RELIABILITY REPORT

FOR

MAX5415EUD+

PLASTIC ENCAPSULATED DEVICES

April 10, 2009

MAXIM INTEGRATED PRODUCTS

120 SAN GABRIEL DR. SUNNYVALE, CA 94086

Written by

Ken Wendel Quality Assurance Director, Reliability Engineering

Conclusion

The MAX5415 successfully meets the quality and reliability standards required of all Maxim products. In addition, Maxim's continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim's quality and reliability standards.

Table of Contents

I.Device Description V.
II.Manufacturing Information VI.
III.Packaging Information IV.
.....Attachments

V.Quality Assurance Information

VI.Reliability Evaluation IV.Die Information

I. Device Description

A. General

The MAX5415 is a dual linear taper digital potentiometers. The device has two 3-terminal potentiometers. The MAX5415 operates from +2.7V to +5.5V single-supply voltages and use an ultra-low 0.1μ A supply current. This device also provide glitchless switching between resistor taps, as well as a convenient power-on reset (POR) that sets the wiper to the midscale position at power-up. Each potentiometer consists of a fixed resistor with a wiper contact that is digitally controlled through a 3-wire serial interface and has 256 tap points. It performs the same function as a discrete potentiometer or variable resistor.

This part is ideal for applications requiring digitally controlled resistors A nominal resistor temperature coefficient of 35ppm/°C end-to-end and 5ppm/°C ratiometric make the MAX5415 ideal for applications requiring low temperature-coefficient variable resistors, such as adjustable-gain circuit configurations.

The MAX5415 is available in a 14-pin TSSOP package. The device is guaranteed over the extended industrial temperature range (-40°C to +85°C).

II. Manufacturing Information

A. Description/Function: Dual, 256-Tap, Low-Drift, Digital Potentiometers in 14-Pin TSSOP

B. Process: S6/B6 (Standard 0.6 micron silicon gate CMOS)

C. Number of Device Transistors: 8689

D. Fabrication Location: California, USA

E. Assembly Location: Malaysia

F. Date of Initial Production: January, 2001

III. Packaging Information

A. Package Type: 14-Pin TSSOP

B. Lead Frame: Copper

C. Lead Finish: 100% Matte Tin Plate

D. Die Attach: Silver-Filled Epoxy

E. Bondwire: Gold (1 mil dia.)

F. Mold Material: Epoxy with silica filler

G. Assembly Diagram: #05-7001-0486

H. Flammability Rating: Class UL94-V0

I. Classification of Moisture Sensitivity

per JEDEC standard J-STD-020-C: Level 1

IV. Die Information

A. Dimensions: 75 x 88 mils

B. Passivation: Si₃N₄/SiO₂ (Silicon nitride/ Silicon dioxide)

C. Interconnect: Aluminum/Si (Si = 1%)

D. Backside Metallization: None

E. Minimum Metal Width: 0.6 microns (as drawn)

F. Minimum Metal Spacing: 0.6 microns (as drawn)

G. Bondpad Dimensions: 5 mil. Sq.

H. Isolation Dielectric: SiO₂

I. Die Separation Method: Wafer Saw

V. Quality Assurance Information

A. Quality Assurance Contacts: Ken Wendel (Director, Rel Engineering)
Bryan Preeshl (Managing Director of QA)

B. Outgoing Inspection Level: 0.1% for all electrical parameters guaranteed by the Datasheet.

0.1% For all Visual Defects.

C. Observed Outgoing Defect Rate: < 50 ppm

D. Sampling Plan: Mil-Std-105D

VI. Reliability Evaluation

A. Accelerated Life Test

The results of the 135°C biased (static) life test are shown in **Table 1**. Using these results, the Failure Rate (λ) is calculated as follows:

$$\lambda = \frac{1}{\text{MTTF}} = \frac{1.83}{192 \times 4389 \times 160 \times 2}$$
(Chi square value for MTTF upper limit)
$$\frac{1}{\text{Temperature Acceleration factor assuming an activation energy of } 0.8eV$$

$$\lambda = 6.87 \times 10^{-9}$$

 $\lambda = 6.87$ F.I.T. (60% confidence level @ 25°C)

The following failure rate represents data collected from Maxim's reliability monitor program. Maxim performs quarterly 1000 hour life test monitors on its processes. This data is published in the Product Reliability Report found at http://www.maxim-ic.com/. Current monitor data for the C6 Process results in a FIT Rate of 1.6 @ 25C and 19.9 @ 55C (0.8 eV, 60% UCL)

B. Moisture Resistance Tests

Maxim pulls pressure pot samples from every assembly process three times per week. Each lot sample must meet an LTPD = 20 or less before shipment as standard product. Additionally, the industry standard 85°C/85%RH testing is done per generic device/package family once a quarter.

C. E.S.D. and Latch-Up Testing

The DP03-2 die type has been found to have all pins able to withstand a transient pulse of ± 2500 V per Mil-Std-883 Method 3015 (reference attached ESD Test Circuit). Latch-Up testing has shown that this device withstands a current of ± 250 mA.

Table 1 Reliability Evaluation Test Results

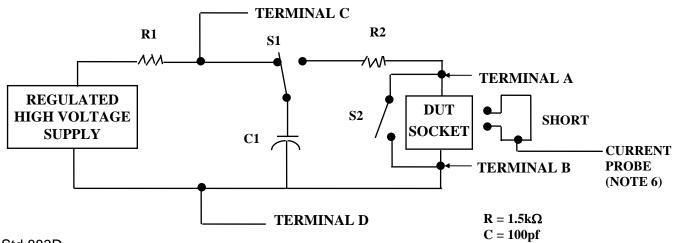
MAX5415EUD

TEST ITEM	TEST CONDITION	FAILURE IDENTIFICATION	PACKAGE	SAMPLE SIZE	NUMBER OF FAILURES
Static Life Tes	t (Note 1)				
	Ta = 135°C Biased Time = 192 hrs.	DC Parameters & functionality		160	0
Moisture Testi	ing (Note 2)				
Pressure Pot	Ta = 121°C P = 15 psi. RH= 100% Time = 168hrs.	DC Parameters & functionality	TSSOP	77	0
85/85	Ta = 85°C RH = 85% Biased Time = 1000hrs.	DC Parameters & functionality		77	0
Mechanical St	ress (Note 2)				
Temperature Cycle	-65°C/150°C 1000 Cycles Method 1010	DC Parameters & functionality		77	0

Note 1: Life Test Data may represent plastic DIP qualification lots. Note 2: Generic Package/Process data

Attachment #1

TABLE II. Pin combination to be tested. 1/2/


	Terminal A (Each pin individually connected to terminal A with the other floating)	Terminal B (The common combination of all like-named pins connected to terminal B)
1.	All pins except V _{PS1} 3/	All V _{PS1} pins
2.	All input and output pins	All other input-output pins

- 1/ Table II is restated in narrative form in 3.4 below.
- No connects are not to be tested.
 Repeat pin combination I for each named Power supply and for ground

(e.g., where V_{PS1} is V_{DD} , V_{CC} , V_{SS} , V_{BB} , GND, $+V_S$, $-V_S$, V_{RFF} , etc).

3.4 Pin combinations to be tested.

- Each pin individually connected to terminal A with respect to the device ground pin(s) connected a. to terminal B. All pins except the one being tested and the ground pin(s) shall be open.
- Each pin individually connected to terminal A with respect to each different set of a combination b. of all named power supply pins (e.g., V_{SS1}, or V_{SS2} or V_{SS3} or V_{CC1}, or V_{CC2}) connected to terminal B. All pins except the one being tested and the power supply pin or set of pins shall be open.
- Each input and each output individually connected to terminal A with respect to a combination of C. all the other input and output pins connected to terminal B. All pins except the input or output pin being tested and the combination of all the other input and output pins shall be open.

Mil Std 883D Method 3015.7 Notice 8