RELIABILITY REPORT

FOR

MAX4787EXx

PLASTIC ENCAPSULATED DEVICES

July 27, 2006

MAXIM INTEGRATED PRODUCTS

120 SAN GABRIEL DR.

SUNNYVALE, CA 94086

Written by

Jim Pedicord Quality Assurance Manager, Reliability Operations Bryan J. Preeshl Quality Assurance Managing Director

Reviewed by

Conclusion

The MAX4787 successfully meets the quality and reliability standards required of all Maxim products. In addition, Maxim's continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim's quality and reliability standards.

Table of Contents

I.Device Description
II.Manufacturing Information
III.Packaging Information
IV.Die Information
IV.Die Information
.....Attachments

I. Device Description

A. General

The MAX4787 switch features internal current limiting to prevent host devices from being damaged due to faulty load conditions. This analog switch has a low 0.7Ω on-resistance and operates from a 2.3V to 5.5V input voltage range. It is available with guaranteed 50mA and 100mA current limits, making it ideal for load-switching applications.

When the switch is on and a load is connected to the port, a guaranteed blanking time of 14ms ensures that the transient voltages settle down. If after this blanking time the load current is greater than the current limit, the MAX4787 enters a latch-off state where the switch is turned off and FLAG-bar is issued to the microprocessor. The switch can be turned on again by cycling the power or the ON pin.

The MAX4787 is available in the 5-pin SC70 package.

B. Absolute Maximum Ratings Item

5-Pin SC70

IN, ON, FLAG, OUT to GND
OUT Short Circuit to GND
Operating Temperature Range
Junction Temperature
Storage Temperature Range
Lead Temperature (soldering, 10s)
Continuous Power Dissipation (TA = +70°C)
5-Pin SC70
Derates above +70°C

Rating

-0.3V to +6V Internally Limited -40°C to +85°C +150°C -65°C to +150°C +300°C

3.1mW/°C

II. Manufacturing Information

A. Description/Function: 100mA Current-Limit Switch

B. Process: B6 (Standard 0.6 micron silicon gate CMOS)

C. Number of Device Transistors: 1659

D. Fabrication Location: California, USA

E. Assembly Location: Malaysia, Philippines or Thailand

F. Date of Initial Production: October, 2002

III. Packaging Information

A. Package Type: 5-Pin SC70 4-Pin SC70

B. Lead Frame: Alloy 42 or Copper Alloy 42 or Copper

C. Lead Finish: Solder Plate or 100% Matte Tin Solder Plate or 100% Matte Tin

D. Die Attach: Silver-Filled Epoxy Silver-Filled Epoxy

E. Bondwire: Gold (1 mil dia.) Gold (1 mil dia.)

F. Mold Material: Epoxy with silica filler Epoxy with silica filler

G. Assembly Diagram: #05-1201-0301 #05-1201-0300

H. Flammability Rating: Class UL94-V0 Class UL94-V0

I. Classification of Moisture Sensitivity

per JEDEC standard J-STD-020-C: Level 1 Level 1

IV. Die Information

A. Dimensions: 30 x 30 mils

B. Passivation: Si₃N₄/SiO₂ (Silicon nitride/ Silicon dioxide)

C. Interconnect: Aluminum/Si (Si = 1%)

D. Backside Metallization: None

E. Minimum Metal Width: 0.6 microns (as drawn)

F. Minimum Metal Spacing: 0.6 microns (as drawn)

G. Bondpad Dimensions: 5 mil. Sq.

H. Isolation Dielectric: SiO₂

I. Die Separation Method: Wafer Saw

V. Quality Assurance Information

A. Quality Assurance Contacts: Jim Pedicord (Manager, Reliability Operations)
Bryan Preeshl (Managing Director of QA)

B. Outgoing Inspection Level: 0.1% for all electrical parameters guaranteed by the Datasheet.

0.1% For all Visual Defects.

C. Observed Outgoing Defect Rate: < 50 ppm

D. Sampling Plan: Mil-Std-105D

VI. Reliability Evaluation

A. Accelerated Life Test

The results of the 135°C biased (static) life test are shown in **Table 1**. Using these results, the Failure Rate (λ) is calculated as follows:

$$\lambda = \underbrace{\frac{1}{\text{MTTF}}}_{} = \underbrace{\frac{1.83}{192 \text{ x } 4340 \text{ x } 77 \text{ x } 2}}_{} \text{(Chi square value for MTTF upper limit)}$$

$$\underbrace{}_{} \text{Temperature Acceleration factor assuming an activation energy of } 0.8eV$$

$$\lambda = 14.28 \times 10^{-9}$$

 λ = 14.28 F.I.T. (60% confidence level @ 25°C)

This low failure rate represents data collected from Maxim's reliability monitor program. In addition to routine production Burn-In, Maxim pulls a sample from every fabrication process three times per week and subjects it to an extended Burn-In prior to shipment to ensure its reliability. The reliability control level for each lot to be shipped as standard product is 59 F.I.T. at a 60% confidence level, which equates to 3 failures in an 80 piece sample. Maxim performs failure analysis on any lot that exceeds this reliability control level. Attached Burn-In Schematic (Spec. # 06-6013) shows the static Burn-In circuit. Maxim also performs quarterly 1000 hour life test monitors. This data is published in the Product Reliability Report (RR-1N).

B. Moisture Resistance Tests

Maxim pulls pressure pot samples from every assembly process three times per week. Each lot sample must meet an LTPD = 20 or less before shipment as standard product. Additionally, the industry standard 85° C/85%RH testing is done per generic device/package family once a quarter.

C. E.S.D. and Latch-Up Testing

The AH96-2 die type has been found to have all pins able to withstand a transient pulse of \pm 1000V per Mil-Std-883 Method 3015 (reference attached ESD Test Circuit). Latch-Up testing has shown that this device withstands a current of \pm 150mA.

Table 1 Reliability Evaluation Test Results

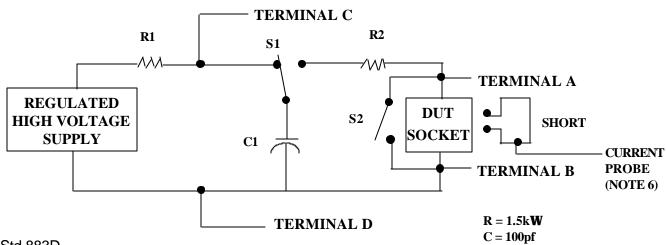
MAX4787EXx

TEST ITEM	TEST CONDITION	FAILURE IDENTIFICATION	PACKAGE	SAMPLE SIZE	NUMBER OF FAILURES
Static Life Test	t (Note 1)				
	Ta = 135°C Biased Time = 192 hrs.	DC Parameters & functionality		77	0
Moisture Testii	ng (Note 2)				
Pressure Pot	Ta = 121°C P = 15 psi. RH= 100% Time = 168hrs.	DC Parameters & functionality	SC70	77	0
85/85	Ta = 85°C RH = 85% Biased Time = 1000hrs.	DC Parameters & functionality		77	0
Mechanical Str	ress (Note 2)				
Temperature Cycle	-65°C/150°C 1000 Cycles Method 1010	DC Parameters & functionality		77	0

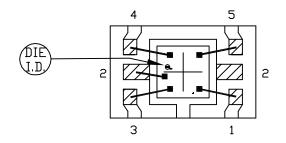
Note 1: Life Test Data may represent plastic DIP qualification lots. Note 2: Generic Package/Process data

Attachment #1

TABLE II. Pin combination to be tested. 1/2/

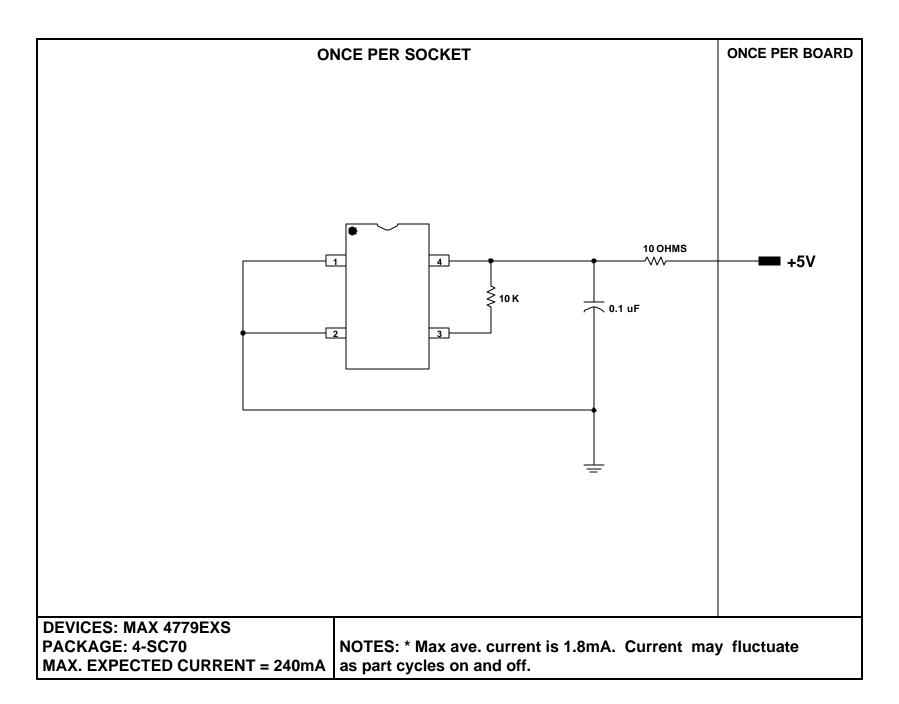

	Terminal A (Each pin individually connected to terminal A with the other floating)	Terminal B (The common combination of all like-named pins connected to terminal B)
1.	All pins except V _{PS1} 3/	All V _{PS1} pins
2.	All input and output pins	All other input-output pins

- 1/ Table II is restated in narrative form in 3.4 below.
- 2/ No connects are not to be tested.
- 3/ Repeat pin combination I for each named Power supply and for ground


(e.g., where V_{PS1} is V_{DD} , V_{CC} , V_{SS} , V_{BB} , GND, $+V_{S}$, $-V_{S}$, V_{REF} , etc).

3.4 Pin combinations to be tested.

- a. Each pin individually connected to terminal A with respect to the device ground pin(s) connected to terminal B. All pins except the one being tested and the ground pin(s) shall be open.
- b. Each pin individually connected to terminal A with respect to each different set of a combination of all named power supply pins (e.g., \(\forall_{S1} \), or \(\forall_{S2} \) or \(\forall_{S3} \) or \(\forall_{C1} \), or \(\forall_{C2} \)) connected to terminal B. All pins except the one being tested and the power supply pin or set of pins shall be open.
- c. Each input and each output individually connected to terminal A with respect to a combination of all the other input and output pins connected to terminal B. All pins except the input or output pin being tested and the combination of all the other input and output pins shall be open.


Mil Std 883D Method 3015.7 Notice 8

☑ BONDABLE AREA

NOTE: CAVITY DOWN

PKG. CODE: X5-1		SIGNATURES	DATE	CONFIDENTIAL & PROPRIE	
CAV./PAD SIZE:	PKG.			BOND DIAGRAM #:	REV:
35×34	DESIGN			05-1201-0301	Α

DOCUMENT I.D. 06-6013 REVISION A MAXIM TITLE: BI Circuit (MAX4779) PAGE 2 OF 3