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Introduction 
The ADSP-SC58x and ADSP-SC57x processors 
are comprised of an ARM Cortex®-A5 core 
alongside dual DSP SHARC+® cores.  Analog 
Devices, Inc. provides a Linux add-in BSP that 
allows a user to run Linux on the ARM core.  
When a user wants to run an application on one of 
the SHARC+ cores, a debugger such as the ICE-
1000 or ICE-2000 can be used to load the 
SHARC+ cores without disturbing the ARM core 
running Linux. 

When a SHARC+ application is ready for 
deployment, the user must create a single boot 
stream containing u-boot and the SHARC+ 
application for each SHARC+ core. 

This EE-Note describes a method to load different 
boot stream loader (LDR) files from the Linux 
filesystem to run on the SHARC+ cores during 
run time. 

Run-Time SHARC+ Loader 
The Run-Time SHARC+ Loader (RSL) is a 
userspace Linux application that reads a binary 
boot stream LDR file and boots it onto one of the 
SHARC+ cores. Additionally, it can pass 
command line arguments to the SHARC+ 
application if desired.  In Figure 1, the help 
message is displayed for the RSL executed on 
ADSP-SC589.  By default, if no SHARC+ core is 
specified, core 1 is the target. 

 

Figure 1: Help message from Run-Time SHARC+ 
Loader on ADSP-SC589 

The option -d allows the user to specify the debug 
level for the amount of information displayed 
during the execution. 

Architecture 
The RSL is comprised of a front-end and a back-
end.  The front-end is the Linux application that 
reads in the binary boot stream LDR file.  The 
back-end is a Loader Stub (LS) which runs on the 
SHARC+ core and communicates with the RSL 
front-end.  The RSL is also responsible for loading 
the LS onto the SHARC+ for execution. 
Optionally, to receive arguments from the RSL, 
an additional back-end function must be added to 
the user application to communicate with the RSL 
front end. 

The LS uses the boot kernel stored in boot ROM 
memory to do the actual booting of the boot 
stream.  It supplies a Load  function driver to be 
registered with the boot kernel used during the 
booting.  As the booting occurs, the supplied 
Load function is called to fetch more boot stream 
data.  Since the LDR file sits on the file system on 
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the ARM core, the Load function communicates 
with the RSL front-end as to how much data to 
fetch.  The RSL front-end acts as a server and 
waits for this request.  Once it gets a request, it 
will fread() the requested amount from the 
LDR file and the store it in the shared buffer with 
the SHARC+ core.  

There are two main reasons for the RSL 
architecture. 

1. It is easier for the boot kernel to load and 
boot a boot stream than for a Linux 
application to parse and load a DXE image 
file. 

2. The boot kernel API is not Linux-
compatible, so a Linux application cannot 
directly employ the boot kernel API to 
boot an LDR file. 

 

Operational Flow 
In Figure 2, the diagram pictorializes the flow of 
the SHARC+ application loading.  The following 
sequence of steps occurs: 

1. Set the RCU_SVECTn register to the 
location in boot ROM to loop on idle 
instruction. 

2. Reset the SHARC+ core. 
3. Load the loader stub onto the L1 memory 

of the SHARC+s. 
4. Set the RCU_SVECTn register to the 

beginning of the loader stub application in 
SHARC+ L1 memory. 

5. Reset the SHARC+ core.

 
6. The RSL front-end waits for a signal from 

the LS that it is running. 
7. The LS starts executing and sets up the 

boot structure of type 
ADI_ROM_BOOT_CONFIG and calls 
adi_rom_BootKernel() to start the 
boot procedure. 

8. The RSL waits for a request from LS for 
boot stream data. 

a. Once the request is obtained, the 
RSL reads data in from the LDR 
file and stores it in shared memory. 

b. The RSL signals to LS that the 
boot stream data is ready. 

9. This loop continues until the booting 
finishes and the LS signals to the RSL that 
no more data is needed.   

10. The LS calls the booted application as a 
function call to start execution, and the 
RSL waits for a signal from the 
application. 

11. The RSL sends the length of the command 
line argument to the application. 

12. The user application allocates the memory 
for the command line and sends the 
address back to the RSL. 

13. The RSL copies the command line to the 
address received and signals the 
application and exit. 

14. The user application parses the command 
line and start normal execution. 
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Figure 2: Linux Run-Time SHARC+ Loader Block Diagram 

Loader Stub 
The LS is a SHARC+ application.  It does two 
things.  First, it sets up the boot configuration 
structure for the boot kernel and then, using the 
boot API, calls the boot kernel.  Second, it 
provides a Load function to be registered with the 
boot kernel.  The LS is essentially doing a 
memory boot.  The boot API allows users to 
define their own drivers to support custom boot 
modes.  Since memory boot is not one of the 
supplied boot modes, a user must supply a custom 
driver.  A driver is a set of functions which include 
Init, Config, Load, and Cleanup.  For a 
running system, memory is already configured 
and initialized, so there is no need for functions 
other than the Load function.   

 

 

 More information about the boot ROM 
and boot kernel can be found in the 
ADSP-SC58x/ADSP-2158x SHARC+® 
Processor Hardware Reference [1] and 
Tips and Tricks Using the ADSP-
SC58x/ADSP-2158x Processor Boot 
ROM (EE-384)[3]. 

 

Combining Loader Stub with RSL Linux Application 
The RSL loads the loader stub into the SHARC+ 
memory for execution.  Before this happens, the 
LS is compiled into RSL. The contents of the LS 
DXE files are dumped and parsed and formatted 
into C source code data buffers using a script and 
ELFDUMP.EXE. (ELFDUMP.EXE is a utility that 
comes with CrossCore® Embedded Studio 
(CCES)). 

From the provided source code, 
SharcBooter_Core1 is the CCES project for 
the loader stub for ADSP-SC589 SHARC core 1 
and SharcBooter_Core2 is the CCES project 
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for the loader stub for core 2. There are 
corresponding projects for the ADSP-SC573 as 
well.  All the projects share the same source code 
for the LS.   

A provided script makeSectData.sh outputs 
secdat_SC589_sh1.c and 
secdat_SC589_sh2.c which can be 
compiled into the RSL, for the ADSP-SC589.  
The same script can be used to process the DXE’s 
from the ADSP-SC573 projects and produce the 
corresponding source code for the LS’s for the 
ADSP-SC573. 

Loader Stub Memory Placement 
Since the loader stub is a SHARC+ application 
running from SHARC+ memory and it calls the 
boot kernel to boot another SHARC+ application 
that also resides in SHARC+ memory, DO NOT 
overwrite the loader stub during the booting.  
Therefore, the loader stub is placed in the upper 
portion of L2 memory at 0x200BB000 for core 1 
and 0x200AD000 for core 2 in case of ADSP-
SC589 and at 0x200FB000 for core 1 and 
0x200BD000 for core 2 in case of ADSP-SC573.  

 Since the LS resides in the upper portion 
of the L2 memory, the SHARC+® 
applications to be loaded by the RSL 
should not use memory occupied by the 
LS in the ADSP-SC589/ADSP-SC573 
memory map. 

Loader Stub Size 

The size of the loader stub is primarily determined 
by:  
 the shared memory buffer that the RSL front-

end places data into from reading the LDR 
file, and 

 the location where the LS reads from when the 
boot kernel requires more boot stream data 

For this implementation, the buffer size is defined 
to be 2KB.  Therefore, the user must restrict the 
block size of the boot stream of the SHARC+ 
application to be loaded to 2KB.   

 

 The maximum block size for a block in 
the LDR file of the SHARC+ application 
must be equal or less than 2KB. 

 

To restrict block size, the user can provide an 
extra option for the CrossCore® SHARC+ Loader 
utility.  In the tools settings for the SHARC+ 
CCES project, there is a subsection for Additional 
Options under the CrossCore SHARC Loader 
section. In this, add the switch –MaxBlockSize 
2048. 

Figure 3  shows this option in CCES. 
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Figure 3: Specifying Maximum Block Size in LDR File

Loading the Loader Stub 
Once compiled into the RSL, the loader stub is 
copied into the correct SHARC+ memory 
locations.  But, before this can be done, it must be 
ensured that the SHARC+ core is not 
simultaneously trying to access the same memory 
locations.  The RSL does not know the state of the 
SHARC+ core.  The core could already be 
executing an application that shares the same 
memory locations as the loader stub.  Therefore, 
the RSL sets the RCU_SVECTn register for either 
SHARC+ core 1 or core 2 to a location in read-
only boot rom which holds instructions for 
looping on an idle instruction.  Then, the Reset 
Control Unit (RCU) is used again to trigger a core 
reset which makes the SHARC+ core jump to the 
location specified in the RCU_SVECTn register.  
As a result, the RSL is guaranteed that the 
SHARC+ core is in a safe state for which the RSL 
can load the loader stub. 

 

Communication and Handshaking  

Loading SHARC+with Loader Stub 
On the ADSP-SC58x and ADSP-SC57x, the 
internal memory of the SHARC+ core is 
accessible by other system masters which include 
other cores via the multi-processor address space.   

When the loader stub contents are dumped and 
parsed, secdat_sh1.c and secdat_sh2.c 
are created; the memory addresses refer to the 
internal memory space of the SHARC+ core.  For 
the RSL to load content into SHARC+ memory, 
these memory addresses are translated to multi-
processor space addresses. For explanation 
purposes the generic terms secdat_sh1.c and 
secdat_sh2.c used throughout the document, 
while RSL compilation expects 
secdat_SC573_sh1.c, 
secdat_SC573_sh2.c and 
secdat_SC589_sh1.c, 
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secdat_SC589_sh2.c differentiating 
compilation targets. 

Boot Stream Data Buffer 
As described earlier, the LS declares a buffer 
which is used by both the LS and the RSL.  When 
secdat_sh1.c and secdat_sh2.c are 
created, the script also obtains the SHARC+ 
address for this data buffer to load into a pointer 
variable declaration for the RSL.  Thus, the RSL 
knows where to place the boot stream data. 

Semaphores  
Using the same method, a pair of volatile variables 
are declared in the LS.  The addresses are parsed 
and then loaded into variable declarations in the 
RSL.  The SHARC+ uses the variables in the pair 
to write to and signal to the ARM core.  The ARM 
core uses this shared variable only as a read-only 
variable. This configuration assures that there is 
no possible contention between both cores trying 
to write to the same memory location (variable).  
The other variable in the pair is used similarly.  
The ARM uses it to write to and communicate to 
the SHARC+ core. The SHARC+ core uses it only 
as a read-only variable.  

Accessing Physical Memory 
The RSL front-end (ARM core) and the SHARC+ 
communicate and share data with each other by 
accessing the SHARC+ memory and translating it 
to the multi-processor address space. For 
example, in case of SHARC+ L1 memory, take 
the SHARC+ byte address and then prepend 
0x280 to the most significant ten bits of the 
SHARC+ L1 address (if using slave port 1). Or, 
prepend 0x281 if using slave port 2.  For this 
implementation, slave port 1 is used.  For more 
information on multi-processor space addressing, 
refer to the SHARC+® Dual Core DSP with ARM 
Cortex-A5 [3] data sheet. 

However, Linux cannot access these memory 
addresses directly.  Linux runs in a virtual 
memory space, and any of the address provided by 
the parsed output of the LS binary image are 
physical addresses.  In order to access this 
memory, the physical address region is memory 

mapped using mmap().  The result is a virtual 
address which corresponds to the start of the 
physical address region.  From this virtual start 
address, another address translation is calculated. 

Details of this process is outside the scope of this 
EE-Note and will be provided in a separate 
upcoming EE-Note. 

Argument Passing 
In some cases, it can be useful if the RSL can pass 
arguments to the SHARC+ application as standard 
C command line arguments. To achieve this, some 
additional code must be added to the user 
application's main function to receive the 
arguments from the RSL. The RSL communicates 
with the user application. The LS is not involved 
in this process. 

Memory Allocation 

Two additional pieces of memory are required to 
support the argument passing mechanism: one for 
the communication channels (semaphores 
implemented with shared global variable pairs), 
another for storing the arguments. The space for 
the channel is only used during the bootstrapping 
process. Once the transmission is done, the space 
is no longer used. However, the address must be 
predetermined. The space for the arguments 
should be preserved throughout the lifecycle of 
the user application, like argc and argv 
arguments. The address does not need to be 
predetermined. 

In this implementation, the space reserved for the 
MCAPI in L2 by the default linker description 
files is used for the communication channel. 
Unlike L1 memory where each SHARC core has 
its own L1 memory, L2 is shared across the 
SHARC cores. If L2 is used, take care to not 
overwrite the memory space occupied by another 
core. Each core has its own MCAPI space 
reserved.  The address is predetermined. 
Overwriting the area does not affect other running 
cores. Since the channel is no longer used after the 
bootstrapping and the MCAPI is initialized after 
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bootstrapping, using this space should not affect 
the function of MCAPI. 

The memory space for the arguments is allocated 
dynamically in the SHARC application using 
malloc. In this way we can guarantee the space 
is preserved throughout the life cycle without 
imposing any restriction on user application's 
memory layout. The size can be dynamically 
determined to avoid wasted space. Depending on 
the specific application memory layout, the heap 
can reside in either L1 or L2. 

Receiving the Arguments 
The additional argument receiving code is added 
to the user application. It is a single C function, 
which should be in the first line of main (in the 
user's main function). The following sequence of 
events occur:  
 The code sends a handshake signal to the RSL 

on the command channel, then waits for the 
handshake from the RSL.  

 The RSL returns the length of command line 
along with the handshake.  

 Memory space is allocated with malloc. 

 Depending on the result, the code either sends 
back an error message, or the data request on 
the command channel with the address of 
allocated space on the data channel.  

 The code waits for the RSL to signal the 
completion of memcpy of the command line 
arguments to the provided memory space from 
the user application. 

  No more bytes are sent on the channel.  

 The function continues to break the command 
line into sub-strings and create an argv table 
to point to the sub-strings.  

 The arguments argc and argv are passed 
back to the main function using pointers, and 
the two channels used before are cleared 
before returning to main. 

SHARC+® Application Boot 
Stream Constraints and Further 
Investigations 

Memory Placement 
As noted previously, the LS resides in a section of 
L2 memory. It calls the boot kernel API to boot 
the SHARC+ application and then performs a 
direct call to the application.  Therefore, the 
SHARC+ application cannot use the same 
memory region as the LS because the LS would 
be overwritten before booting completes.   

System Interaction 
There are system interactions that must be 
considered as well.  The RSL only resets a 
SHARC+ core and boots a SHARC+ application 
during a running system.  If a previous SHARC+ 
application configured a peripheral to run and use 
DMA, there could still be SHARC+ memory 
accesses ongoing while the RSL is trying to load 
the LS into SHARC+ memory.  As such, there are 
some situations where the RSL is prevented from 
loading subsequent boot stream LDR files. 

Security 
The current version of the RSL does not support 
loading secure boot streams. There are relevant 
security implications.  Even in a non-secure 
system, security mechanisms such as the System 
Protection Unit (SPU) and the System Memory 
Protection Unit (SMPU) can still be activated or 
active. 

As such, the user should be aware that the boot 
kernel uses memory DMA engine 1 (MDMA1) to 
move data.  Previously executing code could have 
altered the security settings. To ensure that 
MDMA1 has correct privileges to access memory, 
SPU0_SECURE90 and SPU0_SECURE91 are 
set so that both the source and destination 
channels of MDMA1 are secure masters. 
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Example Code and Projects 
A zip file is included with this note that contains 
three folders.  One is SharcLoader.  This 
folder is the source code for the user Linux 
application, otherwise referred to as the RSL 
front-end.    The loader stub source data is already 
parsed and ready to compile into the RSL. A 
makefile is also provided to use the GCC 
toolchain provided in the Linux Add-in to help 
compile the RSL. The makefile expects the 
processor target as the command line argument 
(either ADSP-SC589 or ADSP-SC573). 

The other folder SharcBooter contains 
Windows CCES projects: 
SharcBooter_Core1, 
SharcBooter_Core2 for both the ADSP-589 
and the ADSP-573.    These files are the projects 
for generating the loader stubs for ADSP-SC589 
and ADSP-SC573 respectively.  Both projects use 
a script provided in their project directories called 
makeSectData.sh.  This file is a bash script 
that was used and run under Cygwin to run 
elfdump.exe from CCES. It also includes 
SED and other utilities to parse the output DXE to 
create secdat_sh1.c and secdat_sh2.c. 
Differentiating tag is added to rename the 
generated files to secdat_SC589_sh1.c or 
secdat_SC573_sh1.c indicating the 
processor target. Similar naming convention is 
followed for SHARC core 2. The script runs by 
providing the path to the DXE image and the core 
it runs on.  Future work would be to port this to 
Python and rid the requirement of Cygwin. 

The RSL can be executed as such: 

./loadSharc_SC589 -i 
LED_SC589_EZKIT_Core1.ldr -s 1 –d 3 -a 
"1 2 3" 

Listing 1: Running the RSL 

Listing 1 shows how to run the RSL on ADSP-
SC589. Likewise, the generated executable 
loadSharc_SC573 can invoked by the similar 
pattern of command line arguments as shown in 

Listing 1. The -i switch provides the input binary 
LDR file to be booted.  The -s switch indicates 
which SHARC+ core to boot. The -d indicates 
the verbosity level of information printed out to 
console. The -a switch provides the command 
line arguments that are be passed to the 
application. 

Finally, there is also a SharcLoaderExample 
folder containing examples for both processors: 
two LED blink programs, one for each core of 
ADSP-SC589, and for the ADSP-SC573, and one 
talk thru program that runs on the SHARC+ core 
1 of the ADSP-SC589. 

Pre-built binaries for these projects are provided 
in the SharcLoader folder. 

The LED blink program receives the argument 
from the RSL to determine which LED to blink. 

The LED blink program also contains code that 
loads two locations of a global buffer with 
0xDEAD and 0xBEEF.  Besides verifying that the 
LEDs blink on the EZ-board, a user can load a 
“symbols only” session on CCES and see the 
following in the disassembly window. 

 

Figure 4: Disassembly Window of Instructions in LED 
Blink Program in ADSP-SC589 

Memory Allocation 
The linker description file (LDF) must be 
modified not to overwrite the LS, otherwise, the 
booting might crash. Refer to the LDF file 
provided with the example projects. 

Listing 2 shows the memory space occupied by 
the LS and the address range available to the user 
for both cores on ADSP-SC573 and ADSP-
SC589. 
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SC573 - Core1: 
USER: START(0x200c0000) END(0x200fafff) 
LS:   START(0x200fb000) END(0x200fdffb) 
SC573 - Core2: 
USER: START(0x20080000) END(0x200bcfff) 
LS:   START(0x200bd000) END(0x200bffff) 
SC589 - Core1: 
USER: START(0x200b0000) END(0x200bafff) 
LS:   START(0x200bb000) END(0x200bdffb) 
SC589 - Core2: 
USER: START(0x200a0000) END(0x200acfff) 
LS:   START(0x200ad000) END(0x200affff) 

Listing 2: Memory Allocation for LS 

 

Conclusion 
This EE-Note demonstrates a proof-of-concept 
method to boot different SHARC+ boot streams 
from Linux running on the ARM core of the 
ADSP-SC58x and ADSP-SC57x during run time.   

The method employed numerous techniques to 
solve issues such as: 

1. Accessing physical memory from Linux 
2. Resetting the SHARC+ core 
3. Assessing SHARC+ memory 
4. Putting the SHARC+ core in a safe state 

while loading SHARC+ memory 
5. Using the boot kernel stored in the boot 

rom 
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