
Maxim > Design Support > Technical Documents > Application Notes > Microcontrollers > APP 4347

Keywords: RSA key-pair, MAXQ1103, Crossworks compiler, Modulo Arithmetic Accelerator (MAA) 

APPLICATION NOTE 4347

RSA Key Generation Using the DeepCover Secure
Microcontroller (MAXQ1103)
Dec 19, 2008

Abstract: Maxim's RSA key generation library provides easy-to-use interfaces to generate RSA key pairs
using the DeepCover® Secure Microcontroller (MAXQ1103). The MAXQ1103 is designed for financial terminal
applications and has a number of security features including RSA. The RSA library uses the modulo arithmetic
accelerator (MAA) which provides cryptographic operations up to 2048 bits. The MAA allows the user to
compute a set of operations that are important for many cryptographic operations. The article also explains
why the MAXQ1103 Evaluation (EV) Kit and the CrossWorks development environment provide an ideal
platform to develop secure applications. 

Introduction
This application note demonstrates the generation of RSA key-pair sets using the DeepCover® Secure
Microcontroller (MAXQ1103). The article also demonstrates how to encrypt and decrypt the plain text
messages using RSA key-pair sets. To demonstrate the timing of the RSA computation, the article shows
data from the DS5250 high-speed, secure microcontroller which illustrates the performance improvement
achieved with the MAXQ1103.

The MAXQ1103 microcontroller is designed for financial terminal applications and has a number of security
features including RSA. The hardware modulo arithmetic accelerator (MAA) provides cryptographic operations
up to 2048 bits. The MAA allows the user to compute a set of operations that are important for many
cryptographic operations. Example operations include modular exponentiation (ae mod m); modular
multiplication (a × b mod m); modular square (b² mod m); modular square followed by modular multiply ((b²
mod m) × a mod m); modular addition; and modular subtraction.

The MAXQ1103 Evaluation (EV) Kit and CrossWorks development environment provide an ideal platform to
develop these secure applications. The EV kit comes with all the tools necessary for development: 4MB of
external program memory; 4MB of external data memory; 2 serial ports; 2 smart-card chips (one full size and
one SIM card); a USB connector; an LCD screen; a 16-bit keypad; and a prototyping area.

Getting Started with RSA Key-Pair Generation
The sample application binary (rsa_1103.hex) and sample application code that generate the RSA key pair
can be obtained by writing to: Tech Support.

The following information will help you build and execute the RSA key-pair sample application program which
is written in C and uses the CrossWorks compiler for MAXQ30.

Page 1 of 6

http://www.maximintegrated.com/
http://www.maximintegrated.com/
http://www.maximintegrated.com/design/
http://www.maximintegrated.com/design/techdocs/
http://www.maximintegrated.com/design/techdocs/app-notes/index.mvp
http://www.maximintegrated.com/design/techdocs/app-notes/index.mvp/id/17/c/Microcontrollers#c17
http://www.maximintegrated.com/MAXQ1103
http://www.maximintegrated.com/DS5250
http://www.maximintegrated.com/MAXQ1103-KIT
https://support.maximintegrated.com/tech_support/submit_question.mvp?pl_id=25


Setting Up the MAXQ1103 EV Kit
Refer to application note 4273, "Getting Started with the MAXQ1103 Evaluation Kit and the CrossWorks
Compiler for the MAXQ30," for details on setting up the development environment for the MAXQ1103.

The MAXQ1103 EV kit is shown in Figure 1. The hardware components required to generate the RSA key
pair are:

1. MAXQ1103 EV kit board.
2. JTAG board.
3. JTAG cable (to connect the MAXQ1103 EV kit board and JTAG board).
4. 9-pin serial cable (to connect the PC's COM port and EV kit's serial port 0).
5. Two regulated power supplies (5V, ±5%, 300mA, center positive); one supply is for the MAXQ1103 EV

kit and the other for the JTAG board.

The jumper settings for the EV kit are shown in the table below.

Jumper Status

JU1 Short

JU3 Short

JU4 Short

Figure 1. MAXQ1103 EV kit with JTAG board.

Follow these steps to set up the EV kit and begin using the software for this application.

1. Install the CrossWorks compiler for MAXQ30. The tool suite is available from Rowley Associates and is
version 2.0.0.2008063000.2293 at the time of this publication.

2. Connect the serial cable between the EV kit's port 0 and the PCs COM port so you can observe the
application output onto the PC.

3. Connect the serial cable between the JTAG board and PCs COM port. This connection is used to
download the application onto the EV kit board.

4. Open the project rsa_1103.hzp.

Page 2 of 6

http://www.maximintegrated.com/an4273
http://www.maximintegrated.com/an4273
http://www.rowley.co.uk/maxq/index.htm


5. Click on Project, then Rebuild to generate the rsa_1103.hzx output file. This file will be downloaded to
the MAXQ1103 EV kit. Additionally you can generate the rsa_1103.hex file by modifying the project
properties. Go to Project properties, then Linker Options, then additional Output Format. Choose "hex"
from the dropdown list.

6. Connect to the target using the "Connect to the target" tab in your Targets window.
7. The application prints the results onto serial port 0 of the EV kit.

Open the hyperterminal and configure the appropriate COM port connection for 115200, 8 data bits,
parity none, 1 stop bit, and no flow control.

OR

You can use Maxim's Microcontroller Tool Kit (MTK2) software to see the application results. Install the
MTK2 and open the MTK2 in dumb terminal mode. Configure the appropriate serial port for 115200 baud
rate, and open the serial connection.

8. Click on Debug, then Run to load and run the application. This application note uses MTK2 to observe
the results.

The application will now prompt you for some data entry with the request to "Enter key length bits to be
generated:"

Enter the number (for example, 1024) and wait for the application to display the results. The application
displays the execution status shown in Figure 2. It takes approximately 5 seconds to generate a 1024-bit-
length RSA key pair, then encrypt and decrypt the random message. This time can vary for each execution.
The average times taken to generate an RSA key-pair for various bit lengths are tabulated in Table 1.

Page 3 of 6

http://www.maximintegrated.com/products/microcontrollers/software/


Figure 2. Execution status and results of sample application.

Developing a Simple Application Using the RSA Key-Generation
Library
The library provides easy-to-use interface functions in C to generate the key pair and encrypt/decrypt the user
message using the private/public key. Refer to the rsalib_1103.h file to see the prototypes of these
interfaces. This application demonstrates the use of these interface functions:

Page 4 of 6



rsa_generateKeySet(...)
rsa_bignumModExp(...)

Typical uses of these interface functions follow.

{
        unsigned long exp = 0x10001;                    // public exponent
        DIGIT *c,*x;
        BIGNUM *d;
        BIGNUM *e;
        BIGNUM *pq;
        DIGIT *plain_text;

        d = rsa_newNum();
        e = rsa_newNum();
        pq = rsa_newNum();

        // generate the public and private key pair
        // 'maxq1103_rnd' is a call-back function to generate random numbers 
        using 'random number generator' (RNG) module built into the MAXQ1103 
microcontroller.

        err = rsa_generateKeySet(d,e,exp,maxq1103_rnd,pq,keylen);

        if(err != RSA_SUCCESS)
        {       printf("\nFailed to generate RSA Keysets. Error code=%d",err);
                rsa_freeNum(d);
                rsa_freeNum(e);
                rsa_freeNum(pq);
                return;
        }

        // allocate memory for 'plain_text' and 'assign values'
        // allocate memory for 'x' which will contain the encrypted text

        rsa_bignumModExp(x,plain_text,e,pq);             // use public key for 
encryption

        // allocate memory for 'c' which will contain the decrypted/original text

        rsa_bignumModExp(c,x,d,pq);                      // use private key for 
decryption

}

Typical test results for different bit lengths are shown below. These numbers can vary for each execution.

Page 5 of 6



Table 1. Average Time for Generating an RSA Key Pair

RSA Bit Length
Generated

Number of
Tests Run

Average Time Taken per Test to Generate an RSA
Key Pair (seconds)

MAXQ1103 EV Kit at
12MHz

DS5250 EV Kit at
22.1MHz

256 60 0.84 4.8

512 60 1.71 10.76

1024 60 4.55 26.6

1536 60 9.98 63.81

2048 60 15.63 122.4

Conclusion
Maxim provides a library for RSA key generation. This library allows applications written in C to access the
power and functionality of the MAXQ1103 microcontroller's hardware to generate RSA key pairs up to a
maximum of 2048 bits. The library uses MAA and RNG modules built into the MAXQ1103 to compute the RSA
key pairs. The hardware MAA supports IEEE® Public Key Cryptographic standard (P1363) for asymmetric
cryptographic operations based on DSA, RSA, and ECDSA algorithms.

DeepCover is a registered trademark of Maxim Integrated Products, Inc.
IEEE is a registered service mark of the Institute of Electrical and Electronics Engineers, Inc.

Related Parts

DS5250 High-Speed Secure Microcontroller  

MAXQ1103 DeepCover Secure Microcontroller with Rapid Zeroization
Technology and Cryptography

 

More Information
For Technical Support: http://www.maximintegrated.com/support
For Samples: http://www.maximintegrated.com/samples
Other Questions and Comments: http://www.maximintegrated.com/contact 

Application Note 4347: http://www.maximintegrated.com/an4347
APPLICATION NOTE 4347, AN4347, AN 4347, APP4347, Appnote4347, Appnote 4347 
© 2013 Maxim Integrated Products, Inc.
Additional Legal Notices: http://www.maximintegrated.com/legal

Page 6 of 6

http://www.maximintegrated.com/datasheet/index.mvp/id/3932
http://www.maximintegrated.com/datasheet/index.mvp/id/5815
http://www.maximintegrated.com/support
http://www.maximintegrated.com/samples
http://www.maximintegrated.com/contact
http://www.maximintegrated.com/an4347
http://www.maximintegrated.com/legal

	maximintegrated.com
	RSA Key Generation Using the DeepCover Secure Microcontroller (MAXQ1103) - Application Note - Maxim




