
Engineer-to-Engineer Note EE-399

Technical notes on using Analog Devices DSP products and development tools
Visit our Web resources http://www.analog.com/ee-notes and http://www.analog.com/processors or
e-mail processor.support@analog.com or processor.tools.support@analog.com for technical support.

The Linux Run-Time SHARC+ Loader on the ADSP-SC57x/ADSP-SC58x
Processors
Contributed by Zhang, Wenting, Jayasree, V.B., and Yi, Gabby. Rev 3 – January 18, 2019

Copyright 2019, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of customers’
products or for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property of their
respective holders. Information furnished by Analog Devices applications and development tools engineers is believed to be accurate and reliable, however no
responsibility is assumed by Analog Devices regarding technical accuracy and topicality of the content provided in Analog Devices Engineer-to-Engineer Notes.

Introduction
The ADSP-SC58x and ADSP-SC57x processors
are comprised of an ARM Cortex®-A5 core
alongside dual DSP SHARC+® cores. Analog
Devices, Inc. provides a Linux add-in BSP that
allows a user to run Linux on the ARM core.
When a user wants to run an application on one of
the SHARC+ cores, a debugger such as the ICE-
1000 or ICE-2000 can be used to load the
SHARC+ cores without disturbing the ARM core
running Linux.

When a SHARC+ application is ready for
deployment, the user must create a single boot
stream containing u-boot and the SHARC+
application for each SHARC+ core.

This EE-Note describes a method to load different
boot stream loader (LDR) files from the Linux
filesystem to run on the SHARC+ cores during
run time.

Run-Time SHARC+ Loader
The Run-Time SHARC+ Loader (RSL) is a
userspace Linux application that reads a binary
boot stream LDR file and boots it onto one of the
SHARC+ cores. Additionally, it can pass
command line arguments to the SHARC+
application if desired. In Figure 1, the help
message is displayed for the RSL executed on
ADSP-SC589. By default, if no SHARC+ core is
specified, core 1 is the target.

Figure 1: Help message from Run-Time SHARC+
Loader on ADSP-SC589

The option -d allows the user to specify the debug
level for the amount of information displayed
during the execution.

Architecture
The RSL is comprised of a front-end and a back-
end. The front-end is the Linux application that
reads in the binary boot stream LDR file. The
back-end is a Loader Stub (LS) which runs on the
SHARC+ core and communicates with the RSL
front-end. The RSL is also responsible for loading
the LS onto the SHARC+ for execution.
Optionally, to receive arguments from the RSL,
an additional back-end function must be added to
the user application to communicate with the RSL
front end.

The LS uses the boot kernel stored in boot ROM
memory to do the actual booting of the boot
stream. It supplies a Load function driver to be
registered with the boot kernel used during the
booting. As the booting occurs, the supplied
Load function is called to fetch more boot stream
data. Since the LDR file sits on the file system on

http://www.analog.com/processors

Linux Run-Time SHARC+ Loader on the ADSP-SC57x/ADSP-SC58x Processors (EE-399) Page 2 of 11

the ARM core, the Load function communicates
with the RSL front-end as to how much data to
fetch. The RSL front-end acts as a server and
waits for this request. Once it gets a request, it
will fread() the requested amount from the
LDR file and the store it in the shared buffer with
the SHARC+ core.

There are two main reasons for the RSL
architecture.

1. It is easier for the boot kernel to load and
boot a boot stream than for a Linux
application to parse and load a DXE image
file.

2. The boot kernel API is not Linux-
compatible, so a Linux application cannot
directly employ the boot kernel API to
boot an LDR file.

Operational Flow
In Figure 2, the diagram pictorializes the flow of
the SHARC+ application loading. The following
sequence of steps occurs:

1. Set the RCU_SVECTn register to the
location in boot ROM to loop on idle
instruction.

2. Reset the SHARC+ core.
3. Load the loader stub onto the L1 memory

of the SHARC+s.
4. Set the RCU_SVECTn register to the

beginning of the loader stub application in
SHARC+ L1 memory.

5. Reset the SHARC+ core.

6. The RSL front-end waits for a signal from

the LS that it is running.
7. The LS starts executing and sets up the

boot structure of type
ADI_ROM_BOOT_CONFIG and calls
adi_rom_BootKernel() to start the
boot procedure.

8. The RSL waits for a request from LS for
boot stream data.

a. Once the request is obtained, the
RSL reads data in from the LDR
file and stores it in shared memory.

b. The RSL signals to LS that the
boot stream data is ready.

9. This loop continues until the booting
finishes and the LS signals to the RSL that
no more data is needed.

10. The LS calls the booted application as a
function call to start execution, and the
RSL waits for a signal from the
application.

11. The RSL sends the length of the command
line argument to the application.

12. The user application allocates the memory
for the command line and sends the
address back to the RSL.

13. The RSL copies the command line to the
address received and signals the
application and exit.

14. The user application parses the command
line and start normal execution.

Linux Run-Time SHARC+ Loader on the ADSP-SC57x/ADSP-SC58x Processors (EE-399) Page 3 of 11

Figure 2: Linux Run-Time SHARC+ Loader Block Diagram

Loader Stub
The LS is a SHARC+ application. It does two
things. First, it sets up the boot configuration
structure for the boot kernel and then, using the
boot API, calls the boot kernel. Second, it
provides a Load function to be registered with the
boot kernel. The LS is essentially doing a
memory boot. The boot API allows users to
define their own drivers to support custom boot
modes. Since memory boot is not one of the
supplied boot modes, a user must supply a custom
driver. A driver is a set of functions which include
Init, Config, Load, and Cleanup. For a
running system, memory is already configured
and initialized, so there is no need for functions
other than the Load function.

 More information about the boot ROM
and boot kernel can be found in the
ADSP-SC58x/ADSP-2158x SHARC+®
Processor Hardware Reference [1] and
Tips and Tricks Using the ADSP-
SC58x/ADSP-2158x Processor Boot
ROM (EE-384)[3].

Combining Loader Stub with RSL Linux Application
The RSL loads the loader stub into the SHARC+
memory for execution. Before this happens, the
LS is compiled into RSL. The contents of the LS
DXE files are dumped and parsed and formatted
into C source code data buffers using a script and
ELFDUMP.EXE. (ELFDUMP.EXE is a utility that
comes with CrossCore® Embedded Studio
(CCES)).

From the provided source code,
SharcBooter_Core1 is the CCES project for
the loader stub for ADSP-SC589 SHARC core 1
and SharcBooter_Core2 is the CCES project

Linux Run-Time SHARC+ Loader on the ADSP-SC57x/ADSP-SC58x Processors (EE-399) Page 4 of 11

for the loader stub for core 2. There are
corresponding projects for the ADSP-SC573 as
well. All the projects share the same source code
for the LS.

A provided script makeSectData.sh outputs
secdat_SC589_sh1.c and
secdat_SC589_sh2.c which can be
compiled into the RSL, for the ADSP-SC589.
The same script can be used to process the DXE’s
from the ADSP-SC573 projects and produce the
corresponding source code for the LS’s for the
ADSP-SC573.

Loader Stub Memory Placement
Since the loader stub is a SHARC+ application
running from SHARC+ memory and it calls the
boot kernel to boot another SHARC+ application
that also resides in SHARC+ memory, DO NOT
overwrite the loader stub during the booting.
Therefore, the loader stub is placed in the upper
portion of L2 memory at 0x200BB000 for core 1
and 0x200AD000 for core 2 in case of ADSP-
SC589 and at 0x200FB000 for core 1 and
0x200BD000 for core 2 in case of ADSP-SC573.

 Since the LS resides in the upper portion
of the L2 memory, the SHARC+®
applications to be loaded by the RSL
should not use memory occupied by the
LS in the ADSP-SC589/ADSP-SC573
memory map.

Loader Stub Size

The size of the loader stub is primarily determined
by:
 the shared memory buffer that the RSL front-

end places data into from reading the LDR
file, and

 the location where the LS reads from when the
boot kernel requires more boot stream data

For this implementation, the buffer size is defined
to be 2KB. Therefore, the user must restrict the
block size of the boot stream of the SHARC+
application to be loaded to 2KB.

 The maximum block size for a block in
the LDR file of the SHARC+ application
must be equal or less than 2KB.

To restrict block size, the user can provide an
extra option for the CrossCore® SHARC+ Loader
utility. In the tools settings for the SHARC+
CCES project, there is a subsection for Additional
Options under the CrossCore SHARC Loader
section. In this, add the switch –MaxBlockSize
2048.

Figure 3 shows this option in CCES.

Linux Run-Time SHARC+ Loader on the ADSP-SC57x/ADSP-SC58x Processors (EE-399) Page 5 of 11

Figure 3: Specifying Maximum Block Size in LDR File

Loading the Loader Stub
Once compiled into the RSL, the loader stub is
copied into the correct SHARC+ memory
locations. But, before this can be done, it must be
ensured that the SHARC+ core is not
simultaneously trying to access the same memory
locations. The RSL does not know the state of the
SHARC+ core. The core could already be
executing an application that shares the same
memory locations as the loader stub. Therefore,
the RSL sets the RCU_SVECTn register for either
SHARC+ core 1 or core 2 to a location in read-
only boot rom which holds instructions for
looping on an idle instruction. Then, the Reset
Control Unit (RCU) is used again to trigger a core
reset which makes the SHARC+ core jump to the
location specified in the RCU_SVECTn register.
As a result, the RSL is guaranteed that the
SHARC+ core is in a safe state for which the RSL
can load the loader stub.

Communication and Handshaking

Loading SHARC+with Loader Stub
On the ADSP-SC58x and ADSP-SC57x, the
internal memory of the SHARC+ core is
accessible by other system masters which include
other cores via the multi-processor address space.

When the loader stub contents are dumped and
parsed, secdat_sh1.c and secdat_sh2.c
are created; the memory addresses refer to the
internal memory space of the SHARC+ core. For
the RSL to load content into SHARC+ memory,
these memory addresses are translated to multi-
processor space addresses. For explanation
purposes the generic terms secdat_sh1.c and
secdat_sh2.c used throughout the document,
while RSL compilation expects
secdat_SC573_sh1.c,
secdat_SC573_sh2.c and
secdat_SC589_sh1.c,

Linux Run-Time SHARC+ Loader on the ADSP-SC57x/ADSP-SC58x Processors (EE-399) Page 6 of 11

secdat_SC589_sh2.c differentiating
compilation targets.

Boot Stream Data Buffer
As described earlier, the LS declares a buffer
which is used by both the LS and the RSL. When
secdat_sh1.c and secdat_sh2.c are
created, the script also obtains the SHARC+
address for this data buffer to load into a pointer
variable declaration for the RSL. Thus, the RSL
knows where to place the boot stream data.

Semaphores
Using the same method, a pair of volatile variables
are declared in the LS. The addresses are parsed
and then loaded into variable declarations in the
RSL. The SHARC+ uses the variables in the pair
to write to and signal to the ARM core. The ARM
core uses this shared variable only as a read-only
variable. This configuration assures that there is
no possible contention between both cores trying
to write to the same memory location (variable).
The other variable in the pair is used similarly.
The ARM uses it to write to and communicate to
the SHARC+ core. The SHARC+ core uses it only
as a read-only variable.

Accessing Physical Memory
The RSL front-end (ARM core) and the SHARC+
communicate and share data with each other by
accessing the SHARC+ memory and translating it
to the multi-processor address space. For
example, in case of SHARC+ L1 memory, take
the SHARC+ byte address and then prepend
0x280 to the most significant ten bits of the
SHARC+ L1 address (if using slave port 1). Or,
prepend 0x281 if using slave port 2. For this
implementation, slave port 1 is used. For more
information on multi-processor space addressing,
refer to the SHARC+® Dual Core DSP with ARM
Cortex-A5 [3] data sheet.

However, Linux cannot access these memory
addresses directly. Linux runs in a virtual
memory space, and any of the address provided by
the parsed output of the LS binary image are
physical addresses. In order to access this
memory, the physical address region is memory

mapped using mmap(). The result is a virtual
address which corresponds to the start of the
physical address region. From this virtual start
address, another address translation is calculated.

Details of this process is outside the scope of this
EE-Note and will be provided in a separate
upcoming EE-Note.

Argument Passing
In some cases, it can be useful if the RSL can pass
arguments to the SHARC+ application as standard
C command line arguments. To achieve this, some
additional code must be added to the user
application's main function to receive the
arguments from the RSL. The RSL communicates
with the user application. The LS is not involved
in this process.

Memory Allocation

Two additional pieces of memory are required to
support the argument passing mechanism: one for
the communication channels (semaphores
implemented with shared global variable pairs),
another for storing the arguments. The space for
the channel is only used during the bootstrapping
process. Once the transmission is done, the space
is no longer used. However, the address must be
predetermined. The space for the arguments
should be preserved throughout the lifecycle of
the user application, like argc and argv
arguments. The address does not need to be
predetermined.

In this implementation, the space reserved for the
MCAPI in L2 by the default linker description
files is used for the communication channel.
Unlike L1 memory where each SHARC core has
its own L1 memory, L2 is shared across the
SHARC cores. If L2 is used, take care to not
overwrite the memory space occupied by another
core. Each core has its own MCAPI space
reserved. The address is predetermined.
Overwriting the area does not affect other running
cores. Since the channel is no longer used after the
bootstrapping and the MCAPI is initialized after

Linux Run-Time SHARC+ Loader on the ADSP-SC57x/ADSP-SC58x Processors (EE-399) Page 7 of 11

bootstrapping, using this space should not affect
the function of MCAPI.

The memory space for the arguments is allocated
dynamically in the SHARC application using
malloc. In this way we can guarantee the space
is preserved throughout the life cycle without
imposing any restriction on user application's
memory layout. The size can be dynamically
determined to avoid wasted space. Depending on
the specific application memory layout, the heap
can reside in either L1 or L2.

Receiving the Arguments
The additional argument receiving code is added
to the user application. It is a single C function,
which should be in the first line of main (in the
user's main function). The following sequence of
events occur:
 The code sends a handshake signal to the RSL

on the command channel, then waits for the
handshake from the RSL.

 The RSL returns the length of command line
along with the handshake.

 Memory space is allocated with malloc.

 Depending on the result, the code either sends
back an error message, or the data request on
the command channel with the address of
allocated space on the data channel.

 The code waits for the RSL to signal the
completion of memcpy of the command line
arguments to the provided memory space from
the user application.

 No more bytes are sent on the channel.

 The function continues to break the command
line into sub-strings and create an argv table
to point to the sub-strings.

 The arguments argc and argv are passed
back to the main function using pointers, and
the two channels used before are cleared
before returning to main.

SHARC+® Application Boot
Stream Constraints and Further
Investigations

Memory Placement
As noted previously, the LS resides in a section of
L2 memory. It calls the boot kernel API to boot
the SHARC+ application and then performs a
direct call to the application. Therefore, the
SHARC+ application cannot use the same
memory region as the LS because the LS would
be overwritten before booting completes.

System Interaction
There are system interactions that must be
considered as well. The RSL only resets a
SHARC+ core and boots a SHARC+ application
during a running system. If a previous SHARC+
application configured a peripheral to run and use
DMA, there could still be SHARC+ memory
accesses ongoing while the RSL is trying to load
the LS into SHARC+ memory. As such, there are
some situations where the RSL is prevented from
loading subsequent boot stream LDR files.

Security
The current version of the RSL does not support
loading secure boot streams. There are relevant
security implications. Even in a non-secure
system, security mechanisms such as the System
Protection Unit (SPU) and the System Memory
Protection Unit (SMPU) can still be activated or
active.

As such, the user should be aware that the boot
kernel uses memory DMA engine 1 (MDMA1) to
move data. Previously executing code could have
altered the security settings. To ensure that
MDMA1 has correct privileges to access memory,
SPU0_SECURE90 and SPU0_SECURE91 are
set so that both the source and destination
channels of MDMA1 are secure masters.

Linux Run-Time SHARC+ Loader on the ADSP-SC57x/ADSP-SC58x Processors (EE-399) Page 8 of 11

Example Code and Projects
A zip file is included with this note that contains
three folders. One is SharcLoader. This
folder is the source code for the user Linux
application, otherwise referred to as the RSL
front-end. The loader stub source data is already
parsed and ready to compile into the RSL. A
makefile is also provided to use the GCC
toolchain provided in the Linux Add-in to help
compile the RSL. The makefile expects the
processor target as the command line argument
(either ADSP-SC589 or ADSP-SC573).

The other folder SharcBooter contains
Windows CCES projects:
SharcBooter_Core1,
SharcBooter_Core2 for both the ADSP-589
and the ADSP-573. These files are the projects
for generating the loader stubs for ADSP-SC589
and ADSP-SC573 respectively. Both projects use
a script provided in their project directories called
makeSectData.sh. This file is a bash script
that was used and run under Cygwin to run
elfdump.exe from CCES. It also includes
SED and other utilities to parse the output DXE to
create secdat_sh1.c and secdat_sh2.c.
Differentiating tag is added to rename the
generated files to secdat_SC589_sh1.c or
secdat_SC573_sh1.c indicating the
processor target. Similar naming convention is
followed for SHARC core 2. The script runs by
providing the path to the DXE image and the core
it runs on. Future work would be to port this to
Python and rid the requirement of Cygwin.

The RSL can be executed as such:

./loadSharc_SC589 -i
LED_SC589_EZKIT_Core1.ldr -s 1 –d 3 -a
"1 2 3"

Listing 1: Running the RSL

Listing 1 shows how to run the RSL on ADSP-
SC589. Likewise, the generated executable
loadSharc_SC573 can invoked by the similar
pattern of command line arguments as shown in

Listing 1. The -i switch provides the input binary
LDR file to be booted. The -s switch indicates
which SHARC+ core to boot. The -d indicates
the verbosity level of information printed out to
console. The -a switch provides the command
line arguments that are be passed to the
application.

Finally, there is also a SharcLoaderExample
folder containing examples for both processors:
two LED blink programs, one for each core of
ADSP-SC589, and for the ADSP-SC573, and one
talk thru program that runs on the SHARC+ core
1 of the ADSP-SC589.

Pre-built binaries for these projects are provided
in the SharcLoader folder.

The LED blink program receives the argument
from the RSL to determine which LED to blink.

The LED blink program also contains code that
loads two locations of a global buffer with
0xDEAD and 0xBEEF. Besides verifying that the
LEDs blink on the EZ-board, a user can load a
“symbols only” session on CCES and see the
following in the disassembly window.

Figure 4: Disassembly Window of Instructions in LED
Blink Program in ADSP-SC589

Memory Allocation
The linker description file (LDF) must be
modified not to overwrite the LS, otherwise, the
booting might crash. Refer to the LDF file
provided with the example projects.

Listing 2 shows the memory space occupied by
the LS and the address range available to the user
for both cores on ADSP-SC573 and ADSP-
SC589.

Linux Run-Time SHARC+ Loader on the ADSP-SC57x/ADSP-SC58x Processors (EE-399) Page 9 of 11

SC573 - Core1:
USER: START(0x200c0000) END(0x200fafff)
LS: START(0x200fb000) END(0x200fdffb)
SC573 - Core2:
USER: START(0x20080000) END(0x200bcfff)
LS: START(0x200bd000) END(0x200bffff)
SC589 - Core1:
USER: START(0x200b0000) END(0x200bafff)
LS: START(0x200bb000) END(0x200bdffb)
SC589 - Core2:
USER: START(0x200a0000) END(0x200acfff)
LS: START(0x200ad000) END(0x200affff)

Listing 2: Memory Allocation for LS

Conclusion
This EE-Note demonstrates a proof-of-concept
method to boot different SHARC+ boot streams
from Linux running on the ARM core of the
ADSP-SC58x and ADSP-SC57x during run time.

The method employed numerous techniques to
solve issues such as:

1. Accessing physical memory from Linux
2. Resetting the SHARC+ core
3. Assessing SHARC+ memory
4. Putting the SHARC+ core in a safe state

while loading SHARC+ memory
5. Using the boot kernel stored in the boot

rom

Linux Run-Time SHARC+ Loader on the ADSP-SC57x/ADSP-SC58x Processors (EE-399) Page 10 of 11

References
[1] ADSP-SC58x/ADSP-2158x SHARC+® Processor Hardware Reference (http://www.analog.com/media/en/dsp-

documentation/processor-manuals/SC58x-2158x-hrm.pdf) . Rev 1.0, Sept 2017. Analog Devices, Inc.

[2] ADSP-SC57x/ADSP-2157x SHARC+® Processor Hardware Reference (https://www.analog.com/media/en/dsp-
documentation/processor-manuals/adsp-sc57x-2157x_hwr.pdf) . Rev 1.0, March 2018. Analog Devices, Inc.

[3] Engineer-to-Engineer Note 384 : Tips and Tricks Using the ADSP-SC58x/ADSP-2158x Processor Boot ROM
(http://www.analog.com/media/en/technical-documentation/application-notes/EE384v01.pdf). Rev 1, Sept 30, 2015.
Analog Devices, Inc.

[4] SHARC+®Dual Core DSP with ARM Cortex-A5 Data Sheet (http://www.analog.com/media/en/technical-
documentation/data-sheets/ADSP-SC582_583_584_587_589_ADSP-21583_584_587.pdf). Rev B, December 2018.
Analog Devices, Inc.

http://www.analog.com/media/en/dsp-documentation/processor-manuals/SC58x-2158x-hrm.pdf
http://www.analog.com/media/en/dsp-documentation/processor-manuals/SC58x-2158x-hrm.pdf
https://www.analog.com/media/en/dsp-documentation/processor-manuals/adsp-sc57x-2157x_hwr.pdf
https://www.analog.com/media/en/dsp-documentation/processor-manuals/adsp-sc57x-2157x_hwr.pdf
http://www.analog.com/media/en/technical-documentation/application-notes/EE384v01.pdf
http://www.analog.com/media/en/technical-documentation/data-sheets/ADSP-SC582_583_584_587_589_ADSP-21583_584_587.pdf
http://www.analog.com/media/en/technical-documentation/data-sheets/ADSP-SC582_583_584_587_589_ADSP-21583_584_587.pdf

Linux Run-Time SHARC+ Loader on the ADSP-SC57x/ADSP-SC58x Processors (EE-399) Page 11 of 11

Document History

Revision Description

Rev 1 –November 1st, 2017

By G.Yi

Initial Release

Rev 2 –November 9th, 2018

By V.B. Jayasree

Functionality extended to ADSP-SC573 family

Rev 2 –January 15th, 2019

By W. Zhang

Implemented argument passing

Moved LS into L2 memory

Enabled parity check

	Introduction
	Run-Time SHARC+ Loader
	Architecture
	Operational Flow
	Loader Stub
	Combining Loader Stub with RSL Linux Application
	Loader Stub Memory Placement
	Loader Stub Size
	Loading the Loader Stub

	Communication and Handshaking
	Loading SHARC+with Loader Stub
	Boot Stream Data Buffer
	Semaphores
	Accessing Physical Memory

	Argument Passing
	Memory Allocation
	Receiving the Arguments

	SHARC+® Application Boot Stream Constraints and Further Investigations
	Memory Placement
	System Interaction
	Security

	Example Code and Projects
	Memory Allocation

	Conclusion
	References
	Document History

