

RELIABILITY REPORT FOR

MAX2644EXT+

PLASTIC ENCAPSULATED DEVICES

December 17, 2008

MAXIM INTEGRATED PRODUCTS

120 SAN GABRIEL DR. SUNNYVALE, CA 94086

Approved by	
Ken Wendel	
Quality Assurance	
Director, Reliability Engineering	

Conclusion

The MAX2644EXT+ successfully meets the quality and reliability standards required of all Maxim products. In addition, Maxim's continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim's quality and reliability standards.

Table of Contents

IDevice Description	VQuality Assurance Information
IIManufacturing Information	VIReliability Evaluation
IIIPackaging Information	IVDie Information
Attachments	

I. Device Description

A. General

The MAX2644 low-cost, high third-order intercept point (IP3) low-noise amplifier (LNA) is designed for applications in 2.4GHz WLAN, ISM, and Bluetooth® radio systems. It features a programmable bias, allowing the input IP3 and supply current to be optimized for specific applications. The LNA provides up to +1dBm input IP3 while maintaining a low noise figure of 2.0dB and a typical gain of 16dB. The MAX2644 is designed on a low-noise, advanced silicon-germanium (SiGe) technology. It operates with a +2.7V to +5.5V single supply and is available in an ultra-small 6-pin SC70 package.

II. Manufacturing Information

A. Description/Function: 2.4GHz SiGe, High IP3 Low-Noise Amplifier

B. Process: GST3

C. Number of Device Transistors:

D. Fabrication Location: Oregon

E. Assembly Location: Carsem Malaysia, UTL Thailand

F. Date of Initial Production: July 22, 2000

III. Packaging Information

A. Package Type: 6-pin SC70
B. Lead Frame: Cu Alloy

C. Lead Finish: 100% matte Tin

D. Die Attach:

E. Bondwire:

Non Conductive Epoxy

Au (1.0 mil dia.)

G. Assembly Diagram: #

H. Flammability Rating: Class UL94-V0

I. Classification of Moisture Sensitivity per Level 1

JEDEC standard J-STD-020-C

F. Mold Material:

J. Single Layer Theta Ja: 326°C/WK. Single Layer Theta Jc: 115°C/W

IV. Die Information

A. Dimensions: 30 X 29 mils

B. Passivation: Si₃N₄ (Silicon nitride)

C. Interconnect: Gold
D. Backside Metallization: None

E. Minimum Metal Width: Metal1 = 0.5 / Metal2 = 0.6 / Metal3 = 0.6 microns (as drawn)
 F. Minimum Metal Spacing: Metal1 = 0.45 / Metal2 = 0.5 / Metal3 = 0.6 microns (as drawn)

Epoxy with silica filler

G. Bondpad Dimensions: 5 mil. Sq.
H. Isolation Dielectric: SiO₂
I. Die Separation Method: Wafer Saw

V. Quality Assurance Information

A. Quality Assurance Contacts: Ken Wendel (Director, Reliability Engineering)

Bryan Preeshl (Managing Director of QA)

B. Outgoing Inspection Level: 0.1% for all electrical parameters guaranteed by the Datasheet.

0.1% For all Visual Defects.

C. Observed Outgoing Defect Rate: < 50 ppmD. Sampling Plan: Mil-Std-105D

VI. Reliability Evaluation

A. Accelerated Life Test

The results of the 150°C biased (static) life test are in Table 1. Using these results, the Failure Rate (3) is calculated as follows:

$$\lambda = \underbrace{\frac{1}{\text{MTTF}}}_{\text{emperature}} = \underbrace{\frac{1.83}{192 \times 4340 \times 43 \times 2}}_{\text{(where 4340 = Temperature Acceleration factor assuming an activation energy of 0.8eV)}}_{\text{operature}}$$

$$\lambda = 11.1 \times 10^{-9}$$

 $\lambda = 11.1 \text{ F.I.T. (60\% confidence level @ 25°C)}$

The following failure rate represents data collected from Maxim's reliability monitor program. Maxim performs quarterly 1000 hour life test monitors on its processes. This data is published in the Product Reliability Report found at http://www.maxim-ic.com/. Current monitor data for the GST3 Process results in a FIT Rate of 0.21 @ 25C and 3.64 @ 55C (0.8 eV, 60% UCL)

B. Moisture Resistance Tests

The industry standard 85°C/85%RH or HAST testing is monitored per device process once a quarter.

C. E.S.D. and Latch-Up Testing

The WR70-1 die type has been found to have all pins able to withstand a HBM transient pulse of +/-2000 V per Mil-Std 883 Method 3015.7. Latch-Up testing has shown that this device withstands a current of +/-250 mA.

Table 1Reliability Evaluation Test Results

MAX2644EXT+

TEST ITEM	TEST CONDITION	FAILURE IDENTIFICATION	SAMPLE SIZE	NUMBER OF FAILURES	
Static Life Test ((Note 1)				
·	Ta = 150°C	DC Parameters	43	0	
	Biased	& functionality			
	Time = 192 hrs.				
Moisture Testing	(Note 2)				
85/85	Ta = 85°C	DC Parameters	77	0	
	RH = 85%	& functionality			
	Biased	•			
	Time = 1000hrs.				
Mechanical Stres	ss (Note 2)				
Temperature	-65°C/150°C	DC Parameters	77	0	
Cycle	1000 Cycles	& functionality			
	Method 1010	•			

Note 1: Life Test Data may represent plastic DIP qualification lots.

Note 2: Generic Package/Process data