

RELIABILITY REPORT

FOR

MAX8516EUB+ (MAX8516/MAX8517/MAX8518)

PLASTIC ENCAPSULATED DEVICES

October 27, 2008

MAXIM INTEGRATED PRODUCTS

120 SAN GABRIEL DR. SUNNYVALE, CA 94086

Approved by	
Ken Wendel	
Quality Assurance	
Director, Reliability Engineering	

Conclusion

The MAX8516EUB+ successfully meets the quality and reliability standards required of all Maxim products. In addition, Maxim"s continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim"s quality and reliability standards.

Table of Contents

IDevice Description	VQuality Assurance Information		
IIManufacturing Information	VIReliability Evaluation		
IIIPackaging Information	IVDie Information		
Attachments			

I. Device Description

A. General

The MAX8516/MAX8517/MAX8518 low-dropout linear regulators operate from input voltages as low as 1.425V and are able to deliver up to 1A of continuous output current with a maximum dropout voltage of only 200mV. The output voltage can be set from 0.5V to (VIN - 0.2V) and is 1.4% accurate over load and line variations, from 0°C to +85°C. These regulators use small, 1µF ceramic input capacitors and 4.7µF ceramic output capacitors to deliver 1A output current. High bandwidth provides excellent transient response and limits the output voltage deviation to 45mV for a 20mA to 1A load step, with only a 4.7µF ceramic output capacitor, and the voltage deviations can be reduced further by increasing the output capacitor. Designed with an internal p-channel MOSFET pass transistor, the MAX8516/MAX8517/MAX8518 feature low 340µA (typ) supply current during dropout conditions. Soft-start reduces inrush current. Other features include a logic-controlled shutdown mode, short-circuit protection, and thermal-overload protection. The MAX8517 features a power-OK (POK) output that transitions high when the regulator output is within ±10% of its nominal output voltage. The MAX8518 features a 150ms power-on reset output. The parts are packaged in a 10-pin µMAX® package that includes an exposed pad for optimal power dispation.

II. Manufacturing Information

A. Description/Function: 1.425V to 3.6V Input, 1A, 0.2V Dropout LDO Regulators

B. Process: S4

C. Number of Device Transistors: 0

D. Fabrication Location: California, Texas or Japan

E. Assembly Location: UTL Philippines, Unisem Malaysia

F. Date of Initial Production: January 24, 2004

III. Packaging Information

A. Package Type: 10-pin uMAX
B. Lead Frame: Copper

C. Lead Finish: 100% matte Tin
D. Die Attach: Conductive Epoxy
E. Bondwire: Gold (1.3 mil dia.)
F. Mold Material: Epoxy with silica filler
G. Assembly Diagram: #05-9000-0163
H. Flammability Rating: Class UL94-V0

I. Classification of Moisture Sensitivity per Level 1

JEDEC standard J-STD-020-C

J. Single Layer Theta Ja: 97°C/W
K. Single Layer Theta Jc: 4.8°C/W
L. Multi Layer Theta Ja: 77.6°C/W
M. Multi Layer Theta Jc: 4.8°C/W

IV. Die Information

A. Dimensions: 60 X 65 mils

B. Passivation: Si₃N₄/SiO₂ (Silicon nitride/ Silicon dioxide

C. Interconnect: Aluminum/Si (Si = 1%)

D. Backside Metallization: None

E. Minimum Metal Width: Metal1 = 0.5 / Metal2 = 0.6 / Metal3 = 0.6 microns (as drawn)
 F. Minimum Metal Spacing: Metal1 = 0.45 / Metal2 = 0.5 / Metal3 = 0.6 microns (as drawn)

G. Bondpad Dimensions: 5 mil. Sq.
 H. Isolation Dielectric: SiO₂
 I. Die Separation Method: Wafer Saw

V. Quality Assurance Information

A. Quality Assurance Contacts: Jim Pedicord (Manager, Rel Operations)
Bryan Preeshl (Managing Director of QA)

Diyan i reesin (Managing Director of QA)

B. Outgoing Inspection Level: 0.1% for all electrical parameters guaranteed by the Datasheet.

0.1% For all Visual Defects.

C. Observed Outgoing Defect Rate: < 50 ppmD. Sampling Plan: Mil-Std-105D

VI. Reliability Evaluation

A. Accelerated Life Test

The results of the 135°C biased (static) life test are pending. Using these results, the Failure Rate (3) is calculated as follows:

$$\lambda = \frac{1}{\text{MTTF}}$$
 = $\frac{1.83}{192 \times 4340 \times 95 \times 2}$ (Chi square value for MTTF upper limit) (where 4340 = Temperature Acceleration factor assuming an activation energy of 0.8eV)

$$\lambda = 11.30 \times 10^{-9}$$

 $\lambda = 11.30 \text{ F.I.T. (60\% confidence level @ 25°C)}$

The following failure rate represents data collected from Maxim's reliability monitor program. Maxim performs quarterly 1000 hour life test monitors on its processes. This data is published in the Product Reliability Report found at http://www.maxim-ic.com/. Current monitor data for the S4 Process results in a FIT Rate of 0.28 @ 25C and 4.85 @ 55C (0.8 eV, 60% UCL)

B. Moisture Resistance Tests

The industry standard 85°C/85%RH or HAST testing is monitored per device process once a quarter.

C. E.S.D. and Latch-Up Testing

The PM63 die type has been found to have all pins able to withstand a HBM transient pulse of 2500 V per JEDEC JESD22-A114-D. Latch-Up testing has shown that this device withstands a current of 250 mA.

Table 1Reliability Evaluation Test Results

MAX8516EUB+

TEST ITEM	TEST CONDITION	FAILURE IDENTIFICATION	SAMPLE SIZE	NUMBER OF FAILURES	
Static Life Test (1	Note 1)				
,	Ta = 135°C Biased Time = 192 hrs.	DC Parameters & functionality	95	0	
Moisture Testing	(Note 2)				
85/85	Ta = 85°C RH = 85% Biased Time = 1000hrs.	DC Parameters & functionality	77	0	
Mechanical Stress	s (Note 2)				
Temperature	-65°C/150°C	DC Parameters	77	0	
Cycle	1000 Cycles Method 1010	& functionality			

Note 1: Life Test Data may represent plastic DIP qualification lots.

Note 2: Generic Package/Process data