
Maxim > Design Support > Technical Documents > Application Notes > Microcontrollers > APP 3478

Keywords: network microcontroller, flash memory

APPLICATION NOTE 3478

Flash Memory Selection
Mar 14, 2005

Abstract: This application note describes those requirements and gives examples of memory chips that are compatible with the
DS80C400/DS80C410/DS80C411. Software code is presented that can be used to erase and program flash memory that is electrically
compatible, but not ROM-loader software compatible.

Note: Maxim Integrated does not have information regarding the availability of devices mentioned in this application note or the
availability of alternate devices. The user assumes full responsibility for certifying the suitability, including electrical
specifications and availability, of a particular device in their application.

Requirements
Electrical
The DS80C400/DS80C410/DS80C411 require 3.3V byte-wide (x8) flash memory.

Access Time
The DS80C400/DS80C410/DS80C411 execution speed (CPU speed) is the crystal speed, times the clock multiplier. (The clock multiplier
is not changed by the ROM loader, but can be set by application software.) The clock period tclcl is calculated as 1/(CPU speed).

Execution out of flash is only possible when the flash memory meets the DS80C400/DS80C410/DS80C411 timing requirements, as listed
in the respective data sheets.

Meeting the following two timing requirements, for example, is an easy way to limit the field of possible parts (Before committing to a
design, all other parameters should also be verified.):

“PSEN low to valid instruction in” (tpliv = 2 tclcl - 25ns): The flash output enable to output delay time, tglqv, must be faster than the
DS80C400/DS80C410/DS80C411 tpliv. For example, AM29LV081B-70 has a tglqv of 30ns and a 30MHz DS80C400 (tclcl = 33.3ns)
has a tpliv of 41.6ns.
“Address to valid data in” (taviv1 = 3 tclcl - 19ns): The flash access time, tavav, must be faster than this number. For example, when
running at 25MHz, tclcl is 40ns and tavav must therefore be smaller than 101ns.

Table 1 shows examples of execution speeds for the DS80C400 and the AM29LV081 flash.

Table 1. CPU Speed Limits Determined by Flash Access Time, tavav

Rated Flash Speed Max CPU Speed

55ns 40MHz

70ns 33MHz

90ns 27.5MHz

120ns 21MHz

150ns 17MHz

The CPU crystal should be a good serial baud-rate generator. Also, operation on a 100Mb network is only possible when CPU speed is
higher than approximately 27MHz.

ROM Loader
The DS80C400/DS80C410/DS80C411 provide a built-in ROM that supports loading SRAM and flash through the serial port and through
the network. Note that the maximum loader serial-port baud rate is limited by the crystal speed, e.g., 115200bps requires at least 20MHz.

Page 1 of 12

http://www.maximintegrated.com/
http://www.maximintegrated.com/
http://www.maximintegrated.com/design/
http://www.maximintegrated.com/design/techdocs/
http://www.maximintegrated.com/design/techdocs/app-notes/index.mvp
http://www.maximintegrated.com/design/techdocs/app-notes/index.mvp/id/17/c/Microcontrollers#c17

Loader Algorithm
The ROM loader has built-in algorithms for flash sector erase and flash byte programming. The loader assumes a uniform sector size of
64KB and uses the programming algorithms shown in Table 2.

Table 2. ROM Loader Flash Algorithms

Operation Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6

 Addr Data Addr Data Addr Data Addr Data Addr Data Addr Data

Program 0555 AA 02AA 55 0555 A0 PA PD

Sector
Erase 0555 AA 02AA 55 0555 80 0555 AA 02AA 55 0000 30

Note: Table 2 lists DS80C4XX address lines A15–A0 only. A2–A16 are always the sector address. All numbers in hexadecimal.

Flash Address Lines
Most flash memories ignore the high-order address bits (DS80C400/DS80C410/DS80C411 address bits A12 and higher) when matching
the “magic” address. To initiate a programming sequence, for example, it does not matter whether the first address is 5555h or 555h.

Some flash memories also ignore the lowest address bit (called A-1 on word/byte selectable memories, else A0). For example, it does not
matter whether the address is 555h or 554h.

This means that, while some memories appear incompatible at first glance, full compatibility with the DS80C400/DS80C410/DS80C411
loader can be achieved by connecting the flash address lines, as shown in Table 3, columns (B) or (C). All other flash memories (without
address line A-1, and where not listed otherwise in Table 4) should be connected as shown in column (A).

Table 3. Address Line Connections

DS80C4xx Address Line (A) Standard (B) With A-1 (C) See Text

A0 A0 A0 A1

A1 A1 A1 A2

A2 A2 A2 A3

A3 A3 A3 A4

A4 A4 A4 A5

A5 A5 A5 A6

A6 A6 A6 A7

A7 A7 A7 A8

A8 A8 A8 A9

A9 A9 A9 A10

A10 A10 A10 A11

A11 A11 A-1 A0

A12 A12 A11 A12

A13 A13 A12 A13

A14 A14 A13 A14

...

A(n) A(n) A(n-1) A(n)

Loader Support Levels
A fully supported flash memory works “out of the box” with the ROM loader.

A partially supported flash memory needs application software help to erase flash sectors, but is programmable by the ROM. Most flash
memories in this class have a boot sector that can be programmed, but not fully erased by the ROM loader.

Page 2 of 12

Table 4 shows a selection of flash memories and their respective ROM loader compatibilities. This table may be of assistance in
determining the suitability of alternate devices.

Table 4. Selection of 3V Flash Memories (x8)

Vendor (ID) Device (ID) Size
(Byte) Blocks ROM

Support Notes

Atmel (1F) AT49BV001A (4,5) 128K B Prog ROM can program, but not erase part of the
boot sector.

Macronix
(C2)

MX29LV081 (38) 1M U Full
Data sheet shows incompatibility for sector
erase, but sector erase does work in
practice.

MX29LV017B (C8) 2M U Full —

MX29LV033A (A3) 4M U Full —

Spansion
(01)
(AMD/Fujitsu)

AM29LV200B (3B,BF) 256K B Prog
Requires address line connection (B). ROM
can program, but not erase part of the boot
sector.

AM29LV004B (B5,B6) 512K B Prog ROM can program, but not erase part of the
boot sector.

AM29LV040B (4F) 512K U Full —

AM29LV400B (B9,BA) 512K B Prog
Requires address line connection (B). ROM
can program, but not erase part of the boot
sector.

AM29LV008B (37,3E) 1M B Prog ROM can program, but not erase part of the
boot sector.

AM29LV081B (38) 1M U Full —

AM29LV800 (5B,DA) 1M B Prog
Requires address line connection (B). ROM
can program, but not erase part of the boot
sector.

AM29LV017D (4F) 2M U Full —

AM29LV116D (4C,C7) 2M B Prog ROM can program, but not erase part of the
boot sector.

AM29LV160B/D or
S29AL016D (49,C4) 2M B Prog

Requires address line connection (B). ROM
can program, but not erase part of the boot
sector.

AM29LV033C or
S29AL032D Model 0
(A3)

4M U Full —

AM29LV320D or
S29AL032D Model 3/4
(F6,F9)

4M B Prog
Requires address line connection (B). ROM
can program, but not erase part of the boot
sector.

SST (BF) SST39VF1681/2 (C8) 2M U Full Requires address line connection (C).

ST Micro-
electronics
(20)

M29W004B (EA,EB) 512K B Prog ROM can program, but not erase part of the
boot sector.

M29W040B (E3) 512K U Prog
Should be fully supported according to data
sheet, but sector erase algorithm does not
work in practice.

M29W008D (D2,DC) 1M B Prog ROM can program, but not erase part of the
boot sector.

Legend:
Blocks Column: B = Device has boot block, U = Uniform 64KB block size, O = Uniform block size other than 64KB Vendor and Device IDs
in hexadecimal.
ROM Support Column: Full Support, ROM can Program, or No Support

Page 3 of 12

Flash Software
If a particular memory is not fully supported by the ROM loader, it can be erased/programmed by software loaded into SRAM. Listing 1
shows software that erases a flash chip. Listing 2 shows how to program a flash sector by copying 64KB from SRAM into flash. These
example programs typically have to be modified to match the programming algorithm of a particular flash.

The example programs load into the first 64KB of SRAM (“bank 0”). When using the Microcontroller Tool Kit (MTK), turn off the “Clear
Heap” option. When using the ROM loader to program partially supported flash memories (after running the chip erase program), turn off
the “AutoZap” option in the Java Development Kit or the “Erase Flash” option in MTK.

Listing 1. Erase Flash Chip (chiperase.asm)

;**
;* Copyright (C) 2013 Maxim Integrated, All Rights Reserved.
;*
;* Permission is hereby granted, free of charge, to any person obtaining a
;* copy of this software and associated documentation files (the "Software"),
;* to deal in the Software without restriction, including without limitation
;* the rights to use, copy, modify, merge, publish, distribute, sublicense,
;* and/or sell copies of the Software, and to permit persons to whom the
;* Software is furnished to do so, subject to the following conditions:
;*
;* The above copyright notice and this permission notice shall be included
;* in all copies or substantial portions of the Software.
;*
;* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
;* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
;* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
;* IN NO EVENT SHALL MAXIM INTEGRATED BE LIABLE FOR ANY CLAIM, DAMAGES
;* OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
;* ARISING FROM, OUT OF, OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
;* OTHER DEALINGS IN THE SOFTWARE.
;*
;* Except as contained in this notice, the name of Maxim Integrated
;* shall not be used except as stated in the Maxim Integrated
;* Branding Policy.
;**
;
; This program demonstrates how to erase a flash memory chip that is not
; supported by the ROM loader of the networked microcontrollers.
;
; To build this program, run
; macro chiperase.asm
; a390 -d -l chiperase.mpp
;
; To execute, load into SRAM and use loader commands 'B0', 'X0'.
;
; Note: When using MTK to load this code, be sure to disable the "Clear Heap"
; option.
;

; The flash memory we want to erase is connected to CE2\, or address 400000h,
; since the ROM uses 2MB per chip enable.

FLASH_ADDRESS EQU 400000h

; Different flash memories use different addresses to "tickle" flash programming/
; erase operation.

; Erase ST M29W040
; FLASH_TICKLE0 EQU (FLASH_ADDRESS or 555h)
; FLASH_TICKLE1 EQU (FLASH_ADDRESS or 2aah)

; Erase AM29LV200BT
FLASH_TICKLE0 EQU (FLASH_ADDRESS or 0aaah)

Page 4 of 12

FLASH_TICKLE1 EQU (FLASH_ADDRESS or 555h)

 org 000000h

start:
 ; The ROM enables 24-bit mode and disables interrupts.
 ; No other initialization is necessary.

 ; Start flash chip erase

 ; 1st Cycle
 mov dptr, #FLASH_TICKLE0
 mov a, #0aah
 movx @dptr, a

 ; 2nd Cycle
 mov dptr, #FLASH_TICKLE1
 mov a, #55h
 movx @dptr, a

 ; 3rd Cycle
 mov dptr, #FLASH_TICKLE0
 mov a, #80h
 movx @dptr, a

 ; 4th Cycle
 mov dptr, #FLASH_TICKLE0
 mov a, #0aah
 movx @dptr, a

 ; 5th Cycle
 mov dptr, #FLASH_TICKLE1
 mov a, #55h
 movx @dptr, a

 ; 6th Cycle
 mov dptr, #FLASH_TICKLE0
 mov a, #10h
 movx @dptr, a

 ; Wait for operation to complete
 mov dptr, #FLASH_ADDRESS
wait:
 movx a, @dptr
 cjne a, #0ffh, wait

 ; Reset
 mov dptr, #FLASH_ADDRESS
 mov a, #0f0h
 movx @dptr, a

 ; Print success message
 mov a, #'D'
 acall printchar
 mov a, #'O'
 acall printchar
 mov a, #'N'
 acall printchar
 mov a, #'E'
 acall printchar

 ; Done!
 sjmp $

Page 5 of 12

 ; Serial port 0 is initialized by the loader. Printing
 ; a character is therefore trivial.
tix bit scon.1
printchar:
 jnb tix, $
 clr tix
 mov sbuf, a
 jnb tix, $
 ret

 end

Listing 2. Programming Unsupported Flash (flashprogram.asm)

;**
;* Copyright (C) 2013 Maxim Integrated, All Rights Reserved.
;*
;* Permission is hereby granted, free of charge, to any person obtaining a
;* copy of this software and associated documentation files (the "Software"),
;* to deal in the Software without restriction, including without limitation
;* the rights to use, copy, modify, merge, publish, distribute, sublicense,
;* and/or sell copies of the Software, and to permit persons to whom the
;* Software is furnished to do so, subject to the following conditions:
;*
;* The above copyright notice and this permission notice shall be included
;* in all copies or substantial portions of the Software.
;*
;* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
;* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
;* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
;* IN NO EVENT SHALL MAXIM INTEGRATED BE LIABLE FOR ANY CLAIM, DAMAGES
;* OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
;* ARISING FROM, OUT OF, OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
;* OTHER DEALINGS IN THE SOFTWARE.
;*
;* Except as contained in this notice, the name of Maxim Integrated
;* shall not be used except as stated in the Maxim Integrated
;* Branding Policy.
;**
;
; This program demonstrates how to erase a flash memory chip that is not
; supported by the ROM loader of the networked microcontrollers.
;
; To build this program, run
; macro flashprogram.asm
; a390 -d -l flashprogram.mpp
;
; To execute, first load the data you wish to program into SRAM memory in
; bank 1 (010000h - 01ffffh). Then, load this code into SRAM and use
; the loader commands 'B0', 'X100'.
;
; Note: When using MTK to load this code, be sure to disable the "Clear Heap"
; option.
;

; The flash memory we want to program is connected to CE2\, or address 400000h,
; since the ROM uses 2MB per chip enable.

FLASH_ADDRESS EQU 400000h

; Different flash memories use different addresses to "tickle" flash programming/
; erase operation.

; Byte Program AM29LV200BT

Page 6 of 12

FLASH_TICKLE0 EQU (FLASH_ADDRESS or 0aaah)
FLASH_TICKLE1 EQU (FLASH_ADDRESS or 555h)

; Address of programming buffer in SRAM
PROG_BUFFER EQU 010000h

; We want to program a whole 64KB block
PROG_SIZE EQU 10000h

; This example program uses three datapointers
dps equ 086h

 org 000100h

start:
 ; The ROM enables 24-bit mode and disables interrupts.
 ; No other initialization is necessary.

 ; Make sure r2 is in register bank 0
 mov psw, #0

 ; Number of bytes to program
 mov r1, #high(PROG_SIZE)
 mov r0, #low(PROG_SIZE)

 ; Source
 mov dps, #1
 mov dptr, #PROG_BUFFER

 ; Destination
 mov dps, #8
 mov dptr, #FLASH_ADDRESS

loop:
 ; Start flash chip program for this byte

 ; Get source byte
 mov dps, #1
 movx a, @dptr
 inc dptr

 ; Save byte we wish to program
 mov r2, a

 ; No need to write the same byte again
 ; (also prevents writing of 0ffh)
 mov dps, #8
 movx a, @dptr
 xrl a, r2
 jz next

 ; Select dptr0
 mov dps, #0

 ; 1st Cycle
 mov dptr, #FLASH_TICKLE0
 mov a, #0aah
 movx @dptr, a

 ; 2nd Cycle
 mov dptr, #FLASH_TICKLE1
 mov a, #55h
 movx @dptr, a

 ; 3rd Cycle

Page 7 of 12

 mov dptr, #FLASH_TICKLE0
 mov a, #0a0h
 movx @dptr, a

 ; 4th Cycle: Put destination byte
 mov dps, #8
 mov a, r2
 movx @dptr, a

 ; Wait for operation to complete
wait:
 movx a, @dptr
 cjne a, 2, wait

next:
 mov dps, #8
 inc dptr

 djnz r0, loop

 ; Display progress indicator
 mov a, #'.'
 acall printchar

 djnz r1, loop

 ; Reset
 mov dptr, #FLASH_ADDRESS
 mov a, #0f0h
 movx @dptr, a

 ; Print success message
 mov a, #13
 acall printchar
 mov a, #10
 acall printchar
 mov a, #'D'
 acall printchar
 mov a, #'O'
 acall printchar
 mov a, #'N'
 acall printchar
 mov a, #'E'
 acall printchar

 ; Done!
 sjmp $

 ; Serial port 0 is initialized by the loader. Printing
 ; a character is therefore trivial.
tix bit scon.1
printchar:
 jnb tix, $
 clr tix
 mov sbuf, a
 jnb tix, $
 ret

 end

Flash Identification
Listing 3 is a C program that decodes the vendor and device for a number of flash memory chips using their Autoselect capabilities.

Page 8 of 12

Listing 3. Flash Identification (identify.c)

/* ---
 * Copyright (C) 2013 Maxim Integrated, All Rights Reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included
 * in all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
 * IN NO EVENT SHALL MAXIM INTEGRATED BE LIABLE FOR ANY CLAIM, DAMAGES
 * OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF, OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 *
 * Except as contained in this notice, the name of Maxim Integrated
 * shall not be used except as stated in the Maxim Integrated
 * Branding Policy.
 * ---
 */

/*
 * Identify - Tries to Identify Flash Memory Make/Model.
 * Run from bank 20 (using loader commands B20, X)
 */

#include <stdio.h>
#include <reg400.h>

void main()
{
 unsigned char vendor, device, ce;

 puts("DS80C400/DS80C410/DS80C411 Flash Memory Identification");

 do {

 printf("\nIdentify flash at which chip enable? ");
 do {
 putchar(ce = _getkey());
 if ((ce < '0') || (ce > '7'))
 printf(" 0-7> ");
 } while ((ce < '0') || (ce > '7'));
 puts("\n");

 ce -= '0';
 ce <<= 5; // 2MB per chip enable

 AP = ce;
#pragma asm
 /* Tickle Flash Memory */
 mov dptr, #0x5555
 mov dpx, ap
 mov a, #0xaa
 movx @dptr, a

 mov dptr, #0xaaaa

Page 9 of 12

 mov dpx, ap
 mov a, #0x55
 movx @dptr, a

 /* Read ID Command */
 mov dptr, #0x5555
 mov dpx, ap
 mov a, #0x90
 movx @dptr, a

 /* Read Manufacturer ID */
 mov dptr, #0
 mov dpx, ap
 movx a, @dptr
#pragma endasm
 vendor = ACC;

#pragma asm
 /* Reset Flash */
 mov dptr, #0
 mov dpx, ap
 mov a, #0xf0
 movx @dptr, a
 mov a, #0xff
 movx @dptr, a
#pragma endasm

#pragma asm
 /* Tickle Flash Memory */
 mov dptr, #0x5555
 mov dpx, ap
 mov a, #0xaa
 movx @dptr, a

 mov dptr, #0xaaaa
 mov dpx, ap
 mov a, #0x55
 movx @dptr, a

 /* Read ID Command */
 mov dptr, #0x5555
 mov dpx, ap
 mov a, #0x90
 movx @dptr, a

 /* Read Manufacturer ID */
 mov dptr, #0x01
 mov dpx, ap
 movx a, @dptr
#pragma endasm
 device = ACC;

#pragma asm
 /* Reset Flash */
 mov dptr, #0
 mov dpx, ap
 mov a, #0xf0
 movx @dptr, a
 mov a, #0xff
 movx @dptr, a
#pragma endasm

 printf("Flash memory at CE%bu: Vendor ID %02bX, Device ID %02bX.\n --> ", ce >> 5, vendor, device);

 switch (vendor) {

Page 10 of 12

 case 0x01: printf("Spansion AM");
 switch (device) {
 case 0x37: puts("29LV008 Top Boot"); break;
 case 0x38: puts("29LV081"); break;
 case 0x3b: puts("29LV200 Top Boot"); break;
 case 0x3e: puts("29LV008 Bottom Boot"); break;
 case 0x49: puts("29LV160 Bottom Boot"); break;
 case 0x4c: puts("29LV116 Bottom Boot"); break;
 case 0x4f: puts("29LV040"); break;
 case 0x5b: puts("29LV800 Bottom Boot"); break;
 case 0xa3: puts("29LV033"); break;
 case 0xb5: puts("29LV004 Top Boot"); break;
 case 0xb6: puts("29LV004 Bottom Boot"); break;
 case 0xb9: puts("29LV400 Top Boot"); break;
 case 0xba: puts("29LV400 Bottom Boot"); break;
 case 0xbf: puts("29LV200 Bottom Boot"); break;
 case 0xc4: puts("29LV160 Top Boot"); break;
 case 0xc7: puts("29LV116 Top Boot"); break;
 case 0xc8: puts("29LV017"); break;
 case 0xda: puts("29LV800 Top Boot"); break;
 case 0xf6: puts("29LV320 Top Boot"); break;
 case 0xf9: puts("29LV320 Bottom Boot"); break;
 default: puts(" ????"); break;
 }
 break;
 case 0x1f: printf("Atmel AT");
 switch (device) {
 case 0x21: puts("49BV/LV008 T"); break;
 case 0x22: puts("49BV/LV008"); break;
 case 0xeb: puts("49LL080"); break;
 default: puts(" ????"); break;
 }
 break;
 case 0x20: printf("ST M");
 switch (device) {
 case 0x5b: puts("29W800 Bottom Boot"); break;
 case 0xd2: puts("29W008 Top Boot"); break;
 case 0xd7: puts("29W800 Top Boot"); break;
 case 0xdc: puts("29W008 Bottom Boot"); break;
 case 0xe3: puts("29W040"); break;
 case 0xea: puts("29W004 Top Boot"); break;
 case 0xeb: puts("29W004 Bottom Boot"); break;
 default: puts(" ????"); break;
 }
 break;
 case 0x89: printf("Intel or Sharp LH or "); // fall through
 case 0x2c: printf("Micron MT");
 switch (device) {
 case 0x16: puts("28F320J3"); break;
 case 0x70: puts("28F004B3/28F400B3 Top Boot"); break;
 case 0x71: puts("28F004B3/28F400B3 Bottom Boot"); break;
 case 0x9c: puts("28F008B3/28F800B3 Top Boot"); break;
 case 0x9d: puts("28F008B3/28F800B3 Bottom Boot"); break;
 case 0xaa: puts("28F016SC"); break;
 default: puts(" ????"); break;
 }
 break;
 case 0xbf: printf("SST SST");
 switch (device) {
 case 0xc8: puts("39VF1681"); break;
 case 0xc9: puts("39VF1682"); break;
 case 0xd4: puts("39LF/VF512"); break;
 case 0xd5: puts("39LF/VF010"); break;
 case 0xd6: puts("39LF/VF020"); break;
 case 0xd7: puts("39LF/VF040"); break;

Page 11 of 12

 case 0xd8: puts("39LF/VF080"); break;
 default: puts(" ????"); break;
 }
 break;
 case 0x02:
 case 0xc2: printf("Macronix MX");
 switch (device) {
 case 0x38: puts("29LV081"); break;
 case 0xa3: puts("29LV033"); break;
 case 0xc8: puts("29LV017"); break;
 default: puts(" ????"); break;
 }
 break;
 case 0xda: printf("Winbond W");
 switch (device) {
 case 0xd6: puts("39L040"); break;
 default: puts(" ????"); break;
 }
 break;
 default: puts("Unknown vendor/unknown device");
 break;
 }
 } while (1);
}

https://support.maximintegrated.com/micro

Related Parts

DS80C400 Network Microcontroller Free Samples

DS80C410 Network Microcontrollers with Ethernet and CAN Free Samples

DS80C411 Network Microcontrollers with Ethernet and CAN Free Samples

More Information
For Technical Support: http://www.maximintegrated.com/support
For Samples: http://www.maximintegrated.com/samples
Other Questions and Comments: http://www.maximintegrated.com/contact

Application Note 3478: http://www.maximintegrated.com/an3478
APPLICATION NOTE 3478, AN3478, AN 3478, APP3478, Appnote3478, Appnote 3478
© 2013 Maxim Integrated Products, Inc.
Additional Legal Notices: http://www.maximintegrated.com/legal

Page 12 of 12

https://support.maximintegrated.com/micro
http://www.maximintegrated.com/datasheet/index.mvp/id/3609
https://shop.maximintegrated.com/storefront/searchsample.do?event=Sample&menuitem=Sample&Partnumber=DS80C400
http://www.maximintegrated.com/datasheet/index.mvp/id/4535
https://shop.maximintegrated.com/storefront/searchsample.do?event=Sample&menuitem=Sample&Partnumber=DS80C410
http://www.maximintegrated.com/datasheet/index.mvp/id/4535
https://shop.maximintegrated.com/storefront/searchsample.do?event=Sample&menuitem=Sample&Partnumber=DS80C411
http://www.maximintegrated.com/support
http://www.maximintegrated.com/samples
http://www.maximintegrated.com/contact
http://www.maximintegrated.com/an3478
http://www.maximintegrated.com/legal

	maximintegrated.com
	Flash Memory Selection - Application Note - Maxim

