

Report Title: ADLK 8V2DPDMR (HVBP2) Process Qualification

Report Number: 5998

00

Date: 19 September 2007

Analog Devices Reliability . Gateway Business Park, Special Economic Park, Javelera, Gen. Trias . Cavite, Philippines Tel: 632.867.7030 Fax: 632.867.7200 www.analog.com

Summary

This report documents the successful qualification requirements for release of the ADLK 8V2DPDMR (HVBP2) process. The generics used for the qualification are the AD8675, ADA4004-4, and ADR127 products in a 6-TSOT, 8-SOICnb, and 14-SOICnb package.

This report details qualification results for both the product level qualifications and device level qualifications.

Section A: Covers the Product Level Qualification.

Section B: Covers the Device Level Qualification.

Section A: Product Level Qualification Data

The AD8677 qualification in 8-SOICnb is also covered in this report. The qualification plan for the AD8677 is RQR04075A (#6417). The AD8677 is the fourth product to be qualified for the Limerick 8V2DPDMR process release and results are also shown below.

The AD8675 precision amplifier has ultra-low offset, drift and voltage noise combined with very low input bias currents over the full operating temperature range. The AD8675 is a precision, wide bandwidth amplifier featuring rail-to-rail output swings and very low noise. Operation is fully specified from \pm 5V to \pm 15 volts.

The ADA4004-4 is a 1.8 nV/ $\sqrt{\text{Hz}}$ precision quad amplifier featuring 40 μ V offset, 0.7 μ V/ $^{\circ}$ C drift, 12 MHz bandwidth, and low 1.7 mA/amplifier supply current.

Analog Devices' new ADR127 is a 1.25 V reference providing high precision, low power, and low voltage. A perfect companion chip for high accuracy data converters in power constraint applications, the ADR127 offers the lowest temperature drift performance over the extended industrial temperature range of -40°C to +125°C while only consuming 85 μ A. Its low input and output voltage capability ensures that it's the ideal solution for our latest generation of high performance CMOS converters in handheld portable instrumentations. The combination of precision, power, and low voltages makes the ADR127 ideally suited for battery operated instrumentations equipments.

The AD8677 is the next generation of precision, ultra-low offset amplifiers. Operation is fully specified from ± 5 V to ± 15 V supply.

Device	
Maximum Power Dissipation (W)	0.001
Device / Die ID	2512Z
Die Size (mm)	.76 x 1.20
Wafer Fabrication Site	ADI-Limerick
Wafer Fabrication Process	8V2DPDMR
Passivation Layer	undoped-oxide/SiN
Bond Pad Metal Composition	AlCu
Package/Assembly	
Available Package(s)	6-TSOT
Body Size (mm)	1.60 x 2.90 x .87
Assembly Location	Carsem-M
Die Attach	Ablestik 84-1LMIS R4
Lead Frame Material	Copper
Bond Wire Type	Gold Tanaka GLD
Bond Wire Dia. (mils)	0.80
Mold Compound	NITTO MP 8000CSM
Lead Finish	Tin Plate
Moisture Sensitivity Level	1
Maximum Peak Reflow (°C)	260C +0/-5C

Table 1. ADR127 Product Characteristics

Table 2. ADA4004-4 Product Characteristics

Device

0.204
2510/Y
1.73 x 1.70
ADI-Limerick
8V2DPDMR
undoped-oxide/SiN
AlCu
14-SOICnb
4.00 x 8.75 x 1.50
Amkor-P
Ablestik 8340

Lead Frame Material	Copper
Bond Wire Type	Gold
Bond Wire Dia. (mils)	1.20
Mold Compound	Sumitomo 6730B
Lead Finish	Tin Plate
Moisture Sensitivity Level	1
Maximum Peak Reflow (°C)	260C +0/-5C

Table 3. AD8675 Product Characteristics

Device	
Maximum Power Dissipation (W)	0.135
Device / Die ID	2503X
Die Size (mm)	1.32 x 1.32
Wafer Fabrication Site	ADI-Limerick
Wafer Fabrication Process	8V2DPDMR
Passivation Layer	undoped-oxide/SiN
Bond Pad Metal Composition	AlCu
Package/Assembly	
Available Package(s)	8-SOICnb
Body Size (mm)	4.00 x 5.00 x 1.50
Assembly Location	Amkor-P
Die Attach	Ablestik 8340
Lead Frame Material	Copper
Bond Wire Type	Gold
Bond Wire Dia. (mils)	1.20
Mold Compound	Sumitomo 6730
Lead Finish	Tin Plate
Moisture Sensitivity Level	1
Maximum Peak Reflow (°C)	260C +0/-5C

Table 4. AD8677 Product Characteristics

Device	
Maximum Power Dissipation (W)	0.135
Device / Die ID	2509X
Die Size (mm)	0.95 x 0.95
Wafer Fabrication Site	ADI-Limerick
Wafer Fabrication Process	8V2DPDMR
Passivation Layer	undoped-oxide/SiN
Bond Pad Metal Composition	AlCu

Package/Assembly	
Available Package(s)	8-SOICnb
Body Size (mm)	4.00 x 5.00 x 1.50
Assembly Location	Amkor-P
Die Attach	Ablestik 8340
Lead Frame Material	Copper
Bond Wire Type	Gold
Bond Wire Dia. (mils)	1.20
Mold Compound	Sumitomo 6730
Lead Finish	Tin Plate
Moisture Sensitivity Level	1
Maximum Peak Reflow (°C)	260C +0/-5C

Description/Results of Tests Performed

Table 4 provides a description of the qualification tests conducted and the associated test results on the AD8677, AD8675, ADA4004-4, and ADR127 and other products manufactured on the same technologies as described in the product characteristics tables.

Test Name	Conditions	Specification	Device	Package	Lot Num	Sample Size	Qty. Rejects
				8-SOICnb	f159516.7	79	0
	121C 100%RH	JEDEC-STD- 22, Method	AD8675	8-SOICnb	f159575.7	77	0
	2atm 168hrs	A102		0-3010110	F159642.7	70	0
Autoclave ¹			ADA4004-4	14-SOICnb	f159494.7	79	0
Autociave			ADA4004-4	14-3010110	f159654.7	74	0
	121C 100%RH	JEDEC-STD- 22, Method			AA40332.1	77	0
	2atm 96hrs	A102	ADR127	6-TSOT	AA40333.1	77	0
					AA71757.1	77	0
	S 150C 1000hrs 22, Method			f159516.4	79	0	
			AD8675	8-SOICnb	f159575.4	79	0
					F159642.4	77	0
			ADA4004-4	14-SOICnb	f159494.4	80	0
HTS					f159551.4	80	0
		A103			f159654.5	80	0
					AA40336.1	77	0
			ADR127	6-TSOT	AA40337.1	77	0
					AA71759.1	77	0
SHR ¹	See Below	ADI-0049	AD8675	8-SOICnb	f159516.5	25	0
			ADA4004-4	14-SOICnb	f159494.5	25	0
			ADR127	6-TSOT	aa40338.1	20	0

 Table 5: Package Qualification Test Results

Page 5 of 21

	l			I	aa40338.1	20	0
					f159516.8	80	0
			AD8675	8-SOICnb	f159575.8	79	0
Temp Cycle ¹	-65C/+150C	JEDEC-STD- 22, Method			F159642.8	68	0
	500cycles	A104			f159494.8	79	0
		-	ADA4004-4	14-SOICnb	f159551.8	49	0
					f159654.8	79	0
Temp Cycle	-65C/+150C 500cycles	JEDEC-STD- 22, Method A104	ADR127	6-TSOT	AA80831.1	77	0
	-65C/+150C	JEDEC-STD-	ADR127 ADR127	6-TSOT	AA40340.1	77	0
Temp Cycle ¹	500cycles	22, Method A104			AA40341.1	77	0
Temp Cycle	-65C/+150C reconcycles	JEDEC-STD- 22, Method A104			AA71760.1	77	0
	130C 85%RH	JEDEC-STD-	ADA4004-4		f159916.5	79	0
Unbiased HAST ¹	2atm 96hrs	22 Method		14-SOICnb	f160129.7	39	0

Note: Results table below is from RQR04075A (#6417)

Test Name	Conditions	Specification	Device	Package	Lot Num	Sample Size	Qty. Rejects
		JEDEC-STD-		8-SOICnb	AA20705.1	85	0
Autoclave ¹	121C 100%RH 2atm 96hrs	22, Method	AD8677	8-SOICnb	AA20706.1	80	0
	24111 90113	A102		0-3010110	AA20707.1	85	0
		JEDEC-STD- 22, Method AD80 A103			AA18037.1	80	0
HTS			AD8677	8-SOICnb	AA18038.1	80	0
					AA18039.1	80	0
SHR ¹	See Below	ADI-0049	AD8677	8-SOICnb	AA20711.1	20	0
		JEDEC-STD-		8-SOICnb	AA20702.1	80	0
Temp Cycle ¹	-65C/+150C 500cycles	22, Method	AD8677		AA20703.1	80	0
	coccycles	A104			AA20704.1	80	0

¹These Samples were subjected to preconditioning (per J-STD-020 Level 1) prior to the start of the stress test. Level 1 preconditioning consists of the following:

- Bake: 24 hrs @ 125°C
- Unbiased Soak: 168 hrs @ 85°C, 85%RH
- Reflow: 3 passes through an oven with a peak temperature of 260+0/-5°C

Samples of the many devices manufactured with this packaging technology are continuously undergoing reliability evaluation as part of the ADI Reliability Monitor Program. Additional qualification data is available on Analog Devices' web site at: http://www.analog.com/world/quality/read/1stpage.html.

Test Name	Conditions	Specification	Part Number	Lot Number	Sample Size	Qty. Rejects
				f159516.3	630	0
				f159575.12	416	0
				f159575.3	209	0
			AD8675	F159642.3	628	0
			120010	f159654.10	59	0
				f159916.2	700	0
				f159928.2/6	700	0
ELF	125C 48hrs	MIL-STD-883, Method 1015		f160129.5/6	669	0
				AA43211.1	500	0
				AA43212.1	499	0
				AA45565.1	165	0
			ADR127	AA45566.1	165	0
				AA71229.1	170	0
				AA71229.2	447	0
				AA71229.3	53	0
	130C 85%RH 2atm, Biased 96hrs	JEDEC-STD- 22, Method A110	AD8675	f159516.6	80	0
				f159575.6	80	0
HAST ¹				F159642.6	80	0
TAS I			ADR127	AA40334.1	77	0
				AA40335.1	77	0
				AA71758.1	77	0
Unbiased HAST ¹	130C 85%RH 2atm, Biased 96hrs	JEDEC-STD- 22, Method A110	ADA4004-4	f159916.3	80	0
Unbiased HAST ¹	130C 85%RH 2atm, Biased 96hrs	JEDEC-STD- 22, Method A110	ADA4004-4	f159928.3	80	0
				f159516.9	46	0
			AD8675	f159575.9	76	0
				F159642.5	80	0
				AA37664.1	75	0
	125C <tj<135c,< td=""><td></td><td></td><td>AA37665.1</td><td>77</td><td>0</td></tj<135c,<>			AA37665.1	77	0
HTOL	Biased 1000hrs	JESD22-A108		AA71230.1	74	0
			ADR127	F160129.8	80	0
				f160129.9	77	0
				f160129.4	80	0
				f159928.4	100	0

Table 6: Process Qualification Test Results

Test Name	Conditions	Specification	Part Number	Lot Number	Sample Size	Qty. Rejects
			AD8675	AA13504.1	660	0
				AA20920.1	564	0
ELF	125C 48hrs	MIL-STD-883,		AA20920.2	101	0
	1250 40115	Method 1015	AD8677	AA20921.1	564	0
				AA20921.2	101	0
				R88467.1	610	0
	130C 85%RH	JEDEC-STD- 22, Method A110		AA20708.1	80	0
HAST ¹	2atm, Biased 96hrs			AA20709.1	80	0
				AA20710.1	80	0
			AD8675	AA13505.1	85	0
HTOL	125C <tj<135c,< td=""><td>JESD22-A108</td><td></td><td>AA20918.1</td><td>89</td><td>0</td></tj<135c,<>	JESD22-A108		AA20918.1	89	0
HIUL	Biased 1000hrs	JE3D22-A100	AD8677	AA20919.1	90	0
				R88468.1	90	0

Note: Results table below is from RQR04075A (#6417)

¹These Samples were subjected to preconditioning (per J-STD-020 Level 1) prior to the start of the stress test. Level 1 preconditioning consists of the following:

- Bake: 24 hrs @ 125°C
- Unbiased Soak: 168 hrs @ 85°C, 85%RH
- Reflow: 3 passes through an oven with a peak temperature of 260+0/-5°C

Samples of the many devices manufactured with these process technologies are continuously undergoing reliability evaluation as part of the ADI Reliability Monitor Program. Additional qualification data is available on Analog Devices' web site at: http://www.analog.com/world/quality/read/1stpage.html.

ESD Testing

The results of Human Body Model (HBM) and Field Induced Charge Device Model (FICDM) ESD testing are summarized in Table 7.

ADI measures ESD results using stringent test procedures based on the specifications listed in the above table. Any comparison with another supplier's results should ensure that the same ESD test procedures have been used. For further details, please see the EOS/ESD chapter of the ADI Reliability Handbook at <u>http://www.analog.com/world/quality/manuals/</u>.

ESD Model	Package	ESD Test Spec	RC Network	Generic	Highest Pass Level	First Fail Level	Class
FICDM	8-SOICnb	ESD Assoc. STM5.3.1-1999	1Ω, Cpkg	AD8677	1.5kv	-	c6
FICDM	8-SOICnb	ESD Assoc. STM5.3.1-1999	1Ω, Cpkg	AD8675	1.5kv	-	c6
FICDM	6-TSOT	ESD Assoc. STM5.3.1-1999	1Ω, Cpkg	ADR127	0.5kv	-	c4
FICDM	14-SOICnb	ESD Assoc. STM5.3.1-1999	1Ω, Cpkg	ADA4004	1.5kv	-	c6
НВМ	6-TSOT	ESD Assoc. STM5.1-2001	1.5kΩ, 100pF	ADR127	0.8kv	-	1b
НВМ	14-SOICnb	ESD Assoc. STM5.1-2001	1.5kΩ, 100pF	ADA4004	1.5kv	-	1c
НВМ	8-SOICnb	ESD Assoc. STM5.1-2001	1.5kΩ, 100pF	AD8675	2.5kv	-	c2
HBM	8-SOICnb	ESD Assoc. STM5.1-2001	1.5kΩ, 100pF	AD8677	3.5kv	-	c2

Table 7. AD8675, ADA4004-4, ADR127, AD8677 ESD Test Results

Approvals

Reliability Engineer: Edward Mullen This report has been approved by electronic means (3.5).

Additional Information

Data sheets and other additional information are available on Analog Devices' web site at the addresses shown below.

Home Page:	http://www.analog.com
Sales Info:	http://www.analog.com/world/corp_fin/sales_directory/distrib.html
Reliability Data:	http://www.analog.com/world/quality/read/1stpage.html
.	
Reliability Handbook:	http://www.analog.com/corporate/quality/manuals/

Section B: Device Level Qualification Data

Purpose

The purpose of this document is to report the device level qualification of HVBP2 Process at ADLK. The qualification tests are determined by ADI0012, "Procedure for the Qualification of New or Revised Processes or Packages". The devices used for this qualification were fabricated on the HVBP2, Double Poly, Double Metal, CMOS Process, at ADLK 8" Fab.

Scope

This document describes test methods and the conclusion of testing.

Sample Sizes

In general, data should come from three separate wafer fab lots. Specific sample sizes are documented with each individual test.

Use of Packages

DIP-18 Side Brazed Ceramic Package with Aluminium Wire Bond is used for all tests.

Reference Documents

ADI0012: Procedure for the Qualification of New or Revised Processes or Packages ADI Reliability Handbook: <u>http://www.analog.com/corporate/quality/manuals/</u>

Electromigration

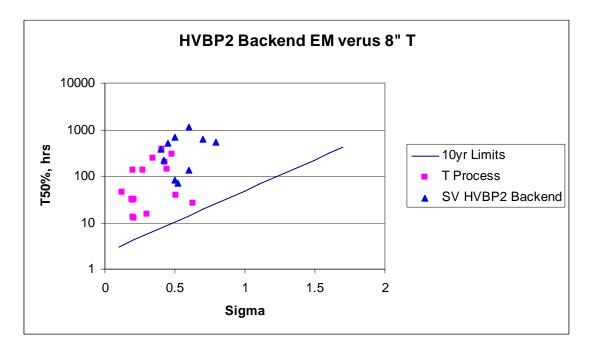
Electromigration should be done on each via level and metal layer with any differences in design rules or process parameters, including metal process and the inter/intra level dielectric. Worst case stacked via or each permutation of stacked vias should be tested separately. Via tests should exercise electron flow both up and down the via, thus stressing the via-to-metal interfaces.

Reference Documents	JESD61, JESD87, JESD33A, JESD37, JESD63.						
Test Structure	Test structures designed as per JESD87						
	Pattern	w/t	Length	Comment			
	Metal 1	2um	1500um	Long flat			
	Metal 1	2um	1500um	Long topo			
	Metal 1	4um	900um	Long flat			
	Metal 1	4um	900um	Long topo			
	Metal 1	3um	800um	Long snake			
	Metal 1	10um	500um	Long topo			
	Metal 1	Metal 1 10um 500um Long flat					
	Metal 2	2um	1500um	Long flat			
	Metal 2	2um	1500um	Long topo			
	Metal 2 4um 900um			Long flat			
	Metal 2	4um	900um	Long topo			
	Metal 2	3um	800um	Long flat			
	Metal 2	10um	500um	Long topo			
	Metal 2	10um	500um	Long flat			
	Contact			Nsd Contact 2x2um			
	Via 1			6 2x2um2 vias M1 wide			
	Via 2			6 2x2um2 vias M2 wide			
Vehicle	Package (ceramic) level	l test				
Method	Constant	Current stress	ing @2250				
Sample Size	10 - 16						
Fail Criteria	Percent Resistance change e.g. 20% or short circuit to extrusion monitor. End of experiment determined by 100% of samples failed.						

Model	Black's Model: $t_{50} = AJ^{-n}exp(E_A/kT)$		
	Current density exponent, n=2.		
	Activation energy, $E_A=0.7$.		
Merit Number	Calculate t _{0.1} at max current density and max operating junction temp:		
	$t_{0.1} = t_{50} \exp[-3.09s] \dots s = sigma$		
	Calculate max current density (s=sigma):		
	$J_{MAX} = J_{STRESS} \{ [t_{50} exp[-3.09s + (1/T_{USE} - 1/T_{STRESS})^{E_A}/k]] / 100,000 \}^{1/n}$		
Metal Scheme	Metal 1/2: 4KA AlCu / 1.65KA TiN		

Table 1Bamboo Data

Wafer i.d.	Structure	T50%,hrs(225deg C, 52mA/um ²)	Sigma


Table 2Multigrain Data

Wafer i.d.	Structure	T50%,hrs(225deg	Sigma
		$C, mA/um^2$	C
D26764wf3	Metal 1 10*500um long topo	3.37	0.19
	Metal 1 10*500um long flat	4.8	0.23
	Metal 2 4*900um long topo	3.899	0.23
	Metal 2 4*900um long flat	4.83	0.36
D15964wf9	Metal 1 2*1500um long flat	16.72	0.18
	Metal 1 2*1500um long topo	8.23	0.22
	Metal 1 4*900um long flat	8.61	0.32
	Metal 1 4*900um long topo	5.74	0.23
	Metal 1 10*500um long topo	6.09	0.13
	Metal 2 2*1500um long flat	12.56	0.18
	Metal 2 2*1500um long topo	9.09	0.43
	Metal 2 4*900um long flat	5.32	0.32
	Metal 2 4*900um long topo	3.31	0.2
	Metal 2 10*500um long flat	3.81	0.22
	Metal 2 10*500um long topo	2.32	0.26
D17180wf3	Metal 1 10*500um long topo	1.636	0.24
	Metal 1 4*900um long flat	10.45	0.22
	Metal 2 2*1500um long topo	8.8	0.58
	Metal 2 2*1500um long flat	13.644	0.62

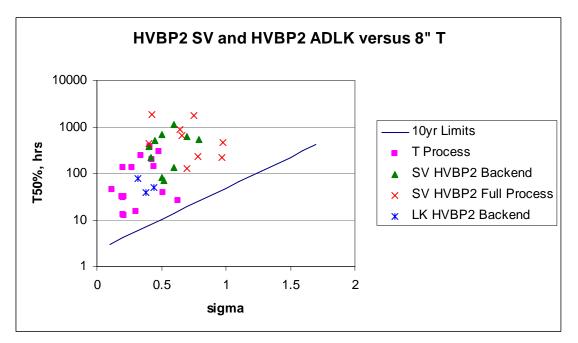


Table 3Contact/Via Data

Wafer i.d.	Structure	T50%,hrs	Sigma
		(225deg C, mA)	
D17180wf3	6 2x2um2 vias M2 wide	12.07	0.398
D15964wf9	Nsd Contact 2x2um	2.18	0.35
	6 2x2um2 vias M1 wide	91.05	0.13
	6 2x2um2 vias M2 wide	10.19	0.52
D26764wf3	6 2x2um2 vias M1 wide	139.112	0.22
	6 2x2um2 vias M2 wide	104.36	0.41

Conclusions

The EM data for the HVBP2 process satisfies reliability requirements for 10yr lifetimes at 70deg C for 0.1% of the population. It also matches well with both Sunny Vale data.

Hot Carrier Injection (HCI): Bipolar Device

Hot Carrier Testing is performed on the minimum geometry device.

Reference Documents	JESD28, JESD60
Test Structure	Single transistor device, with all terminals of the device contacted.
	W/L = 6x6um
Vehicle	Package (ceramic) level test
Method	Stress at room temperature, 25C.
	Stress method for NPN:Ic vs Hfe• Vbe $0 - 3V$ in 0.5V steps• Vce fixed at 10VA reverse emitter current of: $1e10^{-7}$ mA, $3e10^{-7}$ mA and $5e10^{-7}$ mAInspect conditions: Vce = 5V, Ib = .001mAStress method of PNP:Ic vs Hfe• Vbe $0 - 3V$ in 0.5V steps
	 Voe 0-3V m 0.5V steps Vce fixed at 10V Inspect conditions: Vce = 5V, Ib = .001mA A reverse emitter current of: 7.9e10^-8 mA, 1.1e10^-7 mA and 2.5e10^-7 mA
Sample Size	24 DUTs
Fail Criteria	The failure point is determined to be where the gain has degraded by 10% from T0 value.

Model	For Bipolar HCI, the % degradation in Gain is plotted versus stress time for each device. The failure point is determined to be where the gain has degraded by 10% from T0 value. The lognormal distributions for each of the three reverse Ie stress currents is plotted and T0.1% hrs and Sigma is noted. The required lifetime is > 10yrs for 0.1% cumulative fail time. The T0.1% is plotted versus stress current and a power series fit is used to fit a trendline.
	The relevant power series equation is used to calculate the maximum operating current for ADBV required 10yrs lifetime. Iebo-vs-Vebo is measured on a number of time zero devices. This plot allows the maximum operating reverse current to maximum allowed operating reverse Vbe.

Lot Details	Wafer #	Device	Reverse Ie (mA)	T0.1% [hrs]	Sigma	Max Reverse Ie (10yrs)	Max Reverse Vbe (10yrs)
D15964.1	12	NPN	1e10^-7 3e10^-7 5e10^-7	NA	NA	NA	Pass
D15964.1	12	PNP	7.9e10^-8 1.1e10^-7 2.5e10^-7	NA	NA	NA	Pass

CONCLUSIONS:

The conclusion is that after >100 hours stress there was < 1% degradation In Hfe (Ic/Ib). The data indicates that Hot-carriers is not a concern for Bipolar devices on HVBP2.

Time Dependent Dielectric Breakdown

TDDB test is used to model the intrinsic behavior in the technology being qualified using both temperature and voltage acceleration. Time to failure scales inversely with voltage, temperature and area of the oxides in test.

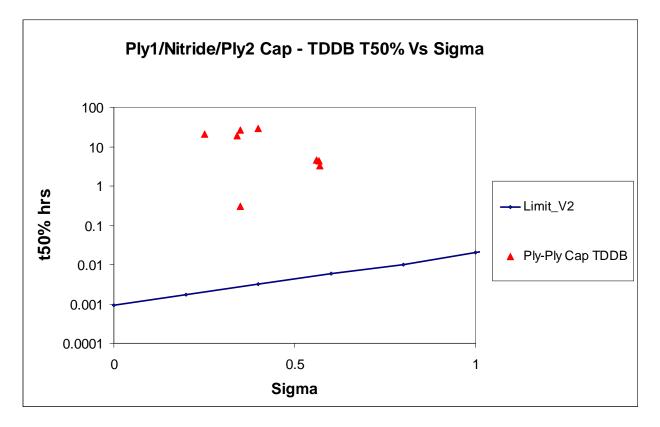
und ured of the of	and area of the oxides in test.				
Reference Documents	EIAJ-988				
Test Structure	Ply 1 – Nitri	ide – Ply 2 Capacitor			
	Tox	Details			
	900 Ang.	The structures have Cap Area $1 = 76x40$ um, Area $2 = 966x40$ um, Area $3 = 3616x40$ um. (See Graph 4 for Area Dependency)			
Vehicle	Package (cer	ramic) level test			
Method	Constant voltage stress at various stress voltages ($V_G > V_{DDMAX}$) at a temperature of 225C				
	Ply1-Nitride	e-Ply2 capacitors stress = +/-65V stress			
Sample Size	16				
Fail Criteria	Stress until 100% of the samples have failed.				
	For thick oxides, increase in current to >0.0001A is a typical fail criteria.				
Model	E Model: TFu = exp $E_A/K(1/Tt-1/Tu)$ *exp G(Vt-Vu)*TFt				
	E-Field Acti	ivation Energy, Gamma or G. (See Table 2 & Graph 2)			
	Temperature Activation Energy, E _A . (See Table 2 & Graph 3)				
Merit Number	Calculate lifetime at use conditions:				
	T50test = exp(3.08*sigma) * 10yrs/AT*AE				
	conditions. T time for 50% required to e	re the temperature and voltage acceleration factors from test to use The T50% control lines in graphs 1 to 5 below are the minimum 6 of the test samples to fail and the corresponding sigma value ensure <0.1% cumulative failures in 10 yrs at 70C from the TDDB ns. (See Graph 1 for results)			

Tables 1 and 2 summaries the qualification lots and the characterization matrix for the HVBP2 process qualification. Table 3 shows the calculated activation energies for both voltage and temperature.

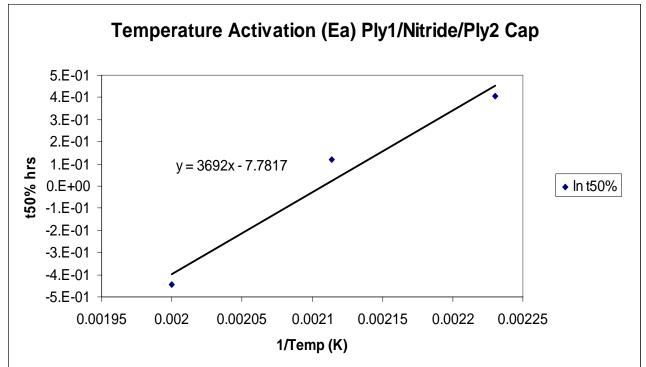
Table 1: Lot Allocation			
Lots used during qualification			
G31663.1			
D12702.1			
D12942.1			

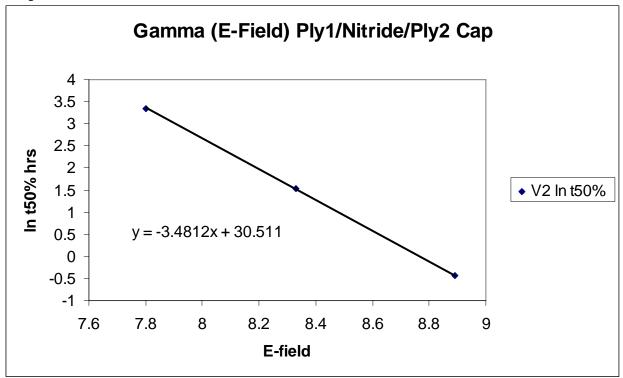
Table 2: Characterisation matrix

	Voltages for 30V Ply Cap	+/-65V	+/-70V	+/-75V	+/-80V
Temperature					
175C		Х	Х	Х	Х
200C		X	Х	X	Х
225C		X	Х	X	X

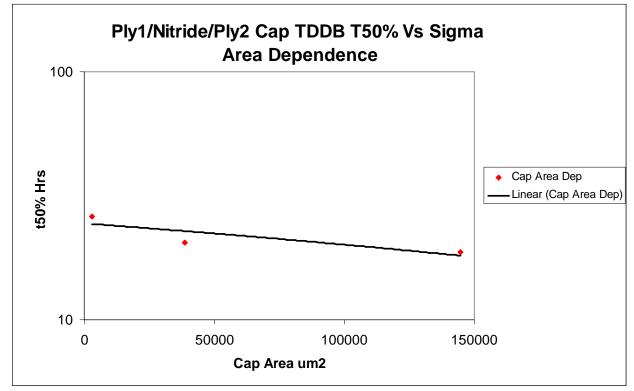

Table 3: Activation Energies

Activation Energies		
Devices	Gamma	Ea
Ply1-Nitride-Ply2 Cap	3.5	0.32


Graphical representation of results.


Graph 1: Ply-Nitride-Ply Capacitor 900A Oxide

Graph 2: Thermal Activation Energy (Ea)



Graph 3: E-Field Acceleration Factor (Gamma)

Graph 4: Ply-Nitride-Ply Capacitor: Area Dependency

TDDB Summary

The TDDB data for the HVBP2 process satisfies reliability requirements for 10yr lifetimes at 70deg C for 0.1% of the population.

Conclusion

The device level qualification of the ADLK 8" HVBP2 Process has successfully completed for production release.

Approvals

Reliability Engineer: Edward Mullen This report has been approved by electronic means (3.5).

Additional Information

Data sheets and other additional information are available on Analog Devices' web site at the addresses shown below.

Home Page:	http://www.analog.com	
Sales Info:	http://www.analog.com/world/corp_fin/sales_directory/distrib.html	
Reliability Data:	http://www.analog.com/world/quality/read/1stpage.html	
Reliability Handbook:	http://www.analog.com/corporate/quality/manuals/	