

WSJ-5

AHEAD OF WHAT'S POSSIBLE™

MISO Load Modulated Power Amplifiers with Digital Predistortion

Noureddine Outaleb, Ahmed Raslan, Marwen Ben Rejeb Anis Ben Arfi, William Thompson, Mark Cope

Analog Devices, Inc.,

- Introduction
- Load Modulated Power Amplifiers
- Doherty Amplifier (DPA)
 - MISO Doherty
 - Shaping Function
- Load Modulated Balanced Amplifier (LMBA)
- Pseudo-Doherty LMBA (PD-LMBA)
 - MISO Pseudo-Doherty LMBA
 - Shaping Function
- Digital Predistortion (DPD)
 - MISO Doherty with DPD
 - MISO PD-LMBA with DPD
- Conclusions
- Next Steps

Introduction

WSJ-5

- Typical DC Power Consumption
 - 64Tx Transmit Power: 160 EAC; 2W/TX
 - 3.16W/PA PA Eff. =40% (1.5dB PA post loss/TX)

Radio Component	DC Power [W]
Transceiver (64TX/64RX)	112
64x PA (Eff= 40% each)	506
Digital (FPGA)	200
PSU	104
Total DC Power [W]	922

Better Spectrum Efficiency, More Bandwidth, More Efficiency

- Introduction
- Load Modulated Power Amplifiers
- Doherty Amplifier (DPA)
 - MISO Doherty
 - Shaping Function
- Load Modulated Balanced Amplifier (LMBA)
- Pseudo-Doherty LAMBA (PD-LMBA)
 - MISO Pseudo-Doherty LMBA
 - Shaping Function
- Digital Predistortion (DPD)
 - MISO Doherty with DPD
 - MISO PD-LMBA with DPD
- Conclusions
- Next Steps

Load Modulated Power Amplifiers

- Highly Efficient
- Narrow-band (~25%)
- Relatively easy to linearize
- Mainstream PA since 3G era

- Medium Efficiency
- Broadband (~50%)

- Relatively easy to linearize
- R&D Stage

- Highly Efficient
- Broadband (~50%)
- Hard to linearize
- R&D Stage

Introduction

- Load Modulated Power Amplifiers
- Doherty Amplifier (DPA)
 - MISO Doherty
 - Shaping Function
- Load Modulated Balanced Amplifier (LMBA)
- Pseudo-Doherty LAMBA (PD-LMBA)
 - MISO Pseudo-Doherty LMBA
 - Shaping Function
- Digital Predistortion (DPD)
 - MISO Doherty with DPD
 - MISO PD-LMBA with DPD
- Conclusions
- Next Steps

Doherty Amplifier

• The Doherty Amplifier has been introduced by William H. Doherty at Bell Labs in 1936 [1]

[1] W. H. DOHERTY, "A NEW HIGH EFFICIENCY POWER AMPLIFIER FOR MODULATED WAVES, Proceedings of the IRE, Vol. 24, Number 9, Sept. 1936

Doherty BW Limitations

- Doherty PA is inherently narrow-band !
 - High Q power device impedances
 - Doherty combiner BW
 - Matching Network dispersion
 - Efficiency contours vs frequency
 - Doherty Power dependent phase unbalance

Frequency [MHz]	Dev1 Z Load [Ohm]	Dev2 Z Load [Ohm]
1805	11.8+j13.2	11.8 +j1.2
1880	9.2+j12.5	9.2+j0.5
1995	6.0+j12.9	6.0+j0.9
2200	7.5-j14.5	7.5-j2.5
	X	\checkmark

Doherty Variants

MISO Doherty PA

- Carrier and Peak input split
 - Better control of the input drive levels
 - Maximize the Doherty efficiency
 - Improve the linearity
 - Improve the Doherty bandwidth
- Digital Splitter
 - Optimized Carrier $x_C[n]$ and Peak $x_P[n]$ Shaping Function magnitude and phase
 - Multiple Shaping Function solutions
 - Mag & Phase opt vs. power; Eff.
 - Phase opt vs. frequency; BW
 - Single input Digital Predistortion (DPD)

MISO Doherty Co-Simulation

- MISO Doherty MATLAB-ADS Co-simulation
 - Shaping function extraction
 - Digital Predistortion (DPD)

- ADI B3 40W Inverted Doherty Sim.
 - GTRA184602FC, 460W (P3dB)
 - Operating frequency: 1805-1880 MHz

Shaping Function

Shaping Function Magnitud 0 50 Shaping Function extraction: 20MHz LTE (8dB PAR) fc,amp (x[n]) -fp,amp (x[n]) Digital Splitter Main Output Input 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 DAC Mair Pr-Drive Normalized Input Magnitude y[n] λ/4 Shaping Function Class-AB DPD x[n] Input Phase Delta [rad] Phase Delta u[n] -0.5 x_P[n] DAC Peak λ/4 Peak Class-C Input -1.5 0 0.1 0.2 0.3 0.4 0.5 0.6 0.8 0.9 0.7 Normalized Input Magnitude AM-AM **AM/PM Distortion Distortion (degree)** SISO DPA - Eff. 57.4% SISO DPA - Eff. 57.4% Gain Distortion (dB) MISO DPA - Eff. 61.6% MISO DPA - Eff. 61.6% Shaping Function Equations: 20 State of the second 0 $x_{C}[n] = f_{C,amp}(x[n]) e^{i(\angle x[n] + f_{C,ph}(x[n]))}$ $x_P(n) = f_{P,amp}(x[n]) e^{i \angle x[n]}$ Phase [0 -2 -4 -20 -15 10 -10 -5 0 5 -15 -10 10 -20 -5 0 5 Input Power (dBm) Input Power (dBm)

- Introduction
- Load Modulated Power Amplifiers
- Doherty Amplifier (DPA)
 - MISO Doherty
 - Shaping Function
- Load Modulated Balanced Amplifier (LMBA)
- Pseudo-Doherty LAMBA (PD-LMBA)
 - MISO Pseudo-Doherty LMBA
 - Shaping Function
- Digital Predistortion (DPD)
 - MISO Doherty with DPD
 - MISO PD-LMBA with DPD
- Conclusions
- Next Steps

INTEGRATING LOAD MODULATION BALANCED Amplifier (LMBA)

• I_C , I_A : main to total power ratio at peak power

•
$$P_A = P_{A1} = P_{A2} = \frac{1}{2} I_A^2 Z_0 Re \left\{ 1 - \sqrt{2} \frac{I_c e^{j\emptyset}}{I_A} \right\} = Z_0 \left(I_A^2 - \sqrt{2} I_A I_C \cos \emptyset \right)$$

- With $P_{cont} = \frac{1}{2} I_c^2 Z_c$ and with $Z_c = Z_0$
- $P_{out} = Z_0 \left(I_A^2 \sqrt{2} I_A I_C \cos \emptyset + \frac{1}{2} I_C^2 \right) = 2 \times P_A + P_{cont}$
- With $\alpha = \left| \frac{P_{cont}}{P_A} \right|$ sets the mod. impedances for Z_{A1} and Z_{A2}
- $\emptyset = \angle \frac{P_{cont}}{P_A}$: sets the rotation angle on the constant amplitude

Pdel load dBm

[2] D.J. Shepphard, J. Powell, and S C. Cripps, "An Efficient Broadband Reconfigurable Power Amplifier Using Active Load Modulation", IEEE Microwave & Wireless Components Letters, Vol. 26, No. 6, June 2016

η(%)

- Low power regime: up to PBO, Peak1, Peak2 OFF, – $I_{P1} = I_{P2} = 0 \text{ A}$
- $Z_{P1,PB0} = Z_{P2,PB0} = Z_0 \left(1 + \sqrt{2} \frac{I_M e^{j\phi}}{I_{P1,P2}} \right)$
- $Z_{P1,PBO} = Z_{P2,PBO} = \infty$
- $Z_{M,PBO} = Z_0$

Connecting Minds. Exchanging Ideas.

- High power regime: PBO to P_{SAT} ,
- $I_M = I_{M,Max}$, $I_{P1} = I_{P2} = I_{P,Max}$ - $Z_{P1,SAT} = Z_{P2,SAT} = Z_0 \left(1 + \sqrt{2} \frac{I_{M,Max} e^{j\phi}}{I_{P,Max}} \right)$
- $Z_{M,SAT} = Z_0$

[3] Yuchen Cao and Kenle Chen, "Pseudo-Doherty Load-Modulated Balanced Amplifier with Wide Bandwidth and Extended Power Back-Off Range", IEEE Transactions on microwave theory and techniques, vol. 68, no. 7, July 2020

Pseudo-Doherty LMBA (PD-LMBA)

WSJ-5

Pseudo-Doherty LMBA

80

Connecting Minds. Exchanging Ideas.

- Highly efficient at 10+ dB power back-off
- Main stage IM compresses up to Psat!
- AM-AM hardly compressed (hard to linearize!)

PD-LMBA Bandwidth

 $-jI_A$

Aux2

Output

WSJ-5

R₀

MISO PD-LMBA

WSJ-5

- Carrier and Peak input split
 - Better control of the input drive levels
 - Maximize the PD-LMBA efficiency
 - Improve the linearity
- Digital splitter
 - Main and Peak Shaping function

- Analog Devices PD-LMBA prototype:
 - Main PA: 10W CGH40010 (Class-AB)
 - Peak PA: 2x 30W CGHV40030 (Class-C)
 - Driver PA: 10W CGH40010 (Class-AB)
 - Operating frequency: 1.5-2.5GHz
 - Pout: 40dBm, Eff. : 50+%, Psat: 47.8dBm

17

MISO PD-LMBA Shaping Function 1 (ADI) REIC

- **Digital splitter** •
 - Optimum dual input drive levels
 - **Carrier Shaping function** •
 - Peak Shaping function
- **Shaping Function** ullet
 - Instantaneous efficiency extraction ____
 - Linearity improvement —

Connecting Minds. Exchanging Ideas. MISO PD-LMBA Shaping Function 2 [UPC]

[4] Wantao Li and al. "Digital Shaping and Linearization of a Dual-Input Load-Modulated Balanced Amplifier", 2023 International Workshop on Integrated Nonlinear Microwave and Millimetre-Wave Circuits (INMMIC)

- Introduction
- Load Modulated Power Amplifiers
- Doherty Amplifier (DPA)
 - MISO Doherty
 - Shaping Function
- Load Modulated Balanced Amplifier (LMBA)
- Pseudo-Doherty LAMBA (PD-LMBA)
 - MISO Pseudo-Doherty LMBA
 - Shaping Function
- Digital Predistortion (DPD)
 - MISO Doherty with DPD
 - MISO PD-LMBA with DPD
- Conclusions
- Next Steps

Digital Predistortion (DPD)

- Volterra-Based Models
 - Effective behavioral modeling of non-linear systems
 - GMP derivative of Volterra Series [5]; reduced complexity (Linear Regression Estimation)

$$y(n) = \sum_{i=-I_{lag}}^{I_{lead}} \sum_{j=-J_{lag}}^{J_{lead}} \sum_{k=0}^{K} a_{ijk} x(n+i) |x(n+j)|^{k}$$

- Spline DPD [6]
 - Divides the input space in multiple regions: $[x_0, ..., x_m]$
 - Powerful for stringent PA non-linearities

$$y(n) = \sum_{i=-I_{lag}}^{I_{lead}} \sum_{j=-J_{lag}}^{J_{lead}} x(n+i) S_{ij}(|x(n+j)|)$$

$$S_{ij}(x) = \sum_{k=0}^{3} a_{ijk,r} (x - x_r)^k \text{ for } x_r \le x \le x_{r+1}$$

- Artificial Neural Network (ANN)
 - Captures complex non-linear mappings
 - Challenging in practical
 - Back-Propagation (Adaptation)

WSJ-5

u[n]

Fig. Indirect Learning

Connecting Minds. Exchanging Ideas.

MISO Doherty with DPD (Co-Sim.)

WSJ-5

(*) Gen5 DPD in ADRV904x

7

EEE MICROWAVE THEORY &

	NMSE [dB]	ACPR [dBc]	Pout [dBm]	Eff. [%]
SISO DPD - No DPD	-15.7	-27.5	47.5	57.4
MISO DPA - No DPD	-14.8	-25.6	47.5	61.6
SISO DPA - ILC	-55.6	-67.4	47.6	57.4
SISO DPA - ADI Gen5 ^(*) DPD	-51.8	-63.0	47.7	57.4
MISO DPA - ILC	-53.3	-67.7	47.8	61.4
MISO DPA - ADI Gen5 ^(*) DPD	-44.6	-51.9	47.8	61.4

IMS MISO Doherty with DPD (Co-Sim.) Connecting Minds. Exchanging Ideas.

EEE MICROWAVE THEORY &

	NMSE [dB]	ACPR [dBc]	Pout [dBm]	Eff. [%]
SISO DPD - No DPD	-15.4	-26.8	47.6	54.3
MISO DPA - No DPD	-14.7	-25.3	47.5	58.7
SISO DPA - ILC	-44.0	-54.7	47.6	54.4
SISO DPA - ADI Gen6 DPD	-43.7	-53.5	47.6	53.4
MISO DPA - ILC	-42.8	-51.6	46.6	57.4
MISO DPA - ADI Gen6 DPD	-41.7	-50.0	47.6	57.4

۰.			
	Normalized	Input A	Amplitude

	NMSE [dB]	ACPR [dBc]	EVM[%]	Pout [dBm]	Eff. [%]
No DPD	-	-24.9	11.8	40.9	44.3
ILC	-44.1	-58.1	1.97	40.3	44.2
Large GMP DPD	-40.7	-50.0	2.02	40.3	44.0
ADI Gen6 DPD	-40.0	-49.4	2.02	40.3	44.3

- ADI ADRV9030
 - 8T8R Transceiver
 - 600MHz-7.2GHz

Experimental Results [3]

• DPD Results: 200MHz NR with 8dB PAR

		N° of	NMSE [dB]	ACPR [dBc]	EVM[%]	Pout [dBm]	Eff. [%]	
ADI ADRV9030 – 8T8R Transceiver		coen.						
	No DPD/Fixed Phase SP	-	-16.3	-22.6	7.65	40.4	51.0	
	No DPD/Linear Phase SP	-	-20.9	-28.4	4.75	39.9	50.9	
– 600MHz-7.2GHz	GMP DPD	458	-34.3	-40.3	1.9	40.3	49.7	
	ANN DPD	1000	-40.1	-46.5	1.8	40.3	49.5	

[4] Wantao Li and al. "Digital Shaping and Linearization of a Dual-Input Load-Modulated Balanced Amplifier", 2023 International Workshop on Integrated Nonlinear Microwave and Millimetre-Wave Circuits (INMMIC)

- Introduction
- Load Modulated Power Amplifiers
- Doherty Amplifier (DPA)
 - MISO Doherty
 - Shaping Function
- Load Modulated Balanced Amplifier (LMBA)
- Pseudo-Doherty LAMBA (PD-LMBA)
 - MISO Pseudo-Doherty LMBA
 - Shaping Function
- Digital Predistortion (DPD)
 - MISO Doherty with DPD
 - MISO PD-LMBA with DPD
- Conclusions
- Next Steps

Conclusions

- MISO Highly Efficient PAs will find applications in broadband radios
- Dual-input Doherty enhances further the bandwidth and maximizes efficiency
- PD-LMBA is a promising broadband PA architecture but still present some challenges to Digital Predistortion technics
- Shaping function optimization is crucial for MISO loaded power amplifier linearization

• Investigate more shaping functions for MISO PAs

• Demonstrate Highly efficient PAs with BW > 400MHz

 Enhanced DPD architecture for MISO loaded modulated power amplifiers

References

[1] W. H. DOHERTY, "A new High Efficiency Power Amplifier for Modulated Waves", Proceedings of the IRE, Vol. 24, Number 9, Sept. 1936

[2] D.J. Shepphard, J. Powell, and S C. Cripps, "An Efficient Broadband Reconfigurable Power

Amplifier Using Active Load Modulation", IEEE Microwave & Wireless Components Letters, Vol. 26, No. 6, June 2016

[3] Yuchen Cao and Kenle Chen, "Pseudo-Doherty Load-Modulated Balanced Amplifier with Wide Bandwidth and Extended Power Back-Off Range", IEEE Transactions on microwave theory and techniques, vol. 68, no. 7, July 2020

[4] Wantao Li and al. "Digital Shaping and Linearization of a Dual-Input Load-Modulated Balanced Amplifier", 2023 International Workshop on Integrated Nonlinear Microwave and Millimetre-Wave Circuits (INMMIC)

[5] D. R. Morgan, Z. Ma, J. Kim, M. G. Zierdt and J. Pastalan, "A Generalized Memory Polynomial Model for Digital Predistortion of RF Power Amplifiers," in IEEE Transactions on Signal Processing, vol. 54, no. 10, pp. 3852-3860, Oct. 2006,

[6] N. Naraharisetti, C. Quindroit, P. Roblin, S. Gheitanchi, V. Mauer and M. Fitton, "2D cubic spline implementation for concurrent dual-band system," 2013 IEEE MTT-S International Microwave Symposium Digest (MTT), Seattle, WA, USA, 2013, pp. 1-4

