
Maxim > Design Support > Technical Documents > Application Notes > Microcontrollers > APP 4431

Keywords: MAXQ1103,DRS diagnostic routine 

APPLICATION NOTE 4431

Destructive Reset Diagnostic Routine for the
DeepCover Secure Microcontroller (MAXQ1103)
Jul 14, 2009

Abstract: The DeepCover® Secure Microcontroller (MAXQ1103) erases sensitive data when any one of
many tamper-detect inputs are triggered. After the destructive reset, the recovery vector allows
diagnostic code to run and perform any additional actions required for proper logging or notification of the
destructive event. This application note explores the various aspects of writing a diagnostic routine using
the Rowley CrossWorks C compiler. 

The source code used with this application note is available for download (ZIP).

Introduction
The DeepCover® Secure Microcontroller (MAXQ1103) implements many important features to deter
physical tampering and the subsequent compromise of valuable data. One of these features is the
Destructive Reset Source, or DRS, subsystem. The DRS feature allows any one of multiple self-destruct
inputs (SDI) to cause near-instantaneous erasure of program and data decryption keys and internal static
RAM. Assuming that the application has been stored in an encrypted region within the internal program
flash memory, erasure of the program decryption key will render the microcontroller inert.

Previous Maxim products, such as the DS5250, incorporated this DRS feature. However, the MAXQ1103
adds the capability to execute an unencrypted diagnostic routine after a destructive reset. This diagnostic
routine can execute any unencrypted internal code that does not require access to the external memory
bus (which is disabled until the next power-on reset).

As an example, the diagnostic routine could be used to signal a maintenance alert through a modem to
a central office and to display an "out of order" indication to the user. This routine also performs erasure
and reprogramming of the internal flash memories.

Configuration of the DRS Diagnostic Routine
The DRS diagnostic routine is enabled with the DRSRS register bit location DIAE. The DRSRS register
bits DIAS[3:0] specify the program code location to which the microcontroller will vector after the
causative SDI is cleared. If the diagnostic vector location points to an encrypted memory region, the
microcontroller's ROM will simply halt the processor after reset, which is the default action when DIAE=0
(diagnostic routine not enabled).

The DRSRS register may be written at any time during normal program execution. This register also

Page 1 of 3

http://www.maximintegrated.com/
http://www.maximintegrated.com/
http://www.maximintegrated.com/design/
http://www.maximintegrated.com/design/techdocs/
http://www.maximintegrated.com/design/techdocs/app-notes/index.mvp
http://www.maximintegrated.com/design/techdocs/app-notes/index.mvp/id/17/c/Microcontrollers#c17
http://www.maximintegrated.com/tools/other/appnotes/4431/AN4431-source-code.zip
http://www.maximintegrated.com/MAXQ1103


holds flags which indicate the source of the destructive reset. These flags can be used by the diagnostic
routine or logged to nonvolatile memory.

Example Application: Secure Clock
To demonstrate the DRS diagnostic routine on the MAXQ1103, a small application was written in C
utilizing the Rowley CrossWorks compiler. This application implements a simple real-time clock (RTC)
with the MAXQ1103 EV kit (Rev D).

The date and time are continually displayed on the EV kit's LCD with an update every second. Using the
ENT key on the kit's numeric keypad, the user can enter the date and time directly; the cursor
increments through the date and time fields automatically. A sample display is shown in Figure 1.

If any of the SDI input pins are pulled high (to VDDIO) and then released, the microcontroller will
execute a destructive reset. This reset will erase the program decryption key and the main program code
will no longer run. Instead, the LCD will display a message indicating that a DRS has occurred and
showing the contents of the DRSRS register. See Figure 2.

The flags in the DRSRS register are used to decode which SDI source caused the destructive reset.
Additionally, the time and date of the last DRS are shown on the LCD display. This last feature is not
strictly part of the DRS diagnostic routine, but rather of the DRS logger, which captures the value of the
RTS (RTC Second Counter) register at the instant when the SDI triggered.

Implementation Details
The source code to implement the "main application" of an RTC is straightforward and will not be
described in this application note. This source code is, however, heavily commented and may be reused
as an RTC example. This section of code is stored in the memory segment called CODE, which begins
at program memory address 0x000600. A preprogram load command contained in MAXQ30_Target.js
script enables an encrypted area of 64kWord with the PMAC and PMSZ registers. This area is 3DES
encrypted and will be the location where the CODE program section will reside.

To implement the DRS recovery vector, we must reserve some space which will not be used by the
main application program. A memory section is declared in the MAXQ1103.xml file starting at 0x3C600
for 16kWord, and a memory segment is declared within this named RESERVE. This allows us to use the
Rowley assembly directive CSEG RECOVERY to place our DRS diagnostic routine at the proper
address. This address is dictated by the DIAS[3:0] bits within the DRSRS register.

The function enable_drs_diag() writes the DRSRS register to the value 0x00001E01. This value
enables the diagnostic vector and selects the diagnostic vector location of 0x3C600.

The DRS diagnostic routine will be called by the ROM after the destructive reset (i.e., once the causative
self-destruct input has been removed). This routine should not call any other code within an encrypted
memory region (as defined by PMAC/PMSZ), as this code will be fetched encrypted and the resulting

Page 2 of 3

http://www.maximintegrated.com/MAXQ1103-KIT


execution can cause undesired system operation.

The recovery routine is contained in the file drs.asm and demonstrates the use of the CSEG directive to
locate this code in the RECOVERY segment.

While the diagnostic vector may call unencrypted C code in internal program memory, the programmer
must set up the C runtime environment before calling this code. One can reference the crt0.asm file
included with the Rowley compiler to determine what setup is needed.

Conclusion
The MAXQ1103 diagnostic routine feature gives the application programmer a method to execute code
following a security-related destructive reset. It provides a clear separation between the secure
application and the unsecured recovery code. The diagnostic routine can then log the security violation
and take the appropriate post-destruction actions, such as alerting a remote location or performing
further erasure of internal memories. 

DeepCover is a registered trademark of Maxim Integrated Products, Inc.

Related Parts

MAXQ1103 DeepCover Secure Microcontroller with Rapid Zeroization
Technology and Cryptography

 

MAXQ1103-KIT Evaluation Kit for the DeepCover Secure Microcontroller
(MAXQ1103)

 

More Information
For Technical Support: http://www.maximintegrated.com/support
For Samples: http://www.maximintegrated.com/samples
Other Questions and Comments: http://www.maximintegrated.com/contact 

Application Note 4431: http://www.maximintegrated.com/an4431
APPLICATION NOTE 4431, AN4431, AN 4431, APP4431, Appnote4431, Appnote 4431 
© 2013 Maxim Integrated Products, Inc.
Additional Legal Notices: http://www.maximintegrated.com/legal

Page 3 of 3

http://www.maximintegrated.com/datasheet/index.mvp/id/5815
http://www.maximintegrated.com/datasheet/index.mvp/id/5773
http://www.maximintegrated.com/MAXQ1103
http://www.maximintegrated.com/support
http://www.maximintegrated.com/samples
http://www.maximintegrated.com/contact
http://www.maximintegrated.com/an4431
http://www.maximintegrated.com/legal

	maximintegrated.com
	Destructive Reset Diagnostic Routine for the DeepCover Secure Microcontroller (MAXQ1103) - Application Note - Maxim




