
Engineer-to-Engineer Note EE-444

Technical notes on using Analog Devices products and development tools
Visit our Web resources http://www.analog.com/ee-notes and http://www.analog.com/processors or
e-mail processor.support@analog.com or processor.tools.support@analog.com for technical support.

Guidelines For Optimal Use Of eMSI on ADSP-SC598 SHARC+ Processor Family
Contributed by Sammit Joshi and Nabeel Shah Rev 01 – October 4, 2023

Copyright 2023, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of customers’
products or for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property of their
respective holders. Information furnished by Analog Devices applications and development tools engineers is believed to be accurate and reliable, however no
responsibility is assumed by Analog Devices regarding technical accuracy and topicality of the content provided in Analog Devices Engineer-to-Engineer Notes.

Introduction
The ADSP-SC598 processor incorporates highly
configurable eMMC/SD host controller called
Enhanced Mobile Storage Interface (eMSI),
hereby referred to as eMSI or eMSI controller.
Both eMMC and SD cards can be interfaced with
eMSI. The embedded Multimedia card (eMMC)
device is a NAND flash memory-based storage
device with an integrated controller. The eMMC
device is available in various densities and is cost-
effective compared to NOR flash devices with
comparable read and write performance. eMMC
is widely used in the automotive industry for
audio infotainment and navigation systems. SD
cards or SD is a proprietary non-volatile flash
memory card format developed by the SD
Association (SDA). SD card is used in various
portable devices, such as car navigation systems,
and cellular phones.
This EE Note provides recommended guidelines
for using an eMSI controller for seamless
operation and optimized performance. The EE
note discusses silicon anomalies and how to
configure the controller to work around them to
get the reliable and optimal performance. It also
talks about different operating modes of the eMSI
and how to use them efficiently to get best
performance and minimize latency for the
accesses to eMMC and SD card devices.
For more details about the eMSI, refer to the
ADSP-SC595/SC596/SC598 SHARC+ Processor
Hardware Reference [1].

Configuring eMSI to Work
Around Silicon Anomalies
There are some silicon anomalies associated with
eMSI module of ADSP-SC598 processor. It is
important that user is aware of these anomalies
and measures in application software are taken to
ensure reliability in data transactions over eMSI.
These silicon anomalies are in the ADSP-
SC595/SC596/SC598 Anomaly List [2].
One such anomaly which deserves some
attention, Anomaly#20000119 – END bit error
may occur during eMSI data transfers due to
clock gating. This anomaly occurs when the eMSI
bus clock (clock to eMMC device/SD card) is
gated due to FIFO full condition or deliberate
programming of the eMSI controller to stop the
eMSI bus clock during multiblock read data
transfer.
The eMSI FIFO has a depth of 2048 bytes. During
multi-block read transfers when a user does not
provide enough descriptors or deliberately tries to
stop read transfers by stopping the eMSI bus clock
then the eMSI controller raises END bit error due
to incorrect sampling of the data block END bit by
the eMSI controller.
As shown in Figure 1, we have a free running
eMSI clock, at time instance t1, assuming that all
the necessary configuration from the eMMC
device and controller side such as descriptor and
register configuration is completed for read
transfers.

http://www.analog.com/processors

Guidelines For Optimal Use Of eMSI on ADSP-SC598 SHARC+ Processor Family (EE-444) Page 2 of 11

Assume that the user has configured the descriptor to accommodate 10 kB of data, at time instance t1 user
issues multiblock read command (CMD18) for reading data from the eMMC device, and CMD23
(SET_BLK_COUNT) was not issued before CMD18 (This results in open-ended transfer). At time instance
t2 user gets notified about the transfer is completed, after 10 kB of data is received. The user should issue a
CMD12 (STOP_TRANSFER) command to stop open-ended transfer as there is no extra descriptor (buffer
space in memory) configured to accommodate incoming data from the eMMC device. When the user does
not stop the transfer using CMD12 then the eMMC device keeps sending the data and FIFO gets full after
the FIFO limit is reached (2048 Bytes). FIFO full condition occurred at time instance t3. As there is no
further space to accommodate the incoming data, the eMSI controller gates the eMSI bus clock (at time
instance t3) to the eMMC device so that the eMMC device stop driving the data back to the eMSI controller.
Due to clock gating END bit of the last data block gets incorrectly sampled and resulting in an END bit
error and stopping further data transfers. To restart the activity controller should be restarted fully.

Figure 1: Clock Gating Scenario Where FIFO is Full Due to Insufficient Descriptor

Consider the scenario where user want to read all data with single multi block read but control the data flow
from the eMMC device using a eMSI bus clock gating. As shown in Figure 2, when the CMD 18 (single
multi block read) is sent to the eMMC device and the eMSI controller is receiving data from eMMC device.
There were three descriptors declared namely DSC0, DSC1, and DSC2. DSC0 acted as a transfer descriptor
(configure to accommodate 1kB of data), whereas DSC1 and DSC2 are link descriptors. At the time
instance t1, eMSI controller has received 1 kB of data and the user wants to add some delay before receiving
the next set of data.
To create this delay user deliberately loop back link descriptors, as the transfer descriptor is not available
eMSI controller will stop the read data transfer by gating the clock.
Due to clock gating END bit of the last data block gets incorrectly sampled and resulting in an END bit
error and stopping further data transfers. To restart the activity controller should be restarted fully.

Guidelines For Optimal Use Of eMSI on ADSP-SC598 SHARC+ Processor Family (EE-444) Page 3 of 11

Figure 2: Deliberated Clock Gating by Introducing a Delay in Data Receiving

Note: Above examples are explained with the eMMC device. Same explanation applies to SD cards.
For more details about the transfer and link descriptors, refer to the eMSI chapter in the ADSP-
SC595/SC596/SC598 SHARC+ Processor Hardware Reference [1].
To avoid the issue due to the clock gating below are some of the recommendations that users can adhere
while performing the multi-block read data transfers, These measures will ensure that there is no clock
gating in between an active eMSI data transfer and thus will avoid the end bit error issue as described above.

Usage of Single Block Read Command
As mentioned above, the End bit error occurs due to no space in FIFO for received data from SD/eMMC
device, due to which the eMSI controller gates the eMSI bus clock to stop receiving data from the SD/eMMC
device this leads to the END bit error being raised.
This issue can be avoided altogether when the received data size is less than the depth of FIFO (2048 bytes)
so that the FIFO is never full during the read operation. Using the single block read command (CMD17)
user can read a block of a size selected by the SET_BLOCKLEN (CMD16) from the SD/eMMC device.
Most of the SD/eMMC devices support a maximum block size of 512 bytes (Please refer to
READ_BL_LEN[83:80] of CSD register from JEDEC eMMC 5.1 Specification - JESD84-B51 [3] for eMMC
device or SD Specifications - Part 1 Physical Layer Specification [4] for SD cards) which is less than FIFO
depth 2048 bytes hence it will eliminate the FIFO full condition. Users can divide the read transfer into
multiple single-block transfers to eliminate this issue. This workaround is applicable in both SDR (for
SD/eMMC) and DDR (only for eMMC) speed modes of operation.

Usage of eMSI Tuning Logic
The usage of a single block read resolves the issue, but it takes a great hit on throughput performance as
each read command adds initial latency which reduces the overall throughput. To avoid this loss of
throughput, using a multi-block read is still preferred as it incurs the initial latency only once thus improving
the throughput. However, with multi-block read, to control the flow of data from the card, gating the clock
is required. Thus, to avoid the end-bit error in such a case, there is an option within the eMSI controller to
tune the clock delay path (eMSI tuning logic) inside the chip to mitigate the issue. When clock gating
happens the eMSI controller stops the eMSI bus clock after the ongoing block transfer is completed. This
last data block END bit gets sampled incorrectly due to which END bit error gets raised.
The sampling of the END bit can be corrected by enabling eMSI tuning logic. This logic uses tuning circuitry
to adjust the clock internally to sample the END bit correctly.

Guidelines For Optimal Use Of eMSI on ADSP-SC598 SHARC+ Processor Family (EE-444) Page 4 of 11

Tuning logics gates the clock signal after negative edge of the clock instead of after positive edge of the
clock as shown in figure. eMSI tuning logic can be enabled as shown in the below code:

PADS0_PCFG0 |= BITM_PADS_PCFG0_EMSI_TUNING_EN;
PADS0_PCFG1 |= ENUM_PADS_PCFG1_INV4;

However, there is limitation that the tuning logic can be used only in SDR speed mode and does not fix the
end-bit error issue in DDR speed mode.
Note: eMSI tuning logic is supported for eMMC devices, not for SD cards.

Increasing eMSI Quality of Service (QoS)
Above case assumes that user is intentionally gating the eMSI clock to control the read of the data in multi-
block read. It assumes that there is always enough system bandwidth available at SoC system AXI bus for
eMSI data to be read from the eMSI internal FIFO and transferred to system memory.
However, there are cases where even though user does not intend to gate the eMSI clock, but the clock
gating may still happen when the eMSI FIFO gets full with incoming data and the system bus is unable to
transfer the data to system memory in time due to some other higher priority transactions going on AXI bus
like some other high bandwidth memory to memory transfers that can hog up the AXI bus depriving eMSI
of required bandwidth. In such case due to FIFO getting full, eMSI clock may get gating for some time
until FIFO is freed up. This may again result in end bit error due to clock gating.
As example case is when multiple DMAs are operating (Peripheral DMA + Memory DMA) at a system
level, eMSI might not get enough bandwidth during read transfers for transferring data between eMSI FIFO
to core internal/external memory. This may cause FIFO full condition which can lead to END bit error. The
error is more prominent when destination buffers for DMA and eMSI are in L3 memory.
Such a situation can be avoided when eMSI priority is increased to ensure that even in presence of other
system transaction, eMSI always gets the required bandwidth on priority. This can be achieved when eMSI
QoS in SCB is increased from seven to twelve then eMSI gets appropriate bandwidth at the system level.
This will avoid eMSI FIFO getting full and consequentially avoiding END bit errors.
Here is the programming step to configure QoS for eMSI:

SCB0_SDIO0_IB_WRITE_QOS = 0xC;

The above workaround is applicable for both eMMC devices and SD cards. This workaround won’t help
when the eMSI bus clock is deliberately gated (for example by providing insufficient transfer descriptors).

Performance Comparison Between Different Workarounds
This section compares performance of single block data transfer vs multiblock data transfer with tuning
working enabled. Please refer to Figure 3.

Guidelines For Optimal Use Of eMSI on ADSP-SC598 SHARC+ Processor Family (EE-444) Page 5 of 11

Figure 3: Performance Comparison For Different Workarounds

In the experiment, various payload size read operations were performed, and the user waits in the application
till all transfers are completed. Single block read transfer in SDR speed mode (SBT SDR) takes around
3.37 ms, Single block read transfer in DDR speed mode (SBT DDR) takes around 3.284033 ms for 10 KB of
transfers whereas multiblock transfer in SDR mode (with eMSI tuning logic enabled) takes around
0.702740 ms, which is 4 times improvement compared to SBT SDR and SBT DDR. As transfer size increases
this improvement is more significant as we can see for a 500 KB data transfer, the size improvement is 15
times.
So using multiblock read transfer in SDR speed with eMSI tuning logic enabled gives the best performance
and eliminates raising of END bit error in case of eMMC devices (for SD card eMSI tuning logic is not
applicable).
Note: All data was captured with the IS22ES08G-JCLA1 eMMC device present on
EV-SC598-SOM-EZKIT at CCLK (Core clock) = 1 GHz and eMSI bus clock = 50 MHz (8 bit)

General Guidelines For eMSI Transfers
Configuration of eMSI controller should be done properly before performing multiblock read transfers such
as configuring DMA and register with proper values. This section contain guidelines that can be followed
while configuring eMSI controller for seamless eMSI operation during multiblock read operation. When an
engineer avoids these guidelines then an END bit error scenario can happen as explained above.

Guidelines For Optimal Use Of eMSI on ADSP-SC598 SHARC+ Processor Family (EE-444) Page 6 of 11

There are two types of data transfers available for eMMC devices/SD cards:
 Predefined Transfers (Transfers with CMD23): The SD/eMMC device will transfer the requested

number of data blocks, terminate the transaction, and return to the transfer state. In the case of SD cards,
predefined transfers (CMD23 support) are only supported above version 3.00 cards. Please refer to the
SCR register section of the SD Specifications - Part 1 Physical Layer Specification [4] for more
information on SD card version.

 Open- Ended Transfers (Transfers without CMD23): The number of blocks for the read multiple block
operation is not defined. The device will continuously send data blocks until a stop transmission
command (CMD12) is received.

eMMC Device-specific Guidelines
In both cases, when the selected DMA is ADMA, then the user should provide enough transfer descriptors
and when the selected DMA is SDMA, then the System Address Register
(EMSI_SDMA_ADDR/EMSI_ADMA_ADDR_LO) shall be updated as soon as DMA interrupt status bit
(EMSI_ISTAT_DMA_INTERRUPT) is set.

For Open ended transfer, where EMSI_BLKCNT.VALUE is greater than 0 and EMSI_TRNSFRMODE.
BLOCK_COUNT_EN is enabled, then the user should terminate the transfers using STOP_TRANSMISSION
(CMD12) as soon as the transfer complete status bit (EMSI_ISTAT_XFER_COMPLETE) is set for both DMA
modes. And when EMSI_BLKCNT.VALUE is = 0 and EMSI_TRNSFRMODE. BLOCK_COUNT_EN is disabled,
then the user should ensure that the stop transmission command is sent before all receive buffers (memory
space) is full, as the transfer complete status will not get set in this case or use SDR mode operations with
tuning enabled.
Note: When the above guidelines are not followed, then END bit error occurs while performing multiblock
read transfers.

SD Card-specific Guidelines
SD cards have various versions for example, version 1.01, 1.10, 2.00, 3.00, 4.XX, etc. Please follow the
following version-specific guidelines to avoid END bit error.

Version 1.01/1.10/2.00 SD Cards:
Version 1.01/1.10/2.00 SD cards do not support CMD 23 (SET_BLOCK_COUNT) command. Hence only
open-ended transfers are possible with these versions of SD cards.
For these versions of SD cards while performing open-ended transfers user should ensure the following
conditions are met:
 When EMSI_BLKCNT.VALUE is >0 and EMSI_TRNSFRMODE. BLOCK_COUNT_EN is enabled then the user

should terminate the transfers using STOP_TRANSMISSION (CMD12) as soon as the transfer
complete status bit (EMSI_ISTAT_XFER_COMPLETE) is set for both SDMA and ADMA operations. When
the guideline is not followed, then END bit error occurs while performing multiblock read transfers.

 When EMSI_BLKCNT.VALUE is = 0 and EMSI_TRNSFRMODE. BLOCK_COUNT_EN is disabled then the user
should ensure that the stop transmission command is sent before all receive buffers (memory space) are
full as the transfer complete status will not get set in this case.

Guidelines For Optimal Use Of eMSI on ADSP-SC598 SHARC+ Processor Family (EE-444) Page 7 of 11

 The second condition may result in an END bit error as the user does not get notified about the transfer
status, hence for safe operations, in these SD card versions usage of a single block read a transfer
command is recommended.

Version 3.00/4.XX and Above SD Cards
Version 3.00/4.XX and above SD card support the CMD 23 (SET_BLOCK_COUNT) command. Hence,
open-ended transfers and predefined transfers are possible with these versions of SD cards.
For these versions of cards, the guidelines remain the same as eMMC device-specific guidelines except for
eMSI tuning logic support, that is, tuning logic workaround is not supported for SD cards.
As mentioned for less than version 3.00 cards, open-ended transfer conditions may result in an END bit
error, hence it is advised to use pre-defined transfers in Version 3.00 and above cards.

Optimizing Performance with Command Queuing-based Transfer
The JEDEC eMMC 5.1 Specification - JESD84-B51 [3] allows user to do data transfers using two methods,
(1) Isolated Single or multiblock transfers and (2) command queuing-based data transfer. Using the first
method a user must write multiple registers and configure descriptors each time before data transfer, which
adds launch latency I for the next transfer and thus degrades the overall data transfer performance.
For improving performance eMMC supports command queuing-based data transfers. Users can submit up
to 32 data transfer tasks (Hereafter referred to as tasks) to an eMMC device at a time. Command Queuing
includes new commands for issuing tasks to the device, ordering the execution of previously issued tasks,
and for additional task management functions.
eMSI consist of the Command Queueing Engine (CQE) denotes the hardware unit executing the Command
Queueing (CQ) activities. The CQE manages the interface between the host software and the eMMC device,
and the data transfers. Each task is configured using two descriptors, task descriptor and transfer descriptor
and pair of these descriptor corresponding to each task are stored in Host memory. CQE receives tasks from
the software through a Task Descriptor List (TDL) in the host memory and the doorbell register. The
application gets notified via interrupt once the specified number of tasks (interrupt coalescing) or all tasks
are completed. Also, as an advantage user can queue various tasks to various sector addresses of the eMMC
device (for example, task one can write to the first sector address where task three can read from the 100th
sector address) whereas, in ADMA-based multiblock transfers for each data transfer, a set of registers and
descriptors should be written each time. Due to the task queuing approach throughput improvement is
observed.
For more details about the CQE, refer to the ADSP-SC595/SC596/SC598 SHARC+ Processor Hardware
Reference [1].
Consider an experiment where the user must perform six tasks (three write tasks and three read tasks) and
the user waits in the application till all the data transfer is finished. Where each task (read/write) does 10 KB
or 25 KB or 50 KB or 64 KB of transfer. In the case of command queuing transfer, all tasks are submitted
to CQE using TDL and ringing doorbell register, whereas for the multiblock transfer for each task,
multiblock read or write command (CMD18/CMD25) is issued. Figure 4 summarizes the performance
comparison for Command queuing versus multiblock transfers experiment. The comparison shows that
command queuing transfers perform better compared to multiblock transfers.

Guidelines For Optimal Use Of eMSI on ADSP-SC598 SHARC+ Processor Family (EE-444) Page 8 of 11

Figure 4: Performance Comparison of the Same Number of Tasks with Different Payload Sizes

Consider an experiment like the above experiment, where the user must perform a certain number of tasks
(an equal number of read and write tasks) and the user waits in the application till all the data transfer is
finished. In this experiment the total number of tasks is varied keeping the payload size for each task at 50
KB. Figure 5 summarizes the performance comparison for this experiment. The comparison shows that
command queuing transfers perform better compared to multi-block transfers when the number of tasks
increases.
Note: All data was captured with the MX52LM08A11XVI eMMC device @ CCLK = 1 GHz and eMSI bus
clock = 25 MHz in 8-Bit DDR speed mode.

Guidelines For Optimal Use Of eMSI on ADSP-SC598 SHARC+ Processor Family (EE-444) Page 9 of 11

Figure 5: Performance Comparison of Different Numbers of Tasks with the Same Payload Size

Chained Transfer Performance
eMSI supports multiple DMA types such as SDMA, ADMA2, and ADMA3 for the data transfer operations.
Where SDMA supports non-descriptor-based transfer, ADMA2, and ADMA3 support descriptor-based
transfers. During ADMA2-based data transfer, a single operation can take place at a time [e.g., Single block
read (CMD17), single block write (CMD24), Multiblock read (CMD18), or Multiblock write (CMD 25)],
before we perform the next read/write transfer, registers and descriptors should be reconfigured.
Similarly for SDMA, some set of registers should be programmed every time before the transfer starts.
These latencies for programming registers and descriptors (in the case of ADMA2) add up for long transfers
and may degrade the throughput performance.
To overcome this issue, eMSI consists of ADMA3. ADMA3 enables the host to program multiple ADMA2
operations. ADMA3 uses Command Descriptor to issue data transfer/non-transfer-based commands (for
example, CMD17 and CMD7). A multi-block data transfer between system memory and SD/eMMC device
is programmed by using a Command Descriptor and ADMA2 Descriptor pair. ADMA3 performs multiple
multi-block data transfers by using an Integrated Descriptor. (Integrated descriptor contains a pointer to the
Command Descriptor and ADMA2 Descriptor pairs.)
Using ADMA3, a user can create n number of descriptor pairs (Command descriptor and ADMA2
descriptors) and submit multiple data transfer operations for execution. Each transfer gets a completed
chained function (one after the other). This improves throughput performance by avoiding writing registers
and creating descriptors multiple times.

Guidelines For Optimal Use Of eMSI on ADSP-SC598 SHARC+ Processor Family (EE-444) Page 10 of 11

For more details about the ADMA3, refer to the ADSP-SC595/SC596/SC598 SHARC+ Processor Hardware
Reference [1].
Consider an experiment, where the user must perform six data transfer operations (three write data transfer
operations and three read data transfer operations) and the user waits in the application till all the data
transfer is finished. Where each write or read operation is of 100 KB or 200 KB or 500 KB or 1 MB or
2 MB. In the case of chained transfer, all six transfers were programmed using command descriptor and
transfer descriptor pairs, and the base address of integrated descriptors is given to EMSI_ADMA_DESADDR_LO
register. This starts all transfer execution in a chained fashion (one after another). For Multi block transfer
for each transfer operation Multiblock read or write command (CMD18/CMD25) is issued. Figure 6
summarizes the performance comparison for this experiment. The comparison shows that chained transfers
perform better compared to multi-block transfers, for higher payload sizes performance improvement is
notable.

Figure 6: Performance Comparison of the Same Number of Transfers with Different Payload Sizes

Consider an experiment like the above experiment, where the user must perform a certain number of data
transfer operations (an equal number of read and write transfer operations) and the user waits in the
application till all the data transfer is finished. In this experiment total number of transfers operations are
varied keeping the payload size for each task at 200 KB. Figure 7 summarizes the performance comparison
for a particular experiment. The comparison shows that chained transfer performs better compared to multi-
block transfers as the number of data transfer operations increases.
Note: All data was captured with the IS22ES08G-JCLA1 eMMC device present on a
EV-SC598-SOM-EZKIT, @ CCLK = 1 GHz and eMSI bus clock = 50 MHz at 8-Bit DDR speed mode.

Guidelines For Optimal Use Of eMSI on ADSP-SC598 SHARC+ Processor Family (EE-444) Page 11 of 11

Figure 7: Performance Comparison of Different Numbers of Transfers with the Same Payload Size

References
[1] ADSP-SC595/SC596/SC598 SHARC+ Processor Hardware Reference, Rev 0.2, August 2022, Analog Devices Inc.

https://www.analog.com/media/en/dsp-documentation/processor-manuals/adsp-sc595-sc596-sc598-hrm.pdf

[2] ADSP-SC595/SC596/SC598 Anomaly List, Rev. D, November 11, 2022, Analog Devices Inc.
https://www.analog.com/media/en/dsp-documentation/integrated-circuit-anomalies/adsp-sc595-sc596-sc598-anomaly.pdf

[3] JEDEC eMMC 5.1 Specification - JESD84-B51, January 2019, Joint Electron Device Engineering Council.
https://www.jedec.org/document_search?search_api_views_fulltext=jesd84-b51

[4] SD Specifications - Part 1 Physical Layer Specification, Version 9.00, August 2012, SD Association.
https://www.sdcard.org/downloads/pls/

Document History

Revision Description

Rev 01 – October 4, 2023
by Sammit Joshi and Nabeel Shah

Initial Release

https://www.analog.com/media/en/dsp-documentation/processor-manuals/adsp-sc595-sc596-sc598-hrm.pdf
https://www.analog.com/media/en/dsp-documentation/integrated-circuit-anomalies/adsp-sc595-sc596-sc598-anomaly.pdf
https://www.jedec.org/document_search?search_api_views_fulltext=jesd84-b51
https://www.sdcard.org/downloads/pls/

	Introduction
	Configuring eMSI to Work Around Silicon Anomalies
	Usage of Single Block Read Command
	Usage of eMSI Tuning Logic
	Increasing eMSI Quality of Service (QoS)
	Performance Comparison Between Different Workarounds
	General Guidelines For eMSI Transfers
	eMMC Device-specific Guidelines
	SD Card-specific Guidelines

	Optimizing Performance with Command Queuing-based Transfer
	Chained Transfer Performance

	References
	Document History

