
Maxim > Design Support > Technical Documents > Application Notes > Microcontrollers > APP 3546

Keywords: MAXQ, MAXQ2000, keypad, LCD microcontroller, security, alarm, piezoelectric, buzzer, PIN,
MAXQ2000-KIT, lcd, micro, microcontroller

APPLICATION NOTE 3546

Security System Control with the MAXQ2000
Jun 20, 2005

Abstract: Alarm control panels are a part of almost everyone's daily life, either at home or at work. This
article describes a sample alarm control application using the MAXQ2000 Low-Power LCD
Microcontroller, created with the MAX-IDE development environment. The MAXQ2000 can be easily
interfaced to peripherals typically used in security applications, including LCD displays, PIN entry
keypads, piezoelectric horns and buzzers, and magnetic reed switches.

Common alarm-control panels contain several input devices and require user displays. The usual
components for these systems include:

A device to accept input from the user: a 4 x 4 switch keypad.
A device to display output to the user: an LCD display.
An input device: a magnetic reed switch.
An output device: a piezoelectric horn.

These several components can be managed and controlled by a simple application and the powerful,
flexible MAXQ2000 microcontroller. This application, available for download, was written in MAXQ
assembly language using the MAX-IDE development environment. The code was targeted for the
MAXQ2000 evaluation kit board, using the following additional hardware:

Keypad: Grayhill 16-button (4 rows by 4 columns) keypad 96BB2-006-F
Piezoelectric horn: CEP-1172
Magnetic reed switch: standard single-loop type

Design Goals
Our example application performs the following tasks:

Monitors the magnetic reed switch to determine if a door/window is open or closed.
Allows the user to arm or disarm the system by entering a PIN on the keypad.
Displays status information to the user on the LCD.
Provides audio indications of keypresses and sensor open/close events by sounding the
piezoelectric horn.
Sounds the horn continuously if the sensor is opened while the system is armed. The behavior of
the alarm control application consists of four discrete states: CLOSED, OPEN, SET, and ALERT
(Figure 1).

Page 1 of 12

http://www.maximintegrated.com/
http://www.maximintegrated.com/
http://www.maximintegrated.com/design/
http://www.maximintegrated.com/design/techdocs/
http://www.maximintegrated.com/design/techdocs/app-notes/index.mvp
http://www.maximintegrated.com/design/techdocs/app-notes/index.mvp/id/17/c/Microcontrollers#c17
http://www.maximintegrated.com/MAXQ2000_Alarm

Figure 1. The alarm control application operates in four main states: CLOSED, OPEN, SET, AND
ALERT.

Interfacing to the Magnetic Reed Switch
In an alarm system, magnetic reed switches are installed in two parts: a magnet and the actual reed

Page 2 of 12

switch. The magnet portion is placed on the moving section of a door or window, while the switch portion
is placed on the frame. When the door or window is closed, the magnet closes the reed switch,
indicating a nonalarming condition. If the system is armed and the window or door is opened, the reed
switch changes state, allowing the MAXQ2000 to sound an intrusion alert.

The reed switch is interfaced to the MAXQ2000 simply by connecting it between port pins P5.2 and
P5.3. With P5.2 set to an active-low pulldown (PD = 1, PO = 0) and P5.3 set to a weak pullup input (PD
= 0, PO = 1), P5.3 will read zero when the reed switch is closed and one when the reed switch is open.

 move PD5.2, #1 ; Drive one side of reed switch LOW
 move PO5.2, #0

 move PD5.3, #0 ; Set weak pullup high on other side
 move PO5.3, #1

...

ML_Closed_Check:
 move C, PI5.3
 jump NC, ML_Closed_L ; Switch is closed, continue in this state

 call ShortBeep
 call ShortPause
 call ShortBeep
 call ShortPause
 call ShortBeep
 call ShortPause
 call ShortBeep
 call ShortPause
 jump ML_Open ; Switch is open, transition to OPEN state

Interfacing to the 4 x 4 Keypad
Keypads are used in alarm control systems for secure PIN entry, to arm/disarm the system, and to
change configurations. The keypad used in this example application consists of 16 switches, organized
in a 4 x 4 grid. The switches are tied together in a row and column matrix (Figure 2) so that depressing
a keypad switch connects one row line to one column line. For example, depressing the "3" key connects
row 1 and column 3 together.

Page 3 of 12

Figure 2. The keypad switches form a grid of four rows and four columns.

The keypad provides eight interface pins, one pin for each row and column of the keypad matrix. The
keypad and the MAXQ2000 EV kit are connected as shown.

Pin Connect Port Pin JU2 Pin
1 Row 1 P6.0 54
2 Row 2 P6.1 52
3 Row 3 P6.2 50
4 Row 4 P6.3 48
5 Col 1 P6.4 46
6 Col 2 P6.5 44
7 Col 3 P7.0 42
8 Col 4 P7.1 40

For this application, the EV kit board should be configured as follows.
DIP switches.

The following switches must be OFF: All SW1 switches, SW3.1, SW3.7, SW3.8, SW6.1,
SW6.4, SW6.5, SW6.6, SW6.7, and SW6.8.
All other DIP switches can be in any state.

Jumpers
The following jumpers must be OPEN: JU5, JU6, JU8, and JU9.
The following jumpers must be CLOSED: JU1, JU2, JU3 and JU11.
All other jumpers can be in any state.

Scanning by Columns
The row and column arrangement of the keypad makes it easy to read the state of four switches at any
one time, on either a row or column basis. To read four switches in one column, first the line for that

Page 4 of 12

column must be pulled low, and all other columns tri-stated (Figure 3). Next, a weak pullup must be set
on each row line. Finally, the four row lines are connected to port pin inputs. The input from a row will be
low when the switch on that row is depressed, and high otherwise.

Similarly, the state of four switches in a row can be read by pulling that row line low and setting inputs
and weak pullups on all four columns. The rows and columns are interchangeable.

In our setup, the four row lines (keypad pins 1 through 4) are all connected to the same input port
(P6[3:0]), which makes it easier to read them simultaneously. For this reason, the example application
scans one column of switches at a time. There are four setup states for the eight port-pin lines
connected to the keypad, each of which allows four of the switches to be read. All input lines read low
when the switch being read is closed, and high when the switch is open.

STATE P6.0 P6.1 P6.2 P6.3 P6.4 P6.5 P7.0 P7.1
1 Input - 1 Input - 4 Input - 7 Input - * low tri-state tri-state tri-state
2 Input - 2 Input - 5 Input - 8 Input - 0 tri-state low tri-state tri-state
3 Input - 3 Input - 6 Input - 9 Input - # tri-state tri-state low tri-state
4 Input - A Input - B Input - C Input - D tri-state tri-state tri-state low

Figure 3. The MAXQ2000 pulls column 1 low to read the state of the first four keypad switches.

An Interrupt-Driven State Machine
The four columns must be strobed quickly so that any keypress has time to be read before it is released.
Additionally, to prevent a switch's bouncing contacts from registering multiple presses, a key must be
held down for a certain amount of time before it registers. Both of these factors can be done at once by

Page 5 of 12

making a timer-driven interrupt routine the heart of the application. This allows the application to scan
through each one of the four columns in a periodic manner and to count the length of time a key has
been depressed.

RELOAD equ 0FF00h

StartTimer:
 move IIR.3, #1 ; Enable interrupts for module 3
 move IMR.3, #1

 move T2V0, #RELOAD
 move T2R0, #0h
 move T2C0, #0h

 move Acc, T2CFG0 ; Set timer 0 to run from HFClk/128
 and #08Fh
 or #070h
 move T2CFG0, Acc

 move T2CNA0.3, #1 ; Start timer 0
 move T2CNA0.7, #1 ; Enable timer 0 interrupts
 ret

The reload value for the timer controls how often the interrupt will fire. This value must be short enough
so that all keypresses are recognized. Additionally, to ensure that key response is not sluggish, the
reload value must also be long enough so that it does not occupy an excessive amount of processing
time. The value 0FF00h shown above (once about every 2.4ms) was reached through experimentation.

Once the column line for a group of four switches is driven low, some time may be required for the
connection operating through a depressed switch to pull its input line low. This time is affected by the
switch's on-resistance and by how many column switches are depressed at once. To avoid having to
delay the interrupt service routine between pulling the column line low and reading the four switches, the
column line for a given state is driven low in the previous state (Figure 4).

Page 6 of 12

Figure 4. In each of the four key-scanning states, the application reads the status of four switches and
prepares to read the next four.

Because the interrupt vector (IV) for the MAXQ2000 can be set on-the-fly, the application holds the
next-state value in the interrupt vector register. Whenever the timer interrupt fires, the handler routine for
the current key-scanning state sets the interrupt vector address to the next state's handler routine.

org 0000h

Main:
 call InitializeLCD

 move PD6, #010h ; For state 1
 move PO6, #00Fh ; For all states
 move PD7, #000h ; For state 1
 move PO7, #000h ; For all states

 move IV, #State1
 call StartTimer
 move IC, #1 ; Enable global interrupts

 jump $

State1:
 push PSF
 push Acc

 move Acc, PI6
 and #000Fh ; Grab lowest four bits only
 sla4
 move A[13], Acc

 move PD6, #020h ; For state 2
 move PD7, #000h

Page 7 of 12

 move T2V0, #RELOAD ; Set reload value
 move T2CNB0.1, #0 ; Clear interrupt flags
 move T2CNB0.3, #0
 move IV, #State2

 pop Acc
 pop PSF

 reti

The handler routines for the other four states are similar, with a slight adjustment to OR in the previously
collected switch bits in the A[13] holding register. There are three working accumulators used by the
state routines.

A[13] holds the bit array of all the switch states read on the current pass through the keypad. After the
State 4 read completes, this register contains the following bits, where a one bit represents an open
(released) key switch and a zero bit represents a closed (depressed) key switch.

BIT
15

BIT
14

BIT
13

BIT
12

BIT
11

BIT
10

BIT
9

BIT
8

BIT
7

BIT
6

BIT
5

BIT
4

BIT
3

BIT
2

BIT
1

BIT
0

* 7 4 1 2 5 8 0 3 6 9 # D C B A

Debouncing Switches
After State 4 is reached and all keys are scanned, a decision must be made whether to accept any keys
that are pressed. A simple way to handle debouncing is to maintain a counter value for each of the 16
switches. Every time State 4 is reached and the key is pressed, the counter is incremented. If the key is
not pressed, the counter is decremented. When the counter reaches a certain value, the keypress is
registered. To prevent a held-down key from repeating (which typically is allowed on computer
keyboards, but not on keypads), the counter must be allowed to decrement back to zero (by releasing
the key) before that key may be registered again.

As we have the state of all 16 keys in a single register, there is a simpler, less memory-intensive
solution for debouncing. The application maintains a single counter value that is incremented each time
the bit pattern matches the pattern read on the previous pass.

State4:
 push PSF
 push Acc

 move Acc, PI6
 and #000Fh ; Grab low four bits only
 or A[13]
 cmp A[15]
 jump E, State4_End ; Ignore the last debounced pattern

 cmp A[14]
 jump E, State4_Match

 move LC[0], #DEBOUNCE
 move A[14], Acc ; Reset current bit array

To prevent keys from repeating, once a bit pattern has been static long enough to be accepted, a
different bit pattern (which includes the idle state where no keys are depressed) must be accepted before
the first bit pattern can be accepted again.

Handling Simultaneous Keypresses
Simultaneous keypresses are possible when using a keypad input device. The debouncing code ensures

Page 8 of 12

that if a second key is pressed right after the first, the debounce interval will start over, but be short
enough in practice so that this is not an issue.

Once a bit pattern has been accepted, the action for each depressed-key bit can be taken by rotating all
16 bits into the carry bit individually using the accumulator and checking each in turn. The following code
responds only to the first depressed key, but this could be easily changed.

State4_Match:
 djnz LC[0], State4_End
 move A[15], Acc ; Reset last debounced pattern

 rrc
 jump NC, State4_KeyA
 rrc
 jump NC, State4_KeyB
 rrc
 jump NC, State4_KeyC
 rrc
 jump NC, State4_KeyD

 rrc
 jump NC, State4_Key3
 rrc
 jump NC, State4_Key6
 rrc
 jump NC, State4_Key9
 rrc
 jump NC, State4_KeyPound

 rrc
 jump NC, State4_Key2
 rrc
 jump NC, State4_Key5
 rrc
 jump NC, State4_Key8
 rrc
 jump NC, State4_Key0

 rrc
 jump NC, State4_Key1
 rrc
 jump NC, State4_Key4
 rrc
 jump NC, State4_Key7
 rrc
 jump NC, State4_KeyStar

 jump State4_End

Interfacing to the LCD Display
The LCD display included with the MAXQ2000 EV kit has segments defined as shown (Figure 5).

Page 9 of 12

Figure 5. The LCD display contains four-and-a-half 7-segment characters.

First, the LCD display must be initialized to static drive mode and enabled. Once this has been done,
characters can be written to the display by setting segments appropriately.

InitializeLCD:
 move LCRA, #03E0h ; xxx0001111100000
 ; 00 - DUTY : Static
 ; 0111 - FRM : Frame freq
 ; 1 - LCCS : HFClk / 128
 ; 1 - LRIG : Ground VADJ
 ; 00000 - LRA : RADJ = max

 move LCFG, #0F3h ; 1111xx11
 ; 1111 - PCF : All segments enabled
 ; 1 - OPM : Normal operation
 ; 1 - DPE : Display enabled

 move LCD0, #00h ; Clear all segments
 move LCD1, #00h
 move LCD2, #00h
 move LCD3, #00h
 move LCD4, #00h
 ret

Entering the PIN
In the CLOSED, SET, and ALERT states, a PIN can be entered to change the alarm controller to
another state. As each character is entered, the working value held in A[10] is shifted left and ORed with
the new character, and the decimal point on the LCD display moves left to indicate the number of
characters entered. For security reasons, the PIN being entered is not shown on the display.

State4_Key0:
 move Acc, #0000h
 jump State4_Shift

State4_Key1:
 move Acc, #0001h
 jump State4_Shift

State4_Key2:
 move Acc, #0002h
 jump State4_Shift

....

State4_Shift:
 move A[12], Acc

 move Acc, A[10]
 cmp #0FFFFh ; flag indicating no PIN entry allowed
 ; in current state
 jump E, State4_NoKey

 move Acc, A[11] ; key count
 cmp #04 ; if already at 4 (should have been cleared)
 jump E, State4_NoKey

 add #1
 move A[11], Acc

 move Acc, A[10]
 sla4
 or A[12]

Page 10 of 12

 move A[10], Acc

Once all four characters are entered, the PIN is checked against a hard-coded value. If the entered
value matches the PIN, the appropriate state transition occurs.

PIN_VALUE equ 03870h ; Just a random number

;; "Closed" state code

ML_Closed:
 move A[10], #00000h ; Reset PIN value
 move A[11], #0 ; Reset number of PIN chars entered

 move LCD3, #LCD_CHAR_C
 move LCD2, #LCD_CHAR_L
 move LCD1, #LCD_CHAR_5
 move LCD0, #LCD_CHAR_D

ML_Closed_L:
 move Acc, A[11]
 cmp #4 ; 4 characters entered?
 jump NE, ML_Closed_Check

 move Acc, A[10]
 cmp #PIN_VALUE ; PIN matches?
 jump E, ML_Set

 call LongBeep ; Beep on incorrect PIN and reset
 move A[10], #0000h
 move A[11], #0
 move LCD3.7, #0

ML_Closed_Check:
 move C, PI5.3 ; Check reed switch
 jump NC, ML_Closed_L ; Closed, stay in current state

 call ShortBeep ; 4 short beeps signal transition
 call ShortPause
 call ShortBeep
 call ShortPause
 call ShortBeep
 call ShortPause
 call ShortBeep
 call ShortPause
 jump ML_Open ; Switch opened, go to OPEN state

Using the Piezoelectric Horn
In our application, a small piezoelectric horn is used to perform two functions: (1) provide audio feedback
when keys are pressed or when an incorrect PIN is entered, and (2) sound an alarm when the reed
switch opens while the system is armed.

For demonstration purposes, a small piezoelectric horn can be interfaced with the MAXQ2000 by
connecting it between two port pins. The port pins are driven differentially to increase the current drive to
the piezoelectric horn, and the loop counts used in the driver code determine the frequency of the tone
emitted.

ShortBeep:
 move LC[1], #100 ; Number of cycles
SB_L1:
 move PO5.6, #0
 move PO5.7, #1

 move Acc, #2000 ; Count for forward polarity period
SB_L2:

Page 11 of 12

 sub #1
 jump NZ, SB_L2

 move PO5.6, #1
 move PO5.7, #0

 move Acc, #2000 ; Count for reverse polarity period
SB_L3:
 sub #1
 jump NZ, SB_L3

 djnz LC[1], SB_L1
 ret

In an actual alarm system, stronger drive circuitry would be used to run the piezoelectric horn, and the
horn would be driven at its resonant frequency to increase the volume.

Conclusion
The MAXQ2000 interfaces easily and directly to LCD displays by means of its dedicated LCD controller
peripheral. Multiplexed keypads can be read in a straightforward manner using the flexible port-pin
configuration provided by the MAXQ2000. A timer-interrupt-driven state machine allows all keys in the
matrix to be scanned and debounced with minimal effect on processor overhead. Finally, a piezoelectric
horn and magnetic reed switch can be controlled easily as well, using the general-purpose port pins
available on the MAXQ2000.

This article appears in the MER Vol 5.

Related Parts

MAXQ2000 Low-Power LCD Microcontroller Free Samples

MAXQ2000-KIT Evaluation Kit for the MAXQ2000

More Information
For Technical Support: http://www.maximintegrated.com/support
For Samples: http://www.maximintegrated.com/samples
Other Questions and Comments: http://www.maximintegrated.com/contact

Application Note 3546: http://www.maximintegrated.com/an3546
APPLICATION NOTE 3546, AN3546, AN 3546, APP3546, Appnote3546, Appnote 3546
Copyright © by Maxim Integrated Products
Additional Legal Notices: http://www.maximintegrated.com/legal

Page 12 of 12

http://www.maximintegrated.com/datasheet/index.mvp/id/4466
https://shop.maximintegrated.com/storefront/searchsample.do?event=Sample&menuitem=Sample&Partnumber=MAXQ2000
http://www.maximintegrated.com/datasheet/index.mvp/id/4478
http://www.maximintegrated.com/support
http://www.maximintegrated.com/samples
http://www.maximintegrated.com/contact
http://www.maximintegrated.com/an3546
http://www.maximintegrated.com/legal

	maxim-ic.com
	Security System Control with the MAXQ2000 - Application Note - Maxim

