

RELIABILITY REPORT FOR MAX3109ETJ+

PLASTIC ENCAPSULATED DEVICES

April 18, 2014

MAXIM INTEGRATED

160 RIO ROBLES SAN JOSE, CA 95134

Approved by		
Sokhom Chum		
Quality Assurance		
Reliability Engineer		

Conclusion

The MAX3109ETJ+ successfully meets the quality and reliability standards required of all Maxim Integrated products. In addition, Maxim Integrated's continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim Integrated's quality and reliability standards.

Table of Contents

- I.Device Description
- II.Manufacturing Information
- IV.Die Information
- _
- V.Quality Assurance Information
- III.Packaging Information
- VI.Reliability Evaluation

.....Attachments

I. Device Description

A. General

The MAX3109 advanced dual universal asynchronous receiver-transmitter (UART) has 128 words of receive and transmit first-in/first-out (FIFO) and a high-speed SPI or I²C controller interface. The 2x and 4x rate modes allow a maximum of 24Mbps data rates. A phase-locked loop (PLL) and the fractional baud-rate generators allow a high degree of flexibility in baud-rate programming and reference clock selection. Independent logic-level translation on the transceiver and controller interfaces allows ease of interfacing to microcontrollers, FPGAs, and transceivers that are powered by differing supply voltages. Automatic hardware and software flow control with selectable FIFO interrupt triggering offloads low-level activity from the host controller. Automatic half-duplex transceiver control with programmable setup and hold times allow the MAX3109 to be used in high-speed applications such as PROFIBUS-DP. The 128-word FIFOs have advanced FIFO control, reducing host processor data flow management. The MAX3109 is available in a 32-pin TQFN (5mm x 5mm) package, and is specified over the -40°C to +85°C extended temperature range.

II. Manufacturing Information

A. Description/Function:	Dual Serial UART with 128-Word FIFOs
B. Process:	TS18
C. Number of Device Transistors:	267183
D. Fabrication Location:	Taiwan
E. Assembly Location:	Taiwan, China, Thailand
F. Date of Initial Production:	March 24, 2011

III. Packaging Information

A. Package Type:	32-pin TQFN 5x5
B. Lead Frame:	Copper
C. Lead Finish:	100% matte Tin
D. Die Attach:	Conductive
E. Bondwire:	Au (1 mil dia.)
F. Mold Material:	Epoxy with silica filler
G. Assembly Diagram:	#05-9000-4247
H. Flammability Rating:	Class UL94-V0
I. Classification of Moisture Sensitivity per JEDEC standard J-STD-020-C	Level 1
J. Single Layer Theta Ja:	47°C/W
K. Single Layer Theta Jc:	1.7°C/W
L. Multi Layer Theta Ja:	29°C/W
M. Multi Layer Theta Jc:	1.7°C/W

IV. Die Information

Α.	Dimensions:	84.25X84.25 mils
В.	Passivation:	$Si_3N_4/SiO_2\;$ (Silicon nitride/ Silicon dioxide)
C.	Interconnect:	Al/0.5%Cu with Ti/TiN Barrier
D.	Backside Metallization:	None
E.	Minimum Metal Width:	0.18um
F.	Minimum Metal Spacing:	0.18um
G.	Bondpad Dimensions:	
H.	Isolation Dielectric:	SiO ₂
Ι.	Die Separation Method:	Wafer Saw

V. Quality Assurance Information

A.	Quality Assurance Contacts:	Don Lipps (Manager, Reliability Engineering) Bryan Preeshl (Vice President of QA)
В.	Outgoing Inspection Level:	0.1% for all electrical parameters guaranteed by the Datasheet.0.1% for all Visual Defects.
C.	Observed Outgoing Defect Rate:	< 50 ppm
D.	Sampling Plan:	Mil-Std-105D

VI. Reliability Evaluation

```
A. Accelerated Life Test
```

The results of the 135C biased (static) life test are shown in Table 1. Using these results, the Failure Rate (λ) is calculated as follows:

$$\lambda = \underbrace{1}_{\text{MTTF}} = \underbrace{1.83}_{192 \text{ x} 4340 \text{ x} 48 \text{ x} 2} \text{ (Chi square value for MTTF upper limit)}$$

$$\lambda = 22.9 \text{ x} 10^{-9}$$

$$\lambda = 22.9 \text{ F.I.T. (60\% confidence level @ 25°C)}$$

The following failure rate represents data collected from Maxim Integrated's reliability monitor program. Maxim Integrated performs quarterly life test monitors on its processes. This data is published in the Reliability Report found at http://www.maximintegrated.com/qa/reliability/monitor. Cumulative monitor data for the TS18 Process results in a FIT Rate of 0.11 @ 25C and 1.87 @ 55C (0.8 eV, 60% UCL).

B. E.S.D. and Latch-Up Testing (lot QS1ZCA009A, D/C 1238)

The RU52 die type has been found to have all pins able to withstand a transient pulse of:

ESD-HBM:	+/- 2500V per JEDEC JESD22-A114
ESD-CDM:	+/- 750V per JEDEC JESD22-C101
ESD-MM:	+/- 200V per JEDEC JESD22/A115

Latch-Up testing has shown that this device withstands a current of +/-250mA and overvoltage per JEDEC JESD78.

Table 1 Reliability Evaluation Test Results

MAX3109ETJ+

TEST ITEM	TEST CONDITION	FAILURE IDENTIFICATION	SAMPLE SIZE	NUMBER OF FAILURES	COMMENTS
Static Life Test (Note	e 1) Ta = 135°C Biased Time = 192 hrs.	DC Parameters & functionality	48	0	QS1ZBQ001AQ, D/C 1103

Note 1: Life Test Data may represent plastic DIP qualification lots.