
Engineer-to-Engineer Note EE-447

Technical notes on using Analog Devices products and development tools
Visit our Web resources http://www.analog.com/ee-notes and http://www.analog.com/processors or
e-mail processor.support@analog.com or processor.tools.support@analog.com for technical support.

Tips and Tricks Using the ADSP-SC59x/ADSP-2159x/ADSP-2156x
Processor Boot ROM
Contributed by Juganta Saikia and Madhumadhi Srinivasan V01 – May 11, 2023

Copyright 2023, Analog Devices, Inc. All rights reserved. Analog Devices assumes no responsibility for customer product design or the use or application of customers’
products or for any infringements of patents or rights of others which may result from Analog Devices assistance. All trademarks and logos are property of their
respective holders. Information furnished by Analog Devices applications and development tools engineers is believed to be accurate and reliable, however no
responsibility is assumed by Analog Devices regarding technical accuracy and topicality of the content provided in Analog Devices Engineer-to-Engineer Notes.

Introduction
The ADSP-2156x, ADSP-2159x and ADSP-SC59x family products are members of the SHARC+ TM
family of processors. Unlike previous SHARC® processors like the ADSP-212xx, ADSP-213xx, and
ADSP-214xx families, the ADSP-2156x/2159x/SC59x processors feature an on-chip boot ROM (mapped
to L2 system memory) to control the boot scenario. The boot ROM provides a mechanism using the One-
Time Programmable (OTP) memory to customize distinct aspects of the boot process, including enabling
or disabling of specific features such as the use of cache memory, overriding default boot peripheral
initialization and timing parameters, and disabling of boot modes. For more details on the memory-map,
see the ADSP-21566/21567/21569 SHARC+ Single Core High Performance DSP (up to 1 GHz)
Datasheet[1] and the ADSP-21591/21593/21594/ADSP-SC591/SC592/SC594: SHARC+ Dual-Core DSP
with Arm Cortex-A5[2].
The non-secure (standard) boot process does not verify any signatures or perform any decryption on the
application binary boot stream. However, the ADSP-2156x/2159x/SC59x processors support secure
booting when an engineer enables security. The boot kernel uses cryptographic algorithms to perform
checks of the application binary and to decrypt it. This EE Note highlights the new boot features and
enables the engineer to create different boot streams, plus understand how a boot customization can be
achieved using the boot ROM and OTP memory. The EE Note also includes boot time estimations for
different boot modes.

Take-aways
This EE447 Note summarizes the steps and requirements to generate both a standard and a secure boot
stream for all boot modes of the ADSP-2156x, ADSP-SC59x and ADSP-2159x processor families. It also
explains the use of the ROM API with examples in use case scenarios such as SSL implementation, secure
boot on open parts, and so forth.
Different scopes for optimizing boot times are discussed. Also, the EE447 Note provides linear equations
for boot time estimation in different boot modes. Based on different boot image sizes, an engineer can
construct an optimized loader stream that uses less boot time.

http://www.analog.com/processors

Tips and Tricks Using the ADSP-SC59x/ADSP-2159x/ADSP-2156 Processor Boot ROM (EE447) Page 2 of 23

Booting of the Processor
The boot kernel in an ADSP-2156x, ADSP-2159x, and ADSP-SC59x processor can support the boot from
different peripherals, as defined by these SYS_BMODE pins:

• SPI2 Controller Boot

• SPI2 Target Boot

• LinkPort0 Target Boot

• UART0 Target Boot

• Octal SPI Controller

 Octal SPI flash boot is not supported for power on reset in the ADSP-21565 Low
Profile Quad Flat Pack package, it is available using the ROM application
program interface (API).

Booting at Power On Reset
Upon reset, the processor begins fetching instructions from the boot ROM. The boot ROM code helps
load an application from the boot source. It can automatically initialize peripherals for communication
prior to loading the application itself, based on a chosen boot mode. The primary core that starts the Boot
ROM code, is the SHARC core in ADSP-2156x and ADSP-2159x families with the Cortex-A5 core used
for the ADSP-SC59x processors.

Booting Using the ROM API
The ROM API can be accessed at runtime to boot an application from a boot source. Any core can execute
the second-stage loader, which can call the boot ROM to boot the main application image or even a third-
stage loader, when needed. The boot kernel API can also implement custom boot modes, using the
dbootcommand structure. Code Listing 1 and Code Listing 2 demonstrate how to use the ROM API for the
SPI flash boot on different processor families.

Code Listing 1: Usage of ROM API for SPI Flash Boot on ADSP-2156x

void * adi_rom_Boot(void *pAddress, uint32_t flags, int32_t blockCount,
ROM_BOOT_HOOK_FUNC * pHook, uint32_t dbootcommand);

int main(int argc, char *argv[])
{
 adi_initComponents();

/* Configure secure peripheral register to do secure accesses to memory */
 /*Secure peripheral register for MDMA0_SRC */
 *pREG_SPU0_SECUREP110= 0x3;
 /*Secure peripheral register for MDMA0_DST */
 *pREG_SPU0_SECUREP111= 0x3;
 /* Call ROM API to boot via SPI2 configured for memory-mapped mode of operation */
 adi_rom_Boot(0x60000000,0,0,0,0x207);
 return 0;
}

Tips and Tricks Using the ADSP-SC59x/ADSP-2159x/ADSP-2156 Processor Boot ROM (EE447) Page 3 of 23

 Configure the SPU_SECUREPx register for the appropriate boot peripheral/DMA should
such that it performs secure accesses to the memories, which is the default setting that
avoids system fabric errors and boot failure.

Code Listing 2: Usage of ROM API for SPI Flash Boot on ADSP 2159x/ADSP SC59x

void * adi_rom_Boot(void *pAddress, uint32_t flags, int32_t blockCount,
ROM_BOOT_HOOK_FUNC * pHook, uint32_t dbootcommand);

int main(int argc, char *argv[])
{
 adi_initComponents();

/* Configure secure peripheral register to do secure accesses to memory */
 /*Secure peripheral register for MDMA0_SRC */
 *pREG_SPU0_SECUREP146= 0x3;
 /*Secure peripheral register for MDMA0_DST */
 *pREG_SPU0_SECUREP147= 0x3;
 /* Call ROM API to boot via SPI2 configured for memory-mapped mode of operation */
 adi_rom_Boot(0x60000000,0,0,0,0x207);
 return 0;
}

The following parameters must be configured when calling the adi_boot_rom() function:

• pAddress–start address of the External Flash, where the boot image is programmed
• flags–different Boot ROM flags
• blockCount–block count value
• pHook–pointer to the hook function defined in the application
• dbootcommand–boot command value for the desired boot mode.

See the Boot ROM chapter in the specific processor hardware reference for more information
about the boot command field for different boot modes.

OTP API Overview
The ADSP-2156x/2159x/SC59x boot ROM includes a set of functions to access OTP memory. This
provides a way using the OTP memory to customize the boot process, including:

• Configuring the Clock Generation Unit (CGU)
• Initializing the Dynamic Memory Controller (DMC0)
• Storing keys for the secure boot stream creation process.

Tips and Tricks Using the ADSP-SC59x/ADSP-2159x/ADSP-2156 Processor Boot ROM (EE447) Page 4 of 23

All OTP accesses use only the following OTP APIs:

• Program the OTP data field
bool adi_rom_otp_pgm(otp_data* data);

• Read the OTP data field
bool adi_rom_otp_get(OTPCMD cmd, uint32_t*data);

• Lock the processor (for secure booting)
bool adi_rom_lock();

The EE384 Associated Zip File (EE384.zip)[3] contains example code in the /6. OTP API code/ folder to
access (program and read) the OTP space from SHARC+ core and Cortex-A5 core. For more information,
see the OTP Controller chapter of found in the ADSP-2156x SHARC+ Processor Hardware Reference[4]
and ADSP-SC59x/ADSP-2159x SHARC+ Processor Hardware Reference[5].

 Once the part is locked, it can only be accessed using JTAG by providing the
emulation key.

Boot Stream Generation
The ADSP-2156x/2159x/SC59x processors support both standard and secure booting. The secure booting
feature resides on the ADSP-2156x, ADSP-2159x and ADSP-SC59x processors is the same as on the
ADSP-BF707 Blackfin+TM processor, as detailed in the EE336: Secure Booting Guide for ADSP-BF70x
Blackfin+ Processors[7] application note. Refer to this document for more details regarding the secure
boot mode support.

 There was a change in Secure Boot Architecture between ADSP-2156x and
ADSP-2159x/SC59x families. See the EE432: Boot Time Estimation for
ADSP-SC59x/ADSP-2159x SHARC+ Processors[8] for more information.

Standard Boot Streams
Use the elfloader utility (elfloader.exe) in the CrossCore® Embedded Studio installation path to generate
standard boot streams. Code Listing 3 through Code Listing 6 depict the invocation of the elfloader utility
to generate the boot stream for a SPI Flash boot in single bit SPI mode.

Code Listing 3: elfloader Command for Generating an ADSP-21569 Single-core Loader Stream

"<CCES Root Directory>\elfloader.exe" -proc ADSP-21569 Application.dxe -b SPI -f
BINARY -Width 8 -bcode 0x1 –verbose -o SPIFlash_Single.ldr

Tips and Tricks Using the ADSP-SC59x/ADSP-2159x/ADSP-2156 Processor Boot ROM (EE447) Page 5 of 23

For the ADSP-2159x and ADSP-SC59x processors, single and multicore boot streams can be generated as
shown in Code Listing 4 and Code Listing 5.

Code Listing 4: elfloader Command for Generating an ADSP-21593 Multicore Loader Stream

"<CCES Root Directory>\elfloader.exe" -proc ADSP-21593 -core1=Application_core1.dxe
-b SPI -f BINARY -Width 8 -bcode 0x1 –verbose -o SPIFlash_Single.ldr

"<CCES Root Directory>\elfloader.exe" -proc ADSP-21593 -core1=Application_core1.dxe
-core2= Application_Core2.dxe -NoFinalTag=Application_core1.dxe -b SPI -f BINARY -
Width 8 -bcode 0x1 –verbose -o SPIFlash_MultiCore.ldr

Code Listing 5: elfloader Command for Generating an ADSP-SC594 Loader Stream

"<CCES Root Directory>\elfloader.exe" -proc ADSP-SC594 -core0=Application_core0 -b
SPI -f BINARY -Width 8 -bcode 0x1 –verbose -o SPIFlash_Single.ldr

"<CCES Root Directory>\elfloader.exe" -proc ADSP-SC594 -core0=Application_core0 -
core1=Application_core1.dxe -core2= Application_Core2.dxe -
NoFinalTag=Application_core0 NoFinalTag=Application_core1.dxe -b SPI -f BINARY -
Width 8 -bcode 0x1 –verbose -o SPIFlash_MultiCore.ldr

An engineer can modify the –bcode parameter shown in Code Listings four and five that supports single-
bit SPI data to select one of the different supported SPI operating modes (for example, 0x5 for dual-bit
mode and 0x9 for quad-bit mode). For more details, refer to the corresponding processor hardware
reference. Changing the –b switch value to OSPI generates the loader streams for an OSPI controller
boot.

Use the elfloader utility to flexibly support other boot sources (–b switch) and different LDR file
formats (–f switch). For more information regarding the different elfloader utility uses, consult the
CrossCore® Embedded Studio 2.9.0 Software[6]. In Code Listing 6, an engineer can change the boot mode
by replacing –b SPISLAVE with –b UARTSLAVE (for UART) or –b LPSLAVE (for Linkport).

Code Listing 6: elfloader Utility to Generate Boot Stream for an SPI Slave Boot

"<CCES Root Directory>\elfloader.exe" -proc ADSP-21569 Application.dxe -b SPISLAVE
-f BINARY -Width 8 –verbose -o SPIHost_Single.ldr

Generating a Secure Boot Stream
Generating the secure boot stream requires converting the standard boot stream to use a private key to
create a digital signature. The boot stream stores the signature in the secure header as part of the secure
boot stream.

Tips and Tricks Using the ADSP-SC59x/ADSP-2159x/ADSP-2156 Processor Boot ROM (EE447) Page 6 of 23

The signtool.exe utility, using the sign command, works with the ADSP-2156x family for signing and
encrypting the boot stream image. The type switch governs the command applied to three secure boot
types, which takes values for Plaintext (BLp), Wrapped (BLw), and Keyless (BLx).

The adi_signtool.exe command utility works for the ADSP-2159x and ADSP-SC59x processor
families, which computes the HASH content of the boot image beforehand and stores it in the secure
header. Set the -add-sbh-hash-224 or -add-sbh-hash-256 switch to invoke the desired ECDSA
algorithm.

Signing Boot Stream for Integrity and Authenticity Protection (IAP)
The ADSP-2156x/2159x/SC59x processor families support both the 224-bit and 256-bit ECDSA
algorithm for integrity and authenticity protection. By default, the processors use the 224-bit ECDSA
algorithm. For 256-bit ECDSA, set the -attribute 0x80000003=256 while signing the loader stream.

Code Listing 7 and Code Listing 8 are examples of the command line for an ADSP-2156x/2159x/SC59x
processor to sign a standard boot loader stream (Normal_Boot_Stream.ldr, identified by the –infile
switch) for plaintext security (-type BLp) using the private key stored in the key-pair file keychain.der
(designated by the –prikey switch), and the converted secure LDR stream
(BLp_Secure_Boot_Stream.ldr) designated by the –outfile switch.

Code Listing 7: signtool Command to Sign a Boot Stream for IAP in an ADSP 2156x

"<CCES Root Directory>\signtool.exe" sign -type BLp -prikey keychain.der -infile
Normal_Boot_Stream.ldr -outfile BLp_Secure_Boot_Stream.ldr

Code Listing 8: signtool Command to Sign a Boot Stream for IAP in an ADSP 2159x/SC59x

"<CCES Root Directory>\adi_signtool.exe" -add-sbh-hash-224 sign -type BLp -prikey
keychain.der -infile Normal_Boot_Stream.ldr -outfile BLp_Secure_Boot_Stream.ldr

Signing and Encrypting Boot Stream for Integrity, Authenticity, and Confidentiality Protection (IACP)
When confidentiality protection is also desired, it can be either Keyless (-type BLx) or Wrapped (-type
BLw). For Keyless encryption, an engineer provides only the encryption key file, using the –enckey switch
(see Code Listing 9 and Code Listing 10.)

Code Listing 9: signtool Command to Sign/Encrypt an ADSP-2156x Boot Stream for ICAP

"<CCES Root Directory>\signtool.exe" sign -type BLx -prikey keychain.der -enckey
encrypt_key.bin -infile Normal_Boot_Stream.ldr -outfile BLx_Secure_Boot_Stream.ldr

Code Listing 10: signtool Command to Sign/Encrypt an ADSP-2159x/SC59x Boot Stream for ICAP

"<CCES Root Directory>\adi_signtool.exe" -add-sbh-hash-224 sign -type BLx -prikey
keychain.der -enckey encrypt_key.bin -infile Normal_Boot_Stream.ldr -outfile
BLx_Secure_Boot_Stream.ldr

Tips and Tricks Using the ADSP-SC59x/ADSP-2159x/ADSP-2156 Processor Boot ROM (EE447) Page 7 of 23

Signing and Encrypting Boot Stream for Integrity, Authenticity, and Confidentiality Protection (IACP) with
a Wrapped Encryption Key (IACP-WEK)
Wrapped encryption, where the cipher key is sent with the secure boot stream, requires both an encryption
key file (–enckey switch) and a wrap key file, as specified by the –wrapkey switch (see X and Y.)

Code Listing 11: signtool Command to Sign/Encrypt an ADSP-2156x Boot Stream for IACP-WEK

"<CCES Root Directory>\signtool.exe" sign -type BLw -prikey keychain.der -enckey
encrypt_key.bin -wrapkey wrapper_key.bin -infile Normal_Boot_Stream.ldr -outfile
BLw_Secure_Boot_Stream.ldr

Code Listing 12: signtool Command to Sign/Encrypt an ADSP-2159x/SC59x Boot Stream for IACP-WEK

"<CCES Root Directory>\adi_signtool.exe" -add-sbh-hash-224 sign -type BLw -prikey
keychain.der -enckey encrypt_key.bin -wrapkey wrapper_key.bin -infile
Normal_Boot_Stream.ldr -outfile BLw_Secure_Boot_Stream.ldr

 The Normal_Boot_Stream.ldr, keychain.der, BLp_Secure_Boot_Stream.ldr,
encrypt_key.bin, wrapper_key.bin, BLx_Secure_Boot_Stream.ldr and
BLw_Secure_Boot_Stream.ldr files are in binary format.

Secure SPI/OSPI Flash Boot
For SPI flash boot mode, the ROM code checks for the –bcode value present in the standard boot stream
to determine which SPI configuration to use. For a secure boot stream, which can be encrypted, extra steps
are needed to perform the same auto-detect functionality. An engineer can sign a standard boot image with
the attribute 0x80000002 set to a value of 0x0 through 0xF, which determines the SPI configuration to
use. When the attribute is not found in the secure header, the default bcode of 0x1 is applied. For
example, when the SPI needs to be configured for the quad-bit mode, the value 0x9 must be associated
with the attribute 0x80000002 (Code Listing 13) to sign and encrypt the boot stream for
Integrity/Authenticity and Confidentiality Protection with a Wrapped Encryption Key.

Code Listing 13: Sign/Encrypt with Attribute 0x80000002= 0x9 for IACP-WEK (SPI quad-bit mode)

"<CCES Root Directory>\signtool.exe" sign -type BLw -prikey keychain.der -enckey
encrypt_key.bin -wrapkey wrapper_key.bin -attribute 0x80000002=0x9 -infile
Normal_Boot_Stream.ldr -outfile BLw_Secure_Boot_Stream.ldr
i

Secure Host Boot
To boot and ADSP-2156x/2159x/SC59x processor in host boot modes, the host code should send an extra
1024 dummy bytes at the end of all secure boot streams. This ensures the host completely sends that the
boot stream and is received by the processor to boot an application.
The EE447Associated Zip File (TTP_BootROM.zip)[9] contains the 2. Loader Streams folder, which
generates standard and secure boot streams for a simple LED Blink application (1. Led_Blink_Code
folder) running on an ADSP-21569/ADSP-21593/ADSP-SC594 EZ-KIT® evaluation system.

Tips and Tricks Using the ADSP-SC59x/ADSP-2159x/ADSP-2156 Processor Boot ROM (EE447) Page 8 of 23

Boot Support in Open and Locked Parts
By default, the processor is an open part (that is, in the non-secure, default state). Open parts support both
standard and secure boot. To lock a processor and invoke security, a specific location in OTP memory must
be configured.

 Standard booting is no longer supported once the part is locked.

The processors support the following boot stream formats

• A Plaintext format (BLp) boot stream that can be authenticated by pre-programming the
corresponding public key of the ECDSA 224/256-bit algorithm with the OTP public_key
field using the OTP Program API.

• The Wrapped key format (BLw) boot stream image data is encrypted with the wrapped key,
preventing cloning. An additional key is required to unwrap the wrapped key in the boot
stream header. This key must be pre-programmed in the OTP pvt_128key field using the OTP
Program API.

• The Keyless format (BLx) boot stream like the wrapped key format, except the image does not
contain the key. The decryption key for the data must be pre-programmed into the OTP
pvt_128key field using the OTP Program API.

Once the part is locked, only the debugger has access when the user key is passed from the
debugger matches the emulation key. This must be programmed into the OTP secure_emu_key
field in ADSP-2156x using the OTP Program API, before locking the part. For the ADSP-2159x
and ADSP-SC59x families support two sets of user keys, secure_emu_key0 and
secure_emu_key1 (one user key is active at a time). For the ADSP-2156x, an emu_key_disable
field is provided in OTP to disable the emulation key. For the ADSP-SC59x and ADSP-2159x
emu_key0_disable and emu_key1_disable disable the emulation keys.

Public and Encryption (Private) Key in OTP Space
There are two instances of Public keys and four instances of encryption keys available in the OTP
space. By default, the public_key0 field and the pvt_128key0 field are used for authentication
and decryption of the secure boot stream. To use the other instances of the keys, like public_key1
and pvt_128key1, the previous instances need to be invalidated in the OTP space by setting the
pubkey0Inv and privkey0Inv bits in the OTP space using the OTP Program API.

All the public and private keys (including emulator keys in ADSP-2159x/SC59x) can be
invalidated using the various key*Inv fields provided in the ADI_ROM_OTP_BOOT_INFO structure.
This is useful when a new key is required, as the boot ROM always uses the lowest valid key
enumeration. When the key0 is valid, then it is used; when key0 is invalid and key1 is valid, then
key1 is used.

 Once a key is invalidated, it cannot be used again.

Tips and Tricks Using the ADSP-SC59x/ADSP-2159x/ADSP-2156 Processor Boot ROM (EE447) Page 9 of 23

Testing Secure Boot Using the ROM API
The ROM code provides a mechanism to boot a secure boot stream without writing any keys into OTP
memory. This can be extremely useful in validating the generated keys and the application stream before
writing to OTP memory and locking the part. Engineers can perform secure booting by loading an
application into memory using the emulator, which (a) uses the ROM API function adi_rom_Boot in
conjunction with a hook function, (b) configures the kernel for secure boot, and (c) starts the boot process.
The EE447Associated Zip File (TTP_BootROM.zip)[9] has the 4. ROM_API_Flags folder, which contains
the ROM API Hook function example code.

Useful Boot ROM Features

Booting to External Memory
The following techniques can be used to boot an application that maps to external memory:

• The boot ROM supports initialization blocks to load code on-chip and run it prior to
attempting to load the next block in the boot stream. This code is a small executable that
can initialize the DMC controllers prior to any attempt by the boot sequence to load
code/data to external DDR memory, and it is supported by using the –init switch in the
elfloader command line (see X.)

Code Listing 14: elfloader Command Line with Initialization Block

"<CCES Root Directory>\elfloader.exe" -proc ADSP-21569 Application.dxe –init
Initcode.dxe -b SPI -f BINARY -Width 8 -bcode 0x1 –verbose -o SPIFlash_Single.ldr”

• DMC initialization can be pre-programmed into the OTP dmcEn field using the OTP
Program API. By setting the dmcEn field of the ADI_ROM_BOOT_CONFIG structure, the
ADI_ROM_OTP_DMC_CONFIG structure is read from the OTP and used to configure the DMC
peripheral.

• A second-stage loader can be implemented, where the first application configures the
external memory controller and then issues a call using the boot routine to boot an
application into external memory.

 A secure boot to external memory with BLx and BLw image formats is not
supported by default. But this can be enabled using a custom error-handler
function that needs to bypass the error ID of 0xC in a multi-stage boot
scenario.

Tips and Tricks Using the ADSP-SC59x/ADSP-2159x/ADSP-2156 Processor Boot ROM (EE447) Page 10 of 23

Optimizing Boot Time
Engineers can improve overall boot time performance using the following techniques:

• Program the clock generation unit (CGU) to increase clocks throughout the device by
configuring the OTP cgu field using the OTP Program API.

• Use an initialization block to customize boot mechanisms exposed by the boot kernel. In
addition to configuring the external memory controller, the initialization block can be used to
modify the CGU and the peripheral bit rates/settings. Because this code is executed at the start
of the boot process, the rest of the application can load much faster with whatever optimized
settings are configured in the initialization block.

 Initialization blocks require a call to user application code prior to the
authentication of the boot image; therefore, it is not supported for
secure boot streams.

•

• SPI flash boot mode can be done in dual-bit or quad-bit mode when the flash supports it. This
is supported using the -bcode switch when generating the boot stream.

• Similarly, the OSPI flash boot mode can be done in dual-STR, quad-STR, single-DTR, single-
DTR, and quad-DTR -bit mode, when the flash supports it. This is supported using the -bcode
switch when generating the boot stream.

• A second-stage loader can be implemented, where the first application configures the CGU to run
the processor at maximum speed and issues a call using the boot routine to boot at the desired
speed.
Engineers can configure the CGU and DMC by using adi_rom_CguInit() and
adi_rom_DmcInit() APIs prior to calling the boot application using adi_rom_Boot().

The associated ZIP file contains the 4. ROM_API_Flags folder, which has example code for CGU
and DMC configuration using the ROM API.

 OSPI Boot also supports Octal-STR and Octal DTR modes through second stage boot
using custom boot approach which will further speed up the boot process. See
the Custom Boot Mode section in this EE Note for more information.

Debugging the Boot Using the Global Boot Flags in adi_rom_Boot()

The adi_rom_Boot()API supports additional flags which can impact the processing of the boot stream or
modify control behavior after the boot stream processes. For more information, refer to the Boot ROM
and Booting the Processor chapter of the ADSP-2156x SHARC+ Processor Hardware Reference[4] or
ADSP-SC59x/ADSP-2159x SHARC+ Processor Hardware Reference[5].

ROM_BFLAG_RETURN
This flag can be set in the boot routine call from the ROM API application in either SHARC core or Cortex-
A5 core. When set, the boot code does not vector to the entry address of the loaded application once booted.
Instead, it returns to the original calling routine just like any other regular function call.
The EE447Associated Zip File (TTP_BootROM.zip)[9] contains the 4. ROM_API_Flags folder, which has
the example code for using the ROM API function with the ROM_BFLAG_RETURN.

Tips and Tricks Using the ADSP-SC59x/ADSP-2159x/ADSP-2156 Processor Boot ROM (EE447) Page 11 of 23

ROM_BFLAG_HOOK
When enabled, this flag allows for calling a hook routine after the execution of the initialization and
configuration functions that were registered with the boot kernel. The address of the hook function to
execute is passed as a parameter when calling the boot routine.
When using the ROM API, this allows for user routines in SRAM to be registered and called. The boot
software passes a flag to the hook routine, indicating the call was due to completion of the initialization
routine or the configuration routine. In addition, a pointer to the entire boot configuration structure is
passed, allowing the hook routine to reconfigure the boot process.

 Hook routines provide an efficient means of validating a boot peripheral
configuration at boot-time. Software can call the boot API with a specific
configuration, and—in the hook routine—verify the passing of the correct
configuration parameters. Then, the routine can pass or fail boot validation
without progressing through the entire boot sequence.

Default Booting Peripheral Pin-mux Combinations
For the ADSP-2156x, ADSP-SC59x and ADSP-2159x processors, all default SPI2, UART0, LP0 and
OSPI0 boot peripherals support booting through default pin-mux combinations. Table 1 through Table 4
show the default pin-mux combinations for SPI2, OSPI0, UART0, and LP0 peripherals.

Table 1: SPI2 Default Pin-mux For Processors
Signals ADSP-2156x ADSP-2159x ADSP-SC59x
SPI2_MOSI PA_01 PA_01 PA_01
SPI2_MISO PA_00 PA_00 PA_00
SPI2_D2 PA_02 PA_02 PA_02
SPI2_D3 PA_03 PA_03 PA_03
SPI2_CLK PA_04 PA_04 PA_04
SPI2_SEL1b PA_05 PA_05 PA_05
SPI2_RDY PB_05 PB_05 PB_05

Table 2: OSPI0 Default Pin-mux For Processors
Signals ADSP-2156x ADSP-2159x ADSP-SC59x
OSPI0_MOSI PA_01 PA_01 PC_11
OSPI0_MISO PA_00 PA_00 PC_12
OSPI0_D2 PA_02 PA_02 PC_10
OSPI0_D3 PA_03 PA_03 PC_09
OSPI0_D4 PA_06 PA_06 PD_00
OSPI0_D5 PA_07 PA_07 PC_15
OSPI0_D6 PA_08 PA_08 PC_14
OSPI0_D7 PA_09 PA_09 PC_13
OSPI0_CLK PA_04 PA_04 PC_08
OSPI0_SEL1b PA_05 PA_05 PD_01

Tips and Tricks Using the ADSP-SC59x/ADSP-2159x/ADSP-2156 Processor Boot ROM (EE447) Page 12 of 23

Table 3: UART0 Default Pin-mux for Processors
Signals ADSP-2156x ADSP-2159x ADSP-SC59x
UART0_CTS PA_09 PA_09 PA_09
UART0_RTS PA_08 PA_08 PA_08
UART0_TX PA_06 PA_06 PA_06
UART0_RX PA_07 PA_07 PA_07

Table 4: LP0 Default Pin-mux for Processors
Signals ADSP-2156x ADSP-2159x ADSP-SC59x
LP0_DAT0 PB_07 PB_07 PB_07
LP0_DAT1 PB_08 PB_08 PB_08
LP0_DAT2 PB_09 PB_09 PB_09
LP0_DAT3 PB_10 PB_10 PB_10
LP0_DAT4 PB_11 PB_11 PB_11
LP0_DAT5 PB_12 PB_12 PB_12
LP0_DAT6 PB_13 PB_13 PB_13
LP0_DAT7 PB_14 PB_14 PB_14
LP0_CLK PB_06 PB_06 PB_06
LP0_ACK PB_04 PB_04 PB_04

Booting Using Non-default Peripheral Instances
By default, the ADSP-2156x, ADSP-SC59x and ADSP-2159x processors support booting using the SPI2,
UART0, LP0, and OSPI0 peripherals. To boot an application using an alternate instance of a supported
peripheral (for example, SPI0, UART1, LP1), the dbootcommand in the boot routine call can be changed.

Engineers can program the dbootcommand for example, into the OTP bcmd field of the
ADI_ROM_OTP_BOOT_INFO structure using the OTP Program API.

The ROM code provides the option to disable a particular boot mode by configuring the OTP
bootModeDisable field using the OTP Program API.

Custom Boot Mode
In comparison to the previous ADSP-SC5xx/2158x/2157x families of processors, the
ADSP-2156x/2159x/SC59x processors support a custom boot mode. The kernel provides a mechanism to
customize supported boot modes or implement completely new boot modes as second-stage boot loaders.
This helps programs to customize booting while taking advantage of the rest of the booting framework. A
custom boot mode can provide support for booting through any peripheral that is not supported by the
Boot ROM, or it can support one of the same peripherals, but with a different configuration.
All the same security features can be supported when using a custom boot mode.
A full boot mode is a collection of following driver functions, as defined by the boot implementation.

1. Register–installs the remaining driver functions so they can be accessed by the boot process

Tips and Tricks Using the ADSP-SC59x/ADSP-2159x/ADSP-2156 Processor Boot ROM (EE447) Page 13 of 23

2. Initialization–initialize the boot source
3. Configuration–configure the boot source
4. Load–read from the boot source
5. Cleanup–called after booting

To install a custom boot mode:

1. Create a first stage boot application to define a Load function.
2. Use the adi_rom_BootKernel() API to call the boot kernel once the boot peripheral and pin-

muxing has configured. Ensure all the fields of the data structure ADI_ROM_BOOT_CONFIG are
configured prior to performing the API call.

The boot mode can use the pModeData member of ADI_ROM_BOOT_CONFIG to preserve and access shared
data across the different function calls if required.
All functions have the following prototype:

void apiFunction(ADI_ROM_BOOT_CONFIG* pBootStruct);

Another way to support custom boot mode is:
1. Create a first stage boot application to define all Init, Config, Load, and Cleanup routines.
2. Use adi_rom_Boot() API with hook function installed to update the Init, Config, Load and

Cleanup functions after completing the preregister initialization. This is checked by the boot ROM
to override the above functions inside the hook function with ROM_HOOK_CALL_CAUSE:
ROM_HOOK_REG_COMPLETE.

 For custom boot mode using run-time API, set ROM_BCMD_SPIM_DEVICE= 0xF in the
Boot Command.

The EE447Associated Zip File (TTP_BootROM.zip)[9] contains the 5. Custom Boot folder, which has
example code for the custom boot mode to implement an Octal STR boot. The Octal STR boot is not
supported by the default boot modes.
For more information, see the ADSP-2156x SHARC+ Processor Hardware Reference[4] and
ADSP-SC59x/ADSP-2159x SHARC+ Processor Hardware Reference[5].

Using a Second-stage Loader that Supports Boot Extensions
To support extensions to the boot process, a second-stage loader (SSL) can be use, in which an engineer
loads a small application into the processor with a natively supported boot mode. This SSL kernel can be
used to customize the configuration of the processor or perform automated tasks as part of the boot
process.
An SSL is a stand-alone application started at boot time before the actual application dynamically loads
into memory. The SSL can be used to invoke a ROM API to boot a second application. For example, this
approach can be used to boot an secondary application mapped to external memory allowing the primary

Tips and Tricks Using the ADSP-SC59x/ADSP-2159x/ADSP-2156 Processor Boot ROM (EE447) Page 14 of 23

application to perform DMC initialization. The EE447Associated Zip File (TTP_BootROM.zip)[9] contains
the SSL folder, which implements this example.

 The boot kernel requires 8k of SRAM for the stack and buffers (0x200fe000 to
0x200fffff for the ADSP-2156x processors and 0x201fe000 to 0x201fffff
for the ADSP-2159x/SCC59x processors). This space is reserved until after the
boot process completes. The boot kernel flags an exception when this reserved-
space rule is violated. The stack region can also be remapped to another
memory region for any incoming image conflicts to the stack space.
The Example 3, SSL_Code_Example in the EE447Associated Zip File
(TTP_BootROM.zip)[9] shows how stack can be remapped in the SHARC core
application.

Boot Time Estimation for ADSP-2156x SHARC+ Processors
A loader stream is a set of linked blocks, and each block type is responsible for performing a function.
The boot time for a particular boot stream primary depends on its size and the distinct kinds of blocks
present in the loader stream.
Total boot time for an ADSP-2156x SHARC+ processors is the sum of the pre boot time of the processor
plus the boot time consumed for loading the application in each boot mode.

• Pre-boot time measures the configuration of all system resources prior to executing the required
boot operation.

• Application loading time is dependent on the loader stream blocks plus the peripheral being used
for a particular boot mode.

Considering the pre-boot takes a fix amount of time under certain conditions, application loading time
(boot time) can be computed separately for any loader stream using the Boot ROM API. The following
figures (Figure 1 through Figure 11) depict the durations for the boot modes (SPI, OSPI, UART, and
Linkport) plotted against loader stream sizes. The measurements were taken using the clock settings
(CCLK=1 GHz, SYSCLK=500 MHz, and SCLK=125 MHz). The plots show that the boot time is linear
with respect to the loader stream size (larger than 10 KB). The linear equations were derived for each boot
mode using the linear model of 𝑦𝑦 = 𝑎𝑎𝑎𝑎 + 𝑏𝑏, where 𝒙𝒙 is the size of loader stream (KB) and 𝒚𝒚 is boot time in
milliseconds. This permits a calculation to estimate the boot time for any loader stream size.
For example, consider a loader stream size of 1000 KB. For the SPI2 Quad boot mode, the boot time
plotted in Figure 1 can be estimated using this calculation:

Total Boot time = 0.0363x - 0.3404, where x is loader stream size in KB
Boot time= (0.0363*1000) - 0.3404 = 35.95 ms

 For Boot Time information on the ADSP-2159x and ADSP-SC59x
processor families, see the EE432: Boot Time Estimation for
ADSP-SC59x/ADSP-2159x SHARC+ Processors[8] for more information.

Tips and Tricks Using the ADSP-SC59x/ADSP-2159x/ADSP-2156 Processor Boot ROM (EE447) Page 15 of 23

SPI Flash Boot
SPI Flash Boot (SYS_BMODE 1) mode supports booting from a flash device using an SPI peripheral. In
ADSP-2156x SHARC+ processors, the SPI2 instance drives the default SPI boot, which supports single,
dual, and quad single transfer rate (STR) modes. Figure 1 through Figure 4 provide linear boot time
equations for all the SPI flash boot modes that use a 62.5 MHz SPI clock. The figures include a normal
boot and secure boot with ECDSA-256 authentication.

Figure 1: SPI2 Normal Boot at 62.5 MHz

 The plot figures for the normal boot are good only for loader stream sizes larger than
10 KB. For smaller boot image sizes, boot time linearity is not maintained due to a
smaller number of samples. For stream sizes less than 10 KB, ADI advises the
engineer to manually test and evaluate the boot time.

y = 0.1366x + 0.2257

y = 0.0696x + 0.0583

y = 0.0363x - 0.3404

0
200
400
600
800

1000
1200
1400
1600
1800

0 2000 4000 6000 8000 10000 12000 14000

B
oo

t T
im

e(
m

s)

Loader Size(KB)

SPI2 Normal Boot

SPI2 Single SPI2 Dual SPI2 Quad

Tips and Tricks Using the ADSP-SC59x/ADSP-2159x/ADSP-2156 Processor Boot ROM (EE447) Page 16 of 23

Figure 2: SPI Secured BLp-256 Boot at 62.5 MHz

Figure 3 SPI2 BLx-256 Boot at 62.5 MHz

y=0.1512x+4.6926

y=0838x+5.2937

y=0.0505x+5.0668
0

200
400
600
800

1000
1200
1400
1600
1800
2000

0 2000 4000 6000 8000 10000 12000 14000

B
oo

t T
im

e(
m

s)

Loader Size(KB)

SPI2 BLp ECDSA-256

SPI2 Single SPI2 Dual SPI2 Quad

y=0.1512x+4.72…

y=0.0838x+5.2937
y=0.0505x+5.0668

0
200
400
600
800

1000
1200
1400
1600
1800
2000

0 2000 4000 6000 8000 10000 12000 14000

B
oo

t T
im

e(
m

s)

Loader Size(KB)

SPI2 BLx ECDSA-256

SPI2 Single SPI2 Dual SPI2 Quad

Tips and Tricks Using the ADSP-SC59x/ADSP-2159x/ADSP-2156 Processor Boot ROM (EE447) Page 17 of 23

Figure 4: SPI2 BLw-256 Boot at 62.5 MHz

 Secure boot with the BLw and the BLx format for the ADSP-2156x/2159x/SC59x
SHARC+ processors does not support the application mapped to an off-chip RAM
space. The -chipmemsplitter switch in CCES elfloader utility can be used, which
produces additional loader file outputs for the on-chip and off-chip memory along
with the usual loader file output. In that case, the on-chip loader stream can be booted
with the BLw/BLx format and off-chip loader stream can be booted with the BLp
format. Please refer to the EE432: Boot Time Estimation for
ADSP-SC59x/ADSP-2159x SHARC+ Processors[8] for more information on how to
use this feature with example codes. This is incorporated for larger size loader streams
in the linear equations provided in the next sections, where the application data is
mapped to an off-chip RAM space.

OSPI Flash Boot
The OSPI Flash Boot (SYS_BMODE 5) supports booting from the SPI flash or Octal flash device using the
OSPI peripheral which includes single-STR, dual-STR, quad-STR, single-DTR (Double Transfer Rate),
dual-DTR, and quad-DTR modes. OSPI boot supports a maximum of 62.5 MHz OSPI Clock. Linear boot
time equations are shown in Figure 5 through Figure 9 for all the OSPI flash boot modes at 62.5 MHz
OSPI clock The figures include a normal boot and secure boot with ECDSA 256 authentication.

y= 0.0838x+5.1406

y= 0.0506x+4.9206

y = 0.1512x + 4.5388

0
200
400
600
800

1000
1200
1400
1600
1800
2000

0 2000 4000 6000 8000 10000 12000 14000

B
oo

t T
im

e(
m

s)

Loader Size (KB)

SPI2 BLw ECDSA-256

SPI2 Single SPI2 Dual SPI2 Quad

Tips and Tricks Using the ADSP-SC59x/ADSP-2159x/ADSP-2156 Processor Boot ROM (EE447) Page 18 of 23

Figure 5: OSPI Normal Boot at 62.5 MHz

 Boot time in the OSPI Single-DTR and Dual-STR boot modes are the same. Similarly,
Single-Quad and Dual-DTR boot timings are also similar.

Figure 6: OSPI BLp-256 Boot at 62.5 MHZ

y= …

y= 0.0671x+0.431

y= 0.0337x+0.0494

y= 0.0169x+0.4745
0

200

400

600

800

1000

1200

1400

1600

1800

0 2000 4000 6000 8000 10000 12000 14000

B
oo

t T
im

e(
m

s)

Loader Size(KB)

OSPI0 Normal Boot

OSPI0 Single-STR OSPI0 Single-DTR OSPI0 Dual-DTR OSPI0 Quad-DTR

y=0.1387x+3.7588

y= 0.0705x+4.8524

y=0.0372x+4.7196

y= 0.0199x+5.2402
0

200

400

600

800

1000

1200

1400

1600

1800

0 2000 4000 6000 8000 10000 12000 14000

B
oo

t T
im

e(
m

s)

Loader Size(KB)

OSPI0 BLp ECDSA-256

OSPI0 Single-STR OSPI0 Single-DTR OSPI0 Dual-DTR OSPI0 Quad-DTR

Tips and Tricks Using the ADSP-SC59x/ADSP-2159x/ADSP-2156 Processor Boot ROM (EE447) Page 19 of 23

Figure 7: OSPI0 BLx-256 Boot at 62.5 MHz

Figure 8: OSPI BLw-256 Boot at 62.5 MHz

 These is an extra overhead present in DMA transfer in the SPI secure boot, where the
MSIZE setting always remains two. The MDMA channels operate on the 2-byte
aligned page addresses because of the presence of the 212-byte secure header. This
adds an extra delay with each 32-bit DMA transfer. This delay is why an SPI secure
boot time is sometimes greater than an OSPI secure boot.

y= 0.1387x+4.5696

y= 0.0714x+5.1711

y= 0.0379x+5.3872

y=0.0211x+7.05…
0

200

400

600

800

1000

1200

1400

1600

1800

0 2000 4000 6000 8000 10000 12000 14000

B
oo

t T
im

e(
m

s)

Loader Size(KB)

OSPI0 BLx ECDSA-256

OSPI0 Single STR OSPI0 Dual-STR OSPI0 Quad-STR OSPI0 Quad-DTR

y= 0.1387x+4.4162

y= 0.0714x+4.9189

y=0.0379x+5.0741

y=0.0211x+6.9018
0

200
400
600
800

1000
1200
1400
1600
1800

0 2000 4000 6000 8000 10000 12000 14000

B
oo

t T
im

e(
m

s)

Loader Size(KB)

OSPI0 BLw ECDSA-256

OSPI0 Single-STR OSPI0 Dual-STR OSPI0 Quad-STR OSPI0 Quad-DTR

Tips and Tricks Using the ADSP-SC59x/ADSP-2159x/ADSP-2156 Processor Boot ROM (EE447) Page 20 of 23

The OSPI Controller for an ADSP-2156x SHARC+ processor does not support the Octal boot by default.
The Octal boot can be accomplished using a secondary stage boot, which further improves the boot time.
This can be achieved by using a custom boot implementation or a hook function. The octal boot example
code in the 7. Boot Time Measurement folder is included with EE447Associated Zip File
(TTP_BootROM.zip)[9].

Figure 9: OSPI Octal-STR at 62.5 MHz

UART Host Boot
The UART Host Boot (SYS_BMODE 3) for the ADSP-2156x SHARC+ processors is a host boot mode,
where the processor receives boot data from a UART host connected to its interface. UART0 is the default
booting peripheral. The maximum UART clock speed for the UART boot is 7.8 MHz, achieved by using
init code or OTP to configure the CGU for the maximum clock speed (CCLK 1 GHz, SCLK0 125 MHz,
and SYSCLK 500 MHz). Because the UART is a slow speed peripheral, boot time for both normal and
secure boot is identical. Boot time is primarily dependent on the loading time of the peripheral.

Figure 10: UART Target Boot at 62.5 MHz

y = 0.0172x + 0.3461
y = 0.019x + 5.8576

0

20

40

60

80

100

0 500 1000 1500 2000 2500 3000 3500 4000 4500

B
oo

t T
Im

e(
m

s)

Loader Size(KB)

Octal STR Boot

Normal BLp256

y = 1.3239x + 10.592

0

1000

2000

3000

4000

5000

6000

0 500 1000 1500 2000 2500 3000 3500 4000 4500

B
oo

t T
im

e(
m

s)

Loader Size(KB)

UART Boot @7.8MHz

Tips and Tricks Using the ADSP-SC59x/ADSP-2159x/ADSP-2156 Processor Boot ROM (EE447) Page 21 of 23

Linkport Host Boot
The Link port boot (SYS_BMODE 4) is a host boot mode where the processor receives boot data from an
external link port host through link port 0. The DMA controls all transfers from the link port to memory.
The maximum operating frequency of the link port is 125 MHz for which the host boot source is
responsible for driving with the clock frequency. This is achieved by using init code or OTP to configure
the CGU for maximum clock speed (CCLK 1 GHz, SYSCLK 500 MHz, and SCLK0 125 MHz). The link
port receiver operates at an asynchronous frequency up to the maximum supported operating frequency.
Figure 11 shows the linear boot time equation for Linkport normal boot at 100 MHz LP CLK is provided.

Figure 11: Linkport Target Normal Boot at 62.5 MHz

Pre-boot Time
As mentioned in earlier section, pre-boot time accounts for the configuration of all system resources prior
to starting the boot operation and includes:

• Core initialization
• SPU and SMPU configuration
• Secure debug key processing
• CGU configuration
• DMC configuration
• Fault Configuration
• L1 memory initialization

The pre-boot execution time varies based on the features enabled through OTP programming. See the
ADSP-2156x SHARC+ Processor Hardware Reference[4] for more information about pre-boot operations.
Default pre-boot time for the ADSP-2156x processor without OTP programming is 2.1 ms.

y = 0.0102x + 0.3557

0

5

10

15

20

25

30

35

40

45

0 500 1000 1500 2000 2500 3000 3500 4000 4500

B
oo

t T
im

e(
m

s)

Loader Size(KB)

LP Boot @100MHz

Tips and Tricks Using the ADSP-SC59x/ADSP-2159x/ADSP-2156 Processor Boot ROM (EE447) Page 22 of 23

 Initcode execution time (when present) is based on the features enabled inside the
initblock application and affects the total boot time. Fill blocks can also affect the boot
time.

Saturation in Secured Boot Time
The authentication routine consumes a considerable amount of time in the Crypto Engine and plays an key
role in determining the total secure boot time. For the ADSP-2156x SHARC+ processor, the Boot ROM
must wait for the entire loader stream to load before the Crypto engine can generate the signature from the
computed SHA hash digest. The authentication routine needs the signature to complete. Because of the
sequential process, the authentication routine becomes somewhat of a “bottleneck” for smaller boot
images, which affects the total secure boot time. For a smaller boot image, secure boot time reaches a
saturation point (the boot time remains constant for smaller sizes).
Figure 12 shows the SPI2 dual secure boot reaching the saturation point at 40 KB, when booting at clock
speeds (CCLK=1 GHz, SYSCLK=500 MHz, and SPI CLK=62.5M Hz). As the crypto engine runs on the
SYSCLK clock, the saturation point varies with other clock frequencies and boot modes.

Figure 12: Boot Time Saturation in SPI2 BLp-256 Duel-STR Boot at 62.5 MHZ

0

5

10

15

20

25

0 50 100 150 200 250 300

B
oo

t T
im

e(
m

s)

Loader Size(KB)

Secured Boot Time Saturation

Tips and Tricks Using the ADSP-SC59x/ADSP-2159x/ADSP-2156 Processor Boot ROM (EE447) Page 23 of 23

References
[1] ADSP-21566/21567/21569 SHARC+ Single Core High Performance DSP (up to 1 GHz) Datasheet Rev 0, March 2020.

Analog Devices, Inc.

[2] ADSP-21591/21593/21594/ADSP-SC591/SC592/SC594: SHARC+ Dual-Core DSP with Arm Cortex-A5 Preliminary
Data Sheet (Rev. PrD)

[3] EE384 Associated Zip File (EE384.zip). Rev 1, September, 2021. Analog Devices, Inc.

[4] ADSP-2156x SHARC+ Processor Hardware Reference. Revision 0.3, March 2020. Analog Devices, Inc.

[5] ADSP-SC59x/ADSP-2159x SHARC+ Processor Hardware Reference. Rev 0.0. Analog Devices, Inc.

[6] CrossCore® Embedded Studio 2.9.0 Software > SHARC® Development Tools Documentation > Loader and Utilities
Manual > Loader for ADSP-SC5xx/ADSP-215xx Processors

[7] EE336: Secure Booting Guide for ADSP-BF70x Blackfin+ Processors. Rev 1, November 2014. Analog Devices, Inc

[8] EE432: Boot Time Estimation for ADSP-SC59x/ADSP-2159x SHARC+ Processors. Rev 1, August 23, 2021

[9] EE447Associated Zip File (TTP_BootROM.zip), Rev 1, May 11, 2023.

Document History

Revision Description

Rev 1 – May 11, 2023
by Juganta Saikia &
Madhumadhi Srinivasan

Initial Release

	Introduction
	Take-aways

	Booting of the Processor
	Booting at Power On Reset
	Booting Using the ROM API

	OTP API Overview
	Boot Stream Generation
	Standard Boot Streams
	Generating a Secure Boot Stream
	Signing Boot Stream for Integrity and Authenticity Protection (IAP)
	Signing and Encrypting Boot Stream for Integrity, Authenticity, and Confidentiality Protection (IACP)
	Signing and Encrypting Boot Stream for Integrity, Authenticity, and Confidentiality Protection (IACP) with a Wrapped Encryption Key (IACP-WEK)

	Secure SPI/OSPI Flash Boot
	Secure Host Boot

	Boot Support in Open and Locked Parts
	Public and Encryption (Private) Key in OTP Space

	Testing Secure Boot Using the ROM API
	Useful Boot ROM Features
	Booting to External Memory
	Optimizing Boot Time
	Debugging the Boot Using the Global Boot Flags in adi_rom_Boot()
	ROM_BFLAG_RETURN
	ROM_BFLAG_HOOK

	Default Booting Peripheral Pin-mux Combinations
	Booting Using Non-default Peripheral Instances

	Custom Boot Mode
	Using a Second-stage Loader that Supports Boot Extensions
	Boot Time Estimation for ADSP-2156x SHARC+ Processors
	SPI Flash Boot
	OSPI Flash Boot
	UART Host Boot
	Linkport Host Boot
	Pre-boot Time
	Saturation in Secured Boot Time

	References
	Document History

