

# Silicon SPST Switch, NonReflective, 100 MHz to 55 GHz

#### **FEATURES**

- ▶ Ultrawideband Frequency range: 0.1 GHz to 55 GHz
- ▶ Nonreflective ports, High power terminated path
- Symmetrical ports
- ▶ Low insertion loss
  - ▶ 1.0 dB typical to 20 GHz
  - ▶ 1.5 dB typical to 40 GHz
  - ▶ 2.0 dB typical to 55 GHz
- ▶ Isolation
  - ▶ 30 dB typical to 50 GHz
  - ▶ 28 dB typical to 55 GHz
- ▶ High input linearity
  - ▶ P0.1dB: >33 dBm typical
  - ▶ Input IP3 >60 dBm typical
- ▶ High power handling T<sub>case</sub> = 85 °C
  - ▶ Through path
    - ▶ Peak: 36 dBm
    - ▶ Pulse: 33 dBm
    - ► CW: 30 dBm
  - Terminated path
    - ▶ Peak: 33 dBm
    - ▶ Pulse 33 dBm
  - ▶ CW: 30 dBm
  - Hot switching
    - ▶ Peak: 33 dBm
    - ▶ Pulse: 33 dBm
    - ► CW: 30 dBm
- ► CMOS/LVTTL compatible
- ▶ RF switching time: 30 ns
- ▶ RF settling time (0.1 dB final RF output): 50 ns
- Dual supply operation: ±3.3 V
- ▶ 14-lead, 2.25 mm x 2.25 mm, LGA package

#### **APPLICATIONS**

- Test and instrumentation
- ► Cellular infrastructure: 5G mmWave
- Military radios, radars, electronic counter measures
- Microwave radios and very small aperture terminals
- Industrial scanners

#### **FUNCTIONAL BLOCK DIAGRAM**

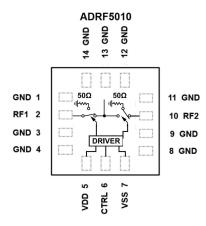



Figure 1. Functional Block Diagram

#### **GENERAL DESCRIPTION**

The ADRF5010 is a non-reflective, single-pole single-throw (SPST) switch manufactured in the silicon process.

The ADRF5010 operates from 0.1 GHz to 55 GHz with insertion loss of lower than 2 dB and isolation of higher than 28 dB. The device has a RF input power handling capability of 30 dBm for through path and 30 dBm for hot switching.

The ADRF5010 requires dual supply voltages of ±3.3 V. The device employs CMOS and LVTTL compatible control.

The ADRF5010 can also operate with a single positive supply voltage (VDD) applied while the negative supply voltage (VSS) is tied to ground. In this operating condition, the small signal performance is maintained while the switching characteristics, linearity, and power handling performance is derated. See Figure 2 for more details.

The ADRF5010 comes in a 14-lead, 2.25 mm x 2.25 mm, land grid array [LGA] package and can operate from -40°C to +105°C.

# **TABLE OF CONTENTS**

| Features                                    | 1 |
|---------------------------------------------|---|
| Applications                                | 1 |
| Functional Block Diagram                    | 1 |
| General Description                         | 1 |
| Specifications                              | 3 |
| Absolute Maximum Ratings                    |   |
| Thermal Resistance                          | 5 |
| Power Derating Curves                       | 5 |
| Electrostatic Discharge (ESD) Ratings       | 5 |
| ESD Caution                                 | 5 |
| Pin Configuration and Function Descriptions | 6 |
| Interface Schematics                        |   |

| Typical Performance Characteristics        | 8  |
|--------------------------------------------|----|
| Insertion Loss, Return Loss, and Isolation | 8  |
| Input Power Compression and Third-Order    |    |
| Intercept                                  | 9  |
| Theory of Operation                        | 10 |
| RF Input And Output                        | 10 |
| Application Information                    | 11 |
| Evaluation Board                           | 11 |
| Recommendations For Printed Circuit        |    |
| Board Design                               | 11 |
| Outline Dimensions                         | 12 |
|                                            |    |

analog.com Rev. PrA | 2 of 12

# **SPECIFICATIONS**

 $V_{DD} = 3.3 \text{ V}, V_{SS} = -3.3 \text{ V}, V_{CTRL} = 0 \text{ V or VDD}, T_{CASE} = 25^{\circ}\text{C}, 50 \ \Omega \text{ system, unless otherwise noted. RFx refers to RF1 or RF2}.$ 

Table 1.

| Parameter                       | Symbol                               | Test Conditions/Comments                            | Min   | Тур М | <b>V</b> lax | Unit    |
|---------------------------------|--------------------------------------|-----------------------------------------------------|-------|-------|--------------|---------|
| FREQUENCY RANGE                 | f                                    |                                                     | 0.1   | 5     | 55           | GHz     |
| INSERTION LOSS                  |                                      |                                                     |       |       |              |         |
| Between RFx and RFx (On)        |                                      | 0.1 GHz to 20 GHz                                   |       | 1.0   |              | dB      |
| , ,                             |                                      | 20 GHz to 40 GHz                                    |       | 1.5   |              | dB      |
|                                 |                                      | 40 GHz to 55 GHz                                    |       | 2.0   |              | dB      |
| ISOLATION                       |                                      |                                                     |       |       |              |         |
| Between RFx and RFx             |                                      | 0.1 GHz to 20 GHz                                   | ;     | 31    |              | dB      |
|                                 |                                      | 20 GHz to 40 GHz                                    |       | 30    |              | dB      |
|                                 |                                      | 40 GHz to 55 GHz                                    |       | 28    |              | dB      |
| RETURN LOSS                     |                                      |                                                     |       |       |              |         |
| RFx (Through path)              |                                      | 0.1 GHz to 20 GHz                                   |       | 20    |              | dB      |
| ( 31 /                          |                                      | 20 GHz to 40 GH                                     |       | 19    |              | dB      |
|                                 |                                      | 40 GHz to 55 GHz                                    |       | 21    |              | dB      |
| RFx (Terminated)                |                                      | 0.1 GHz to 55 GHz                                   |       | 22    |              | dB      |
| SWITCHING                       |                                      |                                                     |       | =     |              |         |
| Rise and Fall Time              | t <sub>RISE</sub> ,t <sub>FALL</sub> | 10% to 90% of RF output                             |       | 27    |              | ns      |
| On and Off Time                 | t <sub>ON</sub> , t <sub>OFF</sub>   | 50% V <sub>CTL</sub> to 90% of RF output            |       | 30    |              | ns      |
| RF Settling Time (0.1dB)        | -010, -011                           | 50% V <sub>CTL</sub> to 0.1 dB of final RF output   |       | 50    |              | ns      |
| INPUT LINEARITY <sup>1</sup>    |                                      | f = 0.1 GHz to 60 GHz                               |       |       |              |         |
| Input Compression               | P0.1dB                               | 0.1 0.12 to 00 0.12                                 | :     | 33    |              | dBm     |
| Third-Order Intercept           | IP3                                  | Two-tone input power = TBD dBm each tone, Δf = 1    |       | 62    |              | dBm     |
| mild-Order intercept            | 11 3                                 | MHz                                                 | '     | 02    |              | ubili   |
| SUPPLY CURRENT                  |                                      | VDD and VSS pins                                    |       |       |              |         |
| Positive Supply Current         | I <sub>DD</sub>                      | 122 mm 122 pm                                       |       | 140   |              | μA      |
| Negative Supply Current         | I <sub>SS</sub>                      |                                                     |       | 500   |              | μA      |
| DIGITAL CONTROL INPUTS          | - 00                                 | CTRL                                                |       |       |              | 1       |
| Voltage                         |                                      |                                                     |       |       |              |         |
| Low                             | V <sub>INL</sub>                     |                                                     | 0     | 0     | ).8          | V       |
| High                            | V <sub>INH</sub>                     |                                                     | 1.2   |       | 3.3          | V       |
| Current                         | INIT                                 |                                                     |       |       |              |         |
| Low                             | I <sub>INL,</sub>                    |                                                     |       | <1    |              | μA      |
| High                            | I <sub>INH</sub>                     |                                                     |       | <1    |              | μA      |
| RECOMMENDED OPERATING CONDITONS | -11411                               |                                                     |       |       |              | I Pro 1 |
| Supply Voltage                  |                                      |                                                     |       |       |              |         |
| Positive                        | V <sub>DD</sub>                      |                                                     | 3.15  | 3     | 3.45         | V       |
| Negative                        | V <sub>SS</sub>                      |                                                     | -3.45 |       | -3.15        | V       |
| Digital Control Inputs Voltage  | V <sub>CTRL</sub>                    |                                                     | 0     |       | /DD          | V       |
| RF Input Power <sup>2</sup>     | P <sub>IN</sub>                      | f = 0.1 GHz to 55 GHz, T <sub>CASE</sub> = 85°C     |       | •     |              |         |
| Tu input towe.                  | Peak                                 | TOTAL TO STALL TO GO STALL, TOASE SO S              | :     | 36    |              | dBm     |
| Through Path                    | Pulse                                | RF signal is applied to RFx at Insertion Loss state |       | 33    |              | dBm     |
| ····                            | CW                                   | - I - I - I - I - I - I - I - I - I - I             |       | 30    |              | dBm     |
|                                 | Peak                                 |                                                     |       | 33    |              | dBm     |
| Terminated Path                 | Pulse                                | RF signal is applied to RFx at Isolation state      |       | 33    |              | dBm     |
|                                 | CW                                   | Signal to applied to 1477 de location state         |       | 30    |              | dBm     |
|                                 | Peak                                 |                                                     |       | 33    |              | dBm     |
| Hot Switching                   | Pulse                                | RF signal is applied to RFx while switching in      |       | 33    |              | dBm     |
| Tist officinity                 | i disc                               | between Insertion Loss and Isolation states         |       | -     |              | GDIII   |

analog.com Rev. PrA | 3 of 12

# **SPECIFICATIONS**

Table 1. (Continued)

| Parameter        | Symbol            | Test Conditions/Comments | Min | Тур | Max | Unit |
|------------------|-------------------|--------------------------|-----|-----|-----|------|
|                  | CW                |                          |     | 30  |     | dBm  |
| Case Temperature | T <sub>CASE</sub> |                          | -40 |     | +85 | °C   |

<sup>&</sup>lt;sup>1</sup> For input linearity performance over frequency, see Figure 12 to Figure 15.

analog.com Rev. PrA | 4 of 12

<sup>&</sup>lt;sup>2</sup> For power derating over frequency, see Figure 2.

#### **ABSOLUTE MAXIMUM RATINGS**

For recommended operating conditions, see Table 1.

Table 2. Absolute Maximum Ratings

| Parameter                                                                                                                               | Rating                            |
|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| Positive Supply Voltage                                                                                                                 | -0.3 V to +3.6 V                  |
| Negative Supply Voltage                                                                                                                 | -3.6 V to +0.3 V                  |
| Digital Control Input <sup>1</sup>                                                                                                      |                                   |
| Voltage                                                                                                                                 | -0.3 V to V <sub>DD</sub> + 0.3 V |
| Current                                                                                                                                 | 3 mA                              |
| RF Input Power, Dual Supply <sup>2</sup> ( $V_{DD}$ = 3.3 V, $V_{SS}$ = -3.3 V, f = 0.1 GHz to 55 GHz, $T_{CASE}$ = 85°C <sup>3</sup> ) |                                   |
| Through Path                                                                                                                            | 37 dBm                            |
| Terminated Path                                                                                                                         | 33.5 dBm                          |
| Hot Switching (RF1/2 to Termination)                                                                                                    | 33.5 dBm                          |
| RF Input Power, Single Supply ( $V_{DD}$ = 3.3 V, $V_{SS}$ = 0 V, f = 0.1 GHz to 55 GHz, $T_{CASE}$ = 85°C <sup>3</sup> )               |                                   |
| Through Path                                                                                                                            | 20 dBm                            |
| Terminated Path                                                                                                                         | 20 dBm                            |
| Hot Switching (RF1/2 to Termination)                                                                                                    | 20 dBm                            |
| RF Input Power, Unbiased                                                                                                                | 18 dBm                            |
| $(V_{DD}, V_{SS} = 0 V)$                                                                                                                |                                   |
| Temperature                                                                                                                             |                                   |
| Junction, T <sub>J</sub>                                                                                                                | 135°C                             |
| Storage Range                                                                                                                           | -65°C to +150°C                   |
| Reflow                                                                                                                                  | 260°C                             |

- Overvoltages at the digital control input are clamped by internal diodes. Current must be limited to the maximum rating given.
- <sup>2</sup> For power derating over frequency, see Figure 2.
- For 105°C operation, the power handling degrades from the T<sub>CASE</sub> = 85°C specification by 3 dB for dual supply and 1 dB for single supply.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

Only one absolute maximum rating can be applied at a time.

#### THERMAL RESISTANCE

Thermal performance is directly linked to printed circuit board (PCB) design and operating environment. Careful attention to PCB thermal design is required.

 $\theta_{\text{JC}}$  is the junction to case bottom (channel to package bottom) thermal resistance.

Table 3. Thermal Resistance

| Package Type          | $\theta_{JC}^{1}$ | Unit |
|-----------------------|-------------------|------|
| CC-14-5, Through Path | 135.5             | °C/W |

Table 3. Thermal Resistance (Continued)

| Package Type             | $\theta_{JC}^{1}$ | Unit |
|--------------------------|-------------------|------|
| CC-14-5, Terminated Path | 50                | °C/W |

 $<sup>^{1}</sup>$   $\theta_{JC}$  was determined by simulation under the following conditions: the heat transfer is due solely to the thermal conduction from the channel through the ground pad to the PCB, and the ground pad is held constant at the operating temperature of 85°C.

### **POWER DERATING CURVES**

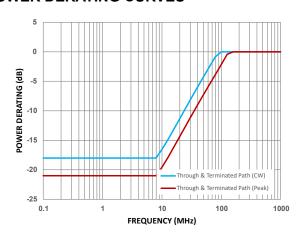



Figure 2. Power Derating vs. Frequency, Low Frequency Detail, T<sub>CASE</sub> = 85°C

# **ELECTROSTATIC DISCHARGE (ESD) RATINGS**

The following ESD information is provided for handling of ESD-sensitive devices in an ESD protected area only.

Human body model (HBM) per ANSI/ESDA/JEDEC JS-001.

Charged device model (CDM) ratings are per ANSI/ESDA/JEDEC JS-002.

Table 4. ADRF5010, 14-Terminal LGA

| ESD Model | Withstand Threshold (V)                  | Class |
|-----------|------------------------------------------|-------|
| НВМ       | 750V for RF Pins                         | 1B    |
|           | 750V for Supply and Digital Control Pins | 1B    |
| CDM       | 500V for All Pins                        | C2A   |

## **ESD CAUTION**



ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

analog.com Rev. PrA | 5 of 12

# PIN CONFIGURATION AND FUNCTION DESCRIPTIONS



Figure 3. Pin Configuration (Top View)

Table 5. Pin Function Descriptions

| Pin No.                      | Mnemonic | Description                                                                                                                               |
|------------------------------|----------|-------------------------------------------------------------------------------------------------------------------------------------------|
| 1, 3, 4, 8, 9, 11,12, 13, 14 | GND      | Ground. These pins must be connected to the RF/dc ground of the PCB.                                                                      |
| 2                            | RF1      | RF Port 1. No dc blocking capacitor is necessary when the RF line potential is equal to 0 V dc. See Figure 4 for the interface schematic. |
| 5                            | VDD      | Positive Supply Voltage. See Figure 6 for the interface schematic.                                                                        |
| 6                            | CTRL     | Control Input Voltage. See Figure 5 for the interface schematic.                                                                          |
| 7                            | VSS      | Negative Supply Voltage. See Figure 7 for the interface schematic.                                                                        |
| 10                           | RF2      | RF Port 2. No dc blocking capacitor is necessary when the RF line potential is equal to 0 V dc. See Figure 4 for the interface schematic. |
|                              | EPAD     | Exposed Pad. The exposed pad must be connected to the RF/dc ground of the PCB.                                                            |

# **INTERFACE SCHEMATICS**

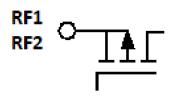



Figure 4. RF1, RF2 Pins Interface Schematic

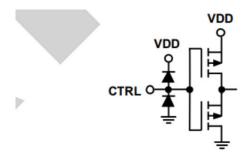



Figure 5. CTL Pin Interface Schematic

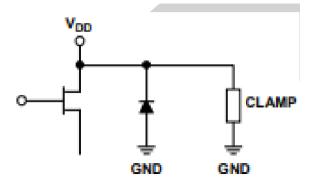



Figure 6. V<sub>DD</sub> Interface Schematic

analog.com Rev. PrA | 6 of 12

# PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

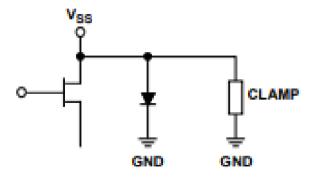



Figure 7.  $V_{SS}$  Interface Schematic

analog.com Rev. PrA | 7 of 12

# **TYPICAL PERFORMANCE CHARACTERISTICS**

# **INSERTION LOSS, RETURN LOSS, AND ISOLATION**

 $V_{DD}$  = 3.3 V,  $V_{SS}$  = -3.3 V,  $V_{CTRL}$  = 0 V or VDD,  $T_{CASE}$  = 25°C, 50  $\Omega$  system, unless otherwise noted.

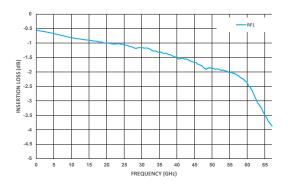



Figure 8. Insertion Loss vs. Frequency

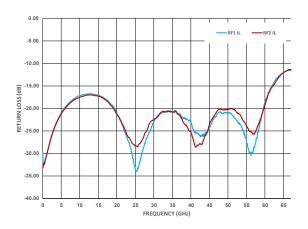



Figure 9. Return Loss vs. Frequency, Insertion Loss

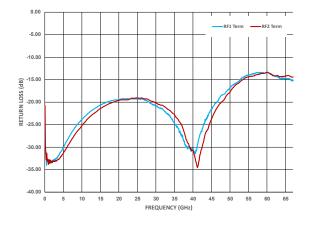



Figure 10. Return Loss vs. Frequency, Termination

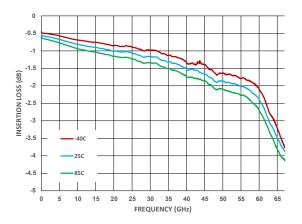



Figure 11. Insertion Loss vs. Frequency over Temperature

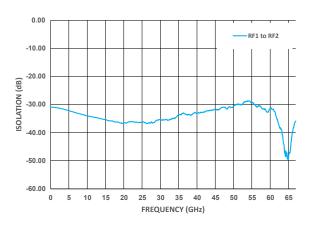



Figure 12. Isolation Loss vs. Frequency

analog.com Rev. PrA | 8 of 12

# TYPICAL PERFORMANCE CHARACTERISTICS

# INPUT POWER COMPRESSION AND THIRD-ORDER INTERCEPT

 $V_{DD}$  = 3.3 V,  $V_{SS}$  = -3.3 V,  $V_{CTRL}$  = 0 V or VDD,  $T_{CASE}$  = 25°C, 50  $\Omega$  system, unless otherwise noted.



Figure 13. Input 0.1dB Power Compression vs. Frequency

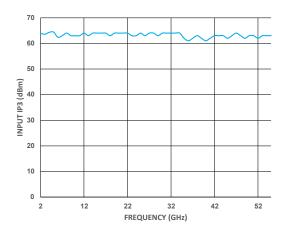



Figure 14. Input IP3 vs. Frequency

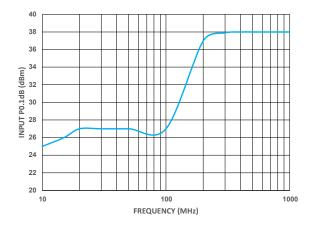



Figure 15. Input 0.1dB Power Compression vs. Frequency (Low Frequency Detail)

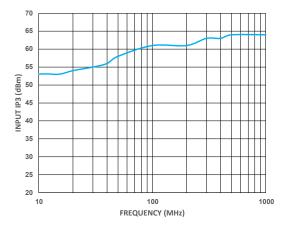



Figure 16. Input IP3 vs. Frequency (Low Frequency Detail)

analog.com Rev. PrA | 9 of 12

#### THEORY OF OPERATION

The ADRF5010 can interface CMOS/LVTTL compatible control interfaces directly.

CTRL determines which RF ports are in the insertion loss state and in the isolation state. See Table 6 for the control voltage truth table.

### **RF INPUT AND OUTPUT**

RF ports (RF1 and RF2) are dc coupled to 0V and no dc blocking is required at the RF ports when the RF line potential is equal to 0 V.

The RF ports are internally matched to  $50 \Omega$ . However, impedance matching on transmission lines can be used to improve insertion loss and return loss performance at high frequencies.

The ADRF5010 is bidirectional with equal power handling capabilities

The insertion loss path conducts the RF signal between the RF1 and RF2 ports. The isolation path provides high loss between RF1 and RF2 ports which are 50  $\Omega$  terminated.

The power handling of the ADRF5010 derates with frequency below 0.1 GHz. See Figure 2 for derating of the RF power towards lower frequencies.

The ADRF5010 requires a positive supply voltage applied to the VDD pin and a negative supply voltage applied to the VSS pin. Bypassing capacitors are recommended on the supply lines to minimize RF coupling.

The ideal power-up sequence is as follows:

- 1. Connect GND.
- 2. Power up VDD and VSS. Power up VSS after VDD to avoid current transients on VDD during ramp up.
- 3. Power up the digital control inputs. The relative order of the logic control inputs is not important. However, powering the digital control inputs before the VDD supply can inadvertently forward bias and damage the internal ESD protection structures.
- **4.** Apply signals to the RF input ports.

The ideal power-down sequence is the reverse order of the powerup sequence.

Table 6. Control Voltage Truth Table

| Digital Control Input | RFx Paths           |
|-----------------------|---------------------|
| CTRL                  | RF1 to RF2          |
| Low                   | Insertion loss (on) |
| High                  | Isolation (off)     |

analog.com Rev. PrA | 10 of 12

# **APPLICATION INFORMATION**

#### **EVALUATION BOARD**

The ADRF5010 has two power supply pins (VDD & VSS) and

one control pin (CTRL). Figure 17 shows the external components and connections for the supply pin. The VDD and VSS pins are decoupled with a 100pF multilayer ceramic capacitor. The device pin-out allows the placement of the decoupling capacitors close to the device. No other external components are needed for bias and operation, except DC blocking capacitors on the RF pins when the RF lines are biased at a voltage different than 0 V. See Pin Configuration and Function Description section for details.

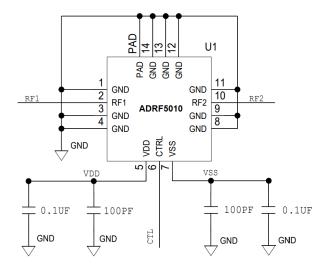



Figure 17. Recommended Schematic

# RECOMMENDATIONS FOR PRINTED CIRCUIT BOARD DESIGN

The RF ports are matched to  $50~\Omega$  internally and the pinout is designed to mate a coplanar waveguide (CPWG) with  $50~\Omega$  characteristic impedance on the PCB. Figure 18 shows the referenced CPWG RF trace design for an RF substrate with 8 mil thick Rogers RO4003C dielectric material. RF trace with 14 mil width and 7 mil clearance is recommended for 1.5 mil finished copper thickness.

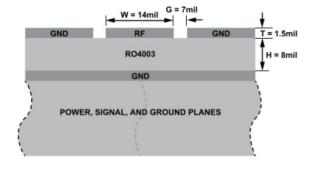



Figure 18. Example PCB Stack-up

Figure 19 shows the routing of the RF traces, supply, and control signals from the device. The ground planes are connected with densely filled through vias for optimal RF and thermal performance. The primary thermal path for the device is the bottom side.

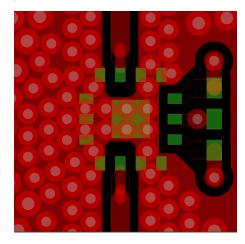
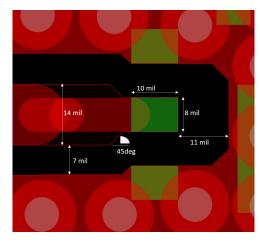
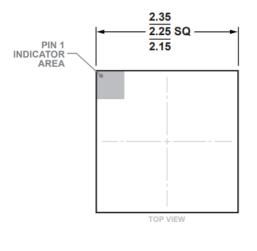
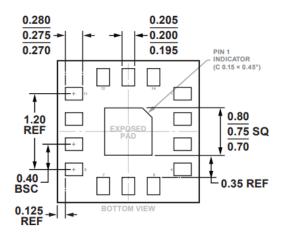



Figure 19. PCB routing

Figure 20 shows the recommended layout from the device RF pins to the 50  $\Omega$  CPWG on the referenced stack-up. PCB pads are drawn 1:1 to device pads. The ground pads are drawn soldermask defined and the signal pads are drawn as pad defined. The RF trace from the PCB pad is extended with the same width till the package edge and tapered to RF trace. The paste mask is designed to match the device pads without any aperture reduction. The paste mask is divided into multiple openings for the paddle.



Figure 20. Recommended RF Pin Transition

For alternate PCB stack-ups with different dielectric thickness and RF trace design, contact Analog Devices Inc., Technical Support Request for further recommendations.

analog.com Rev. PrA | 11 of 12

## **OUTLINE DIMENSIONS**





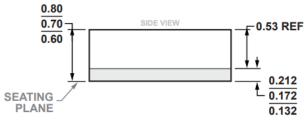



Figure 21. 14-Terminal Land Grid Array [LGA]
2.25 mm × 2.25 mm Body and 0.75 mm Package Height
(CC-14-5)
Dimensions shown in millimeters

