file.

4. Click the Programming tab (Figure 3-8).
3-16 Getting Started with ADSP-BF537 EZ-KT Lite

Controlling a real-time application via TCP/IP
Figure 3-7. Flash Programmer Dialog box – Driver Tab

Figure 3-8. Flash Programmer Dialog box – Programming Tab
Getting Started with ADSP-BF537 EZ-KT Lite 3-17

Part 4: Running Application from Flash Memory
5. Use Browse to locate the loader file …\Blackfin\Exam-
ples\ADSP-BF537 EZ-Kit Lite\Getting Started

Examples\Part_3_2\Debug\TalkThrough_3_2.ldr.

6. Click Program to load the program to the flash memory.

7. Click OK to exit the Flash Programmer.

When the application is loaded to the flash memory, it can be run from
the flash without VisualDSP++. To run your application:

1. Close VisualDSP++.

2. Reset the EZ-Kit Lite by pushing the board’s reset button.

The two illuminated lights of the Ethernet jack indicate that the
TalkThrough application is running.

You need to know the IP address of the board to run the applica-
tion. If you use a DHCP router, the IP address is most likely the
one that was used in previous examples in this book.

You can change the volume of the audio using a TCPIP connection via
telnet when the application is running. When the audio starts, telnet to
the EZ-Kit Lite and use the + and – keys on the keyboard to change the
volume.
3-18 Getting Started with ADSP-BF537 EZ-KT Lite

Controlling a real-time application via TCP/IP
Listing 3-1.
Caesar_Cipher_ThreadType::Run() New
Implementation

void

Caesar_Cipher_ThreadType::Run()

{

static char *pszWelcome = "Welcome to Blackfin. Press \"+\" and

\"-\" to change volume level.\xa\xd";

if (0 >= send (m_iSocket, pszWelcome, strlen (pszWelcome),

0))

return;

float volume = 48.0;

VDK::MessageID msg = VDK::CreateMessage (VOL_CHANGE, volume,

NULL);

while (1)

{

int iCount;

if ((iCount = recv (m_iSocket, m_vInBuf, sizeof (

m_vInBuf) / sizeof (char), 0)) >= 1)

{

int iCharNum;

char c;

for (iCharNum = 0; iCharNum < iCount; ++iCharNum)

{

c = m_vInBuf [iCharNum];

if (c == '+' || c == '-')

{

if (c == '+')

volume += 1.0;
Getting Started with ADSP-BF537 EZ-KT Lite 3-19

Listing 3-1. Caesar_Cipher_ThreadType::Run() New
Implementation
else

volume -= 1.0;

/* Volume must in a range from 0.0 to 48.0 */

if (volume < 0.0)

volume = 0.0;

else if (volume > 48.0)

volume = 48.0;

/*

* Send a message to the Attenuator thread.

* Note that zero is maximum volume and 48.0 is mute,

* the opposite of "expected" behavior, so we

* inverse the argument here.

*/

extern VDK::ThreadID g_AttenuatorID;

float message_args[] = { 48.0 - volume };

VDK::SetMessagePayload (msg, VOL_CHANGE,

sizeof(message_args)/sizeof(float), message_args);

VDK::PostMessage (g_AttenuatorID, msg,

CONTROL_CHANNEL);

msg = VDK::PendMessage (RETURN_BUFF_CHANNEL, 0);

sprintf (m_vOutBuf, "\xa\xdVolume is now %g of

%g.\xa\xd", volume, 48.0);

if (send (m_iSocket, m_vOutBuf, strlen (m_vOutBuf

), 0) <= 0)

break;

}

}

}

3-20 Getting Started with ADSP-BF537 EZ-KT Lite

Controlling a real-time application via TCP/IP
else

{

break;

}

}

close (m_iSocket);

}

What Is Next?
Analog Devices believe that you have found this Getting Started Guide a
helpful introduction to your ADSP-BF537 EZ-KIT Lite and the Visu-
alDSP++ development suite. Next steps are:

• For a more detailed look at other capabilities of your EZ-KIT Lite
and example code for its other peripherals (for example, the UART
and CAN bus interfaces), look in the
…\Blackfin\Examples\ADSP-BF537 EZ-KIT Lite subdirectory of
the VisualDSP++ installation directory.

• The exercises in this book have been focused on the EZ-KIT Lite.
Another set of exercises are available to set the focus on the Visu-
alDSP++, including some of the unique features of the Blackfin
simulators. The VisualDSP++ Getting Started Guide is available in
the online help under the Getting Started folder. A PDF version of
the book also is available in the Docs directory on the VisualDSP++
installation CD, or on the Analog Devices Web site.

• Users of the LabVIEW application from National Instruments can
install a separate Analog Devices Blackfin Test Integration Toolkit for
LabVIEW included with the EZ-KIT Lite package. It acts as a
bridge between LabVIEW and VisualDSP++, allowing
Getting Started with ADSP-BF537 EZ-KT Lite 3-21

What Is Next?
the LabVIEW software to simulate and otherwise drive Visu-
alDSP++. The Analog Devices Blackfin Test Integration Toolkit for
LabVIEW includes an example application.

• Regularly visit Analog Devices Web site, www.analog.com, for addi-
tional information and education materials, including further
example applications, technical publications, and live Web
seminars.

Happy coding.
3-22 Getting Started with ADSP-BF537 EZ-KT Lite

http://www.analog.com

A CREATING A TCP/IP
APPLICATION

This appendix is an overview of the theory behind the TCP/IP framework

provided by VisualDSP++. Examples 2 and 3 (on page 2-1 and page 3-1,
respectively) of this book build upon the information presented in the fol-
lowing sections.

You will learn about the following concepts:

• TCP/IP framework

• VisualDSP++ Kernel (VDK) operating system

• Sockets API

TCP/IP Framework
The Ethernet Media Access Control (MAC) device of the ADSP-BF537
processor provides a 10/100-Mbits/s Ethernet interface between the
Media-Independent Interface (MII) and the processor’s peripheral system.
You can create an embedded program, taking advantage of the Ethernet
MAC and using the TCP/IP stack support provided by VisualDSP++.

TCP/IP is a communication protocol that allows applications to transfer
data regardless of their underlying communication media. To implement
a TCP/IP application, several different elements are required. For an
EZ-KIT Lite system, the TCP/IP application framework consists of:
Getting Started with ADSP-BF537 EZ-KIT Lite A-1

TCP/IP Framework
Application. This is the actual end-user application program. For the
VisualDSP++ model, this includes using VisualDSP++ Kernel as an oper-
ating system and BSD Socket API as a means to program communications
with Transport and Network layers of TCP/IP.

Data Transport and Network libraries. In the VisualDSP++ model, two
libraries allow communication and data transfer between the host and cli-
ent applications. TCP/IP libraries are used for data transporting, and
LwipBF537 libraries (or stack libraries) are used for network
communications.

Network Connection. The network connection includes hardware and
software components. The ADSP-BF537 EZ-KIT Lite is the hardware
component that provides the physical connection between the processor
and the Local Area Network (LAN). The software component is a set of
libraries and device drivers to provide the communications between the
application and hardware.

TCP/IP Communications
TCP/IP communication occurs between a client application and a host
application. The host listens for a connection from the client application.
For each application, the following steps are taken to set up the stack and
initiate inter-process communications.

1. Creating a stack. Each application must initiate and start its own
stack. The stack is the conduit through which all communications
pass.

2. Creating an IP address. In order for the host and client to commu-
nicate, each application needs to have a unique identifier (an IP
address). A port address also is assigned to the application and is
relative to the IP address.

3. Establishing a host–client link. The host application acknowledges
that it has been contacted by the client.
A-2 Getting Started with ADSP-BF537 EZ-KIT Lite

Creating a TCP/IP Application
4. Transferring Data. Data can be sent and received by the host and
client.

5. Closing the connection. When the host and client communication
completes, the host and client must close the connection with each
other.

VisualDSP++ Kernel (VDK) Overview
To program a TCP/IP application, a Real Time Operating system (RTOS
or kernel), is needed. VisualDSP++ provides an RTOS called VDK. VDK
is a preemptive multitasking kernel that incorporates scheduling and
resource allocation techniques tailored for the memory and time con-
straints of programming with Analog Devices processors, such as the
ADSP-BF537 processor. The kernel facilitates development of fast-perfor-
mance structured applications using frameworks of template files.

VDK allows more efficient use of hardware by enabling improved schedul-
ing of work, as well as a development framework containing
implementations of common synchronization and scheduling paradigms.
For more information, see the VisualDSP++ Kernel (VDK) User’s Guide.

BSD Socket API
The TCP/IP stack uses the standard Berkeley Sockets Interface (or sockets)
to provide an interface to the application. This generic interface may be
used with any inter-process communication protocol. The sockets API is
included with VisualDSP++ for use in your TCP/IP stack application.

As mentioned earlier, in the network realm, there are host and client
applications. The difference between these applications is that the host
“listens” for connections and the client “contacts” the host. Both applica-
tions send and receive information using socket API calls once a
connection is established.
Getting Started with ADSP-BF537 EZ-KIT Lite A-3

VisualDSP++ Kernel (VDK) Overview
The basic flow of control for a typical host–client connection is as follows:

1. Applications set up sockets

2. The host waits for a client to contact it

3. The client connects to the host application

4. The host acknowledges the client contact

5. Data flow between the server and client begins

6. The server and client connections are closed

1. Create Sockets

To create a socket, first instantiate the socket and then give the socket a
unique IP address. The “socket” command is used to instantiate socket.
Next, the “bind” command is used to specify the type and the addressing
format of the socket. The IP address contains the actual address assigned
by the network, as well as a port address—the location on the actual
machine where the application is running. The server and client applica-
tions must create their own sockets.

2. Host Waits for Client

A host application is placed in listening mode, which lets other applica-
tions know that the host is available for inter-process communications.
The API command for this is the “listen” command.

3. Client Connects with Host

A client application can connect to a host application using the “connect”
command. The “connect” command specifies the IP address of the host
application.
A-4 Getting Started with ADSP-BF537 EZ-KIT Lite

Creating a TCP/IP Application
4. Host Acknowledges Client

When the host application gets a connection attempt from the client
application, it accepts the incoming call and obtains the socket address
from the client. At this point, the handshaking between the client and
host is established and data transfer begins.

5. Inter-Process Communications

The host and client applications are free to send and receive data using the
socket API calls. For more information on socket APIs, refer to Exercise 2
on page 2-2.

6. Close Connection

When the applications complete the data exchange, the sockets must be
closed. The client application closes the socket it created. The host, on the
other hand, close its own socket and the socket created by the connect call.

Figure A-1 illustrates the flow of control for the host and client
applications.

In both applications, a TCP/IP stack must be created before any
socket communications can take place. The TCP/IP libraries pro-
vide calls to create and start the stack.
Getting Started with ADSP-BF537 EZ-KIT Lite A-5

VisualDSP++ Kernel (VDK) Overview
Figure A-1. Host and Client Communication Control Flow

INITIALIZE SOCKET AND
LISTEN FOR CONNECTIONS

ESTABLISH CONNECTION
BETWEEN

CLIENT AND HOST

HOST AND CLIENT
EXCHANGE DATA

PACKETS

HOST AND CLIENT
CLOSE SOCKETS

HOST APPLICATION

INITIALIZE SOCKET

CONNECT TO HOST

CLIENT APPLICATION
A-6 Getting Started with ADSP-BF537 EZ-KIT Lite

I INDEX

A Build (project) command, 1-6, 1-10, 2-4

AD1854 digital-to-analog converters

(DACs), 3-2, 3-6
AD1871 analog-to-digital converters

(ADCs), 3-2, 3-6
ADSP-BF537 processors

built-in cycle counters, 1-10
clock frequency, 1-15
internal memory (SRAM), 1-12, 1-14
peripheral systems, A-1
voltage regulators, 1-15

audio
applications, -xii, 3-2, 3-4
converters, 3-2, 3-6
playback, 3-3
sources, 3-2, 3-3
thread types, 3-4, 3-8

AUDIO_OUT connector, 3-3

B
Berkley sockets, 2-2, A-3
bind command, A-4
Blackfin processor simulators

cycle-accurate interpreted, 1-3
functional compiled, 1-3

bubble sort algorithm, 1-5, 1-11, 1-13
build options, 1-8

built-in cycle counters, 1-10

C
cache, configuring, 1-14
Cache and Memory Protection dialog

box, 1-13, 1-14
Caesar Cipher algorithm, 2-1, 2-6, 3-2,

3-4
client applications, A-2
client/host connections, closing, A-3,

A-5
clock frequency, 1-15, 3-14
Close (project file) command, 1-9
Command Prompt window, 2-5, 2-8
compiled simulators, 1-3
compiler optimizations, 1-8
components, adding new, 3-14
configurations

debug, 1-7, 1-8
release, 1-8

connect command, A-4
connector, LINE IN (mini-headphone),

3-2
Console page, 1-11, 2-5
creating TCP/IP applications, 2-3
customer support, -xiv
Getting Started with ADSP-BF537 EZ-KT Lite I-1

INDEX
custom hardware, 1-3
cycle-accurate simulators, 1-3
cycle counts, 1-16

D
data

points, 3-5
transfers, A-5
transport libraries, A-2

debug, project configuration, 1-7, 1-8
Debug (Run) command, 1-11
debug session types

emulator, 1-4
EZ-KIT Lite, 1-3
simulator, 1-3

Debug Windows (view) menu, 1-8
DHCP servers, 2-1, 2-3, 2-4
directories

default example, 1-5
default VisualDSP++, 1-5

DOS applications, 2-5

E
emulators, 1-4
Enable instruction cache command,

1-13, 3-14
encryption algorithms, 2-6
Ethernet

MACs, 2-2, A-1
networks, 2-1
stacks, 3-5
thread types, 3-4

example install directories, 1-5

external memory (SDRAM), 1-9, 1-12,

1-14
EZ-KIT Lite

creating a session, 1-2
Ethernet MACs, 2-2
features, -x

EZ-KIT Lites
audio sources/destinations, 3-2
connecting to networks, 2-3
connecting to PCs, 1-2

F
features, of this EZ-KIT Lite, -x
flash memory, -xii
functional compiled simulators, 1-3

H
handshakes between client/host, A-5
headers, of VDK messages, 3-7
host applications, A-2
host/client

interactions, 2-6, A-2, A-4

I
instruction cache memory, 1-13, 3-14
internal memory, 1-13
inter-process communications, A-5
IP address, 2-1, 2-4, 2-5, 2-8, A-2, A-4

J
JTAG emulators, 1-4
I-2 Getting Started with ADSP-BF537 EZ-KT Lite

INDEX
K
Kernel (VDK), 2-1, 2-2

L
L1, internal memory, 1-14
LED USB_MONITOR, 1-2
LINE IN connector, 3-2
listen command, A-4
local area networks (LANs), A-2
LwIP

stacks, 2-1, 2-2, 2-4
wizard, 2-4

M
MAC address, 2-3
main() function, 1-16
Media-Independent Interface (MII),

A-1
memory placements, 1-9
message

payload (body), 3-7, 3-8
type (header), 3-7

mini-headphones, 3-2
multiple

network connections, 2-9
threads, 2-6

N
network

connections, A-2
libraries, A-2

New (plot) command, 1-6
New Profile (statistical) command, 1-10

notation conventions, -xxi

O
Open (project file) command, 1-5
Output window, 1-11, 1-16, 2-5

P
pass-through audio applications, 3-2
payload of VDK messages, 3-7, 3-8
performance impacts, 1-9
ping command, 2-1
Plot Configuration dialog box, 1-6
plot windows, creating, 1-6
port address, A-2, A-4
power consumption, 1-15
processor

hardware model (emulator), 1-4
software model (simulator), 1-3

profiles
instrumented, 1-10
statistical, 1-10

program performance, 1-12
Project Options dialog box, 1-13, 1-14
projects

configurations, 1-8
default install directories, 1-5
TCP/IP Stack application using LwIP

and VDK, 2-3
Project window, 1-5, 3-4

Q
quick sort, 1-5, 1-14
Getting Started with ADSP-BF537 EZ-KT Lite I-3

INDEX
R
real-time clocks, 1-10
release, project configuration, 1-8, 1-9

S
SDRAM

ADSP-BF537 processor, 1-12
EZ-KIT Lite, -xii

segment qualifiers, 1-14
simulators, 1-3
sockets

API, 2-6, A-5
creating, A-4

sorting algorithms, 1-5
SPORT0, -xii
startup code, adding, 3-14
statistical profiling, 1-10
Step Over (debug) command, 1-7
system

components, 3-14
services libraries, 1-15

T
TCP/IP

applications, 2-1, 2-3, A-1, A-3
communications, A-2
networks, 2-2
project type, 2-3
stacks, A-1, A-3, A-5

telnet
applications, 2-8

sessions, 2-1, 3-4, 3-8
thread priorities, 3-4
thread types

creating, 2-7
input (audio applications), 3-4
output (audio applications), 3-4
process_audio (audio applications),

3-4
transferring data, A-3

U
Universal Asynchronous Receiver

Transmitter (UART), -xi, -xii
USB jack, 1-2
USB_MONITOR LED, 1-2

V
VDK State History window, 3-13
VisualDSP++

debug sessions, 1-3
distribution CD, 1-5
documentation, -xix
install directory, 1-5
Kernel (VDK), 2-1, A-3
main window, 1-2
program code placement, 1-14
project configurations, 1-8
simulators, 1-3
TCP/IP software stacks, 2-2

voltage levels, 1-15
I-4 Getting Started with ADSP-BF537 EZ-KT Lite

	Contents
	Preface
	Purpose of This Manual
	Intended Audience
	Manual Contents
	What’s New in This Manual
	Technical or Customer Support
	Supported Processors
	Product Information
	MyAnalog.com
	Processor Product Information
	Related Documents
	Table 1. Related Processor Publications
	Table 2. Related VisualDSP++ Publications

	Online Technical Documentation
	Accessing Documentation From VisualDSP++
	Accessing Documentation From Windows
	Accessing Documentation From Web

	Printed Manuals
	VisualDSP++ Documentation Set
	Hardware Tools Manuals
	Processor Manuals
	Data Sheets

	Notation Conventions

	1 Programming ADSP-BF537 EZ-KIT Lite with VisualDSP++
	Part 1: Connecting to EZ-KIT Lite and First Program
	Figure 1-1. VisualDSP++ Main Window
	Figure 1-2. Session Wizard
	Figure 1-3. Plot Window
	Figure 1-4. Project Debug Configuration

	Part 2: Analyzing Performance and Memory Hierarchy Impact
	Figure 1-5. Project Release Configuration
	Figure 1-6. Program Status Information
	Figure 1-7. Statistical Profiling: Initial Results
	Figure 1-8. Cache Dialog Box

	Figure 1-9. Statistical Profiling: Results after Moving bubble_sort()

	Part 3: Working with Blackfin Voltage Regulator
	Figure 1-10. Sorts Results in Console Window

	Listing 1-1. Part 1 of Exercise 1
	Listing 1-2. Part 2 of Exercise 1
	Listing 1-3. Part 3 of Exercise 1

	2 Running a TCP/IP application on an ADSP-BF537 EZ-KIT Lite
	Part 1: A Primer on TCP/IP, OS Threads and Semaphores, and Sockets API
	Part 2: Creating a TCP/IP Application and Connecting to a DHCP Server
	Figure 2-1. VDK Project with LwIP TCP/IP Stack
	Figure 2-2. Ping Output

	Part 3: Communicating with Sockets API
	Figure 2-3. New Kernel Thread Type
	Figure 2-4. Telnet Command Prompt

	Listing 2-1. Caesar_Cipher_ThreadType::Run() Implementation
	Listing 2-2. Caesar_Cipher_ThreadType() Implementation
	Listing 2-3. VDK::Thread Implementation
	Listing 2-4. lwip_sysboot_threadtype_RunFunction() Implementation

	3 Controlling a real-time application via TCP/IP
	Part 1: Creating an Audio Pass-through Application with VDK
	Figure 3-1. EZ-KIT Lite Connection Diagram
	Figure 3-2. New Caesar Cipher Thread Types
	Figure 3-3. AD1871 and AD1854 Device Drivers

	Part 2: Controlling Pass-through Volume via Telnet
	Figure 3-4. VDK State History Window of Talk-Through Activity
	Figure 3-5. Audio Thread Interaction Detail
	Figure 3-6. Volume Change Thread Interaction

	Part 3: Tuning Application
	Part 4: Running Application from Flash Memory
	Figure 3-7. Flash Programmer Dialog box - Driver Tab
	Figure 3-8. Flash Programmer Dialog box - Programming Tab

	Listing 3-1. Caesar_Cipher_ThreadType::Run() New Implementation
	What Is Next?

	A Creating a TCP/IP Application
	TCP/IP Framework
	TCP/IP Communications

	VisualDSP++ Kernel (VDK) Overview
	BSD Socket API
	1. Create Sockets
	2. Host Waits for Client
	3. Client Connects with Host
	4. Host Acknowledges Client
	5. Inter-Process Communications
	6. Close Connection
	Figure A-9. Host and Client Communication Control Flow

	I Index
	A
	B
	C
	D
	E
	F
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V

