RELIABILITY REPORT

FOR

MAX9115EXK

PLASTIC ENCAPSULATED DEVICES

March 5, 2003

MAXIM INTEGRATED PRODUCTS

120 SAN GABRIEL DR.

SUNNYVALE, CA 94086

Written by

Jim Pedicord Quality Assurance Reliability Lab Manager Reviewed by

Bryan J. Preeshl Quality Assurance Executive Director

Conclusion

The MAX9115 successfully meets the quality and reliability standards required of all Maxim products. In addition, Maxim's continuous reliability monitoring program ensures that all outgoing product will continue to meet Maxim's quality and reliability standards.

Table of Contents

I.Device Description
II.Manufacturing Information
III.Packaging Information
IV.Die Information
IV.Die Information
.....Attachments

I. Device Description

A. General

The MAX9115 is a single low-voltage differential signaling (LVDS) line receiver ideal for applications requiring high data rates, low power, and low noise. The device is guaranteed to receive data at speeds up to 200Mbps (100MHz).

The MAX9115 accepts an LVDS differential input and translates it to an LVTTL/LVCMOS output. The fail-safe feature sets the output high when the inputs are undriven and open, terminated, or shorted. The device supports a wide common-mode input range, allowing a ground potential difference and common-mode noise between the driver and the receiver. The MAX9115 conforms to the ANSI TIA/EIA-644 LVDS standard.

The MAX9115 operates from a single +3.3V supply, and is specified for operation from -40°C to +85°C. It is available in a space-saving 5-pin SC70 package. Refer to the MAX9110/MAX9112 data sheet for single/dual LVDS line drivers.

B. Absolute Maximum Ratings

<u>Item</u>	Rating	
VCC to GND	-0.3V to +4.0V	
IN+, IN- to GND	-0.3V to +4.0V	
OUT to GND	-0.3V to (VCC + 0.3V)	
Output Short to GND (OUT) (Note 1)	1s	
Storage Temperature Range	-65°C to +150°C	
Maximum Junction Temperature	+150°C	
Operating Temperature Range	-40°C to +85°C	
Lead Temperature (soldering, 10s)	+300°C	
ESD Protection Human Body Model (IN+, IN-) .	±6kV	
Continuous Power Dissipation (TA = +70°C)		
5-Pin SOT23	247mW	
Derates above +70°C		
5-Pin SOT23	3.1mW/°C	

Note 1: Package leads soldered to a PC board having copper ground and VCC planes. Do not exceed Maximum Junction Temperature.

II. Manufacturing Information

A. Description/Function: Single LVDS Line Receiver in SC70

B. Process: TC35

C. Number of Device Transistors: 201

D. Fabrication Location: Taiwan

E. Assembly Location: Philippines or Malaysia

F. Date of Initial Production: March, 2001

III. Packaging Information

A. Package Type: 8-Pin SOT23

B. Lead Frame: Copper or Alloy 42

C. Lead Finish: Solder Plate

D. Die Attach: Silver-filled Epoxy

E. Bondwire: Gold (1 mil dia.)

F. Mold Material: Epoxy with silica filler

G. Assembly Diagram: # 05-2801-0019

H. Flammability Rating: Class UL94-V0

I. Classification of Moisture Sensitivity

per JEDEC standard JESD22-112: Level 1

IV. Die Information

A. Dimensions: 30 x 31 mils

B. Passivation: Si₃N₄/SiO₂ (Silicon nitride/ Silicon dioxide)

C. Interconnect: Aluminum/Si (Si = 1%)

D. Backside Metallization: None

E. Minimum Metal Width: Metal1 = 0.5 / Metal2 = 0.6 / Metal3 = 0.6 microns (as drawn)

F. Minimum Metal Spacing: Metal1 = 0.45 / Metal2 = 0.5 / Metal3 = 0.6 microns (as drawn)

G. Bondpad Dimensions: 5 mil. Sq.

H. Isolation Dielectric: SiO₂

I. Die Separation Method: Wafer Saw

V. Quality Assurance Information

A. Quality Assurance Contacts: Jim Pedicord (Reliability Lab Manager)

Bryan Preeshl (Executive Director) Kenneth Huening (Vice President)

B. Outgoing Inspection Level: 0.1% for all electrical parameters guaranteed by the Datasheet.

0.1% For all Visual Defects.

C. Observed Outgoing Defect Rate: < 50 ppm

D. Sampling Plan: Mil-Std-105D

VI. Reliability Evaluation

A. Accelerated Life Test

The results of the 135°C biased (static) life test are shown in **Table 1**. Using these results, the Failure Rate (λ) is calculated as follows:

$$\lambda = \underbrace{\frac{1}{\text{MTTF}}}_{} = \underbrace{\frac{1.83}{192 \times 4389 \times 48 \times 2}}_{} \text{(Chi square value for MTTF upper limit)}$$

$$\underbrace{\text{Temperature Acceleration factor assuming an activation energy of } 0.8eV$$

$$\lambda = 22.62 \times 10^{-9}$$

 λ = 22.62 F.I.T. (60% confidence level @ 25°C)

This low failure rate represents data collected from Maxim's reliability monitor program. In addition to routine production Burn-In, Maxim pulls a sample from every fabrication process three times per week and subjects it to an extended Burn-In prior to shipment to ensure its reliability. The reliability control level for each lot to be shipped as standard product is 59 F.I.T. at a 60% confidence level, which equates to 3 failures in an 80 piece sample. Maxim performs failure analysis on any lot that exceeds this reliability control level. Attached Burn-In Schematic (Spec. # 06-5734) shows the static Burn-In circuit. Maxim also performs quarterly 1000 hour life test monitors. This data is published in the Product Reliability Report (RR-1M).

B. Moisture Resistance Tests

Maxim pulls pressure pot samples from every assembly process three times per week. Each lot sample must meet an LTPD = 20 or less before shipment as standard product. Additionally, the industry standard 85° C/85%RH testing is done per generic device/package family once a quarter.

C. E.S.D. and Latch-Up Testing

The HS13 die type has been found to have all pins able to withstand a transient pulse of ± 1000 V per Mil-Std-883 Method 3015 (reference attached ESD Test Circuit). Latch-Up testing has shown that this device withstands a current of ± 250 mA.

Table 1 Reliability Evaluation Test Results

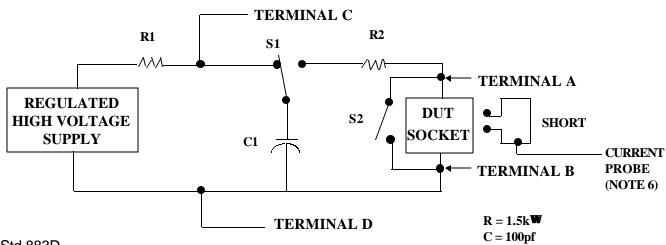
MAX9115EXK

TEST ITEM	TEST CONDITION	FAILURE IDENTIFICATION	PACKAGE	SAMPLE SIZE	NUMBER OF FAILURES
Static Life Test	: (Note 1)				
	Ta = 135°C Biased Time = 192 hrs.	DC Parameters & functionality		48	0
Moisture Testir	ng (Note 2)				
Pressure Pot	Ta = 121°C P = 15 psi. RH= 100% Time = 168hrs.	DC Parameters & functionality	SOT23	77	0
85/85	Ta = 85°C RH = 85% Biased Time = 1000hrs.	DC Parameters & functionality		77	0
Mechanical Str	ess (Note 2)				
Temperature Cycle	-65°C/150°C 1000 Cycles Method 1010	DC Parameters & functionality		77	0

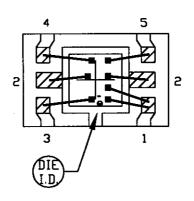
Note 1: Life Test Data may represent plastic DIP qualification lots. Note 2: Generic Package/Process data

Attachment #1

TABLE II. Pin combination to be tested. 1/2/

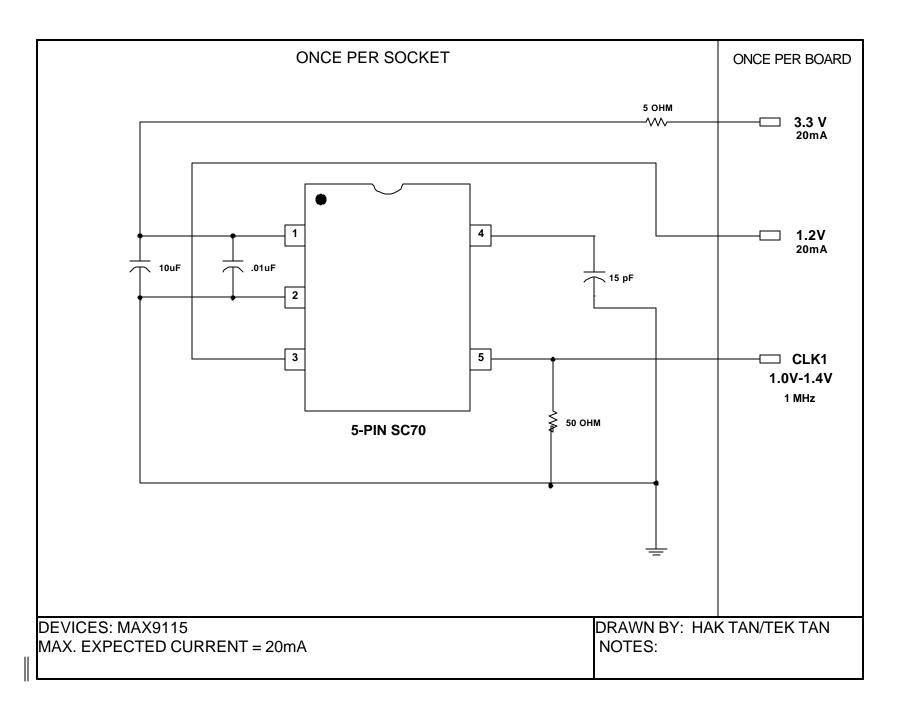

	Terminal A (Each pin individually connected to terminal A with the other floating)	Terminal B (The common combination of all like-named pins connected to terminal B)
1.	All pins except V _{PS1} 3/	All V _{PS1} pins
2.	All input and output pins	All other input-output pins

- 1/ Table II is restated in narrative form in 3.4 below.
- 2/ No connects are not to be tested.
- 3/ Repeat pin combination I for each named Power supply and for ground


(e.g., where V_{PS1} is V_{DD} , V_{CC} , V_{SS} , V_{BB} , GND, $+V_{S}$, $-V_{S}$, V_{REF} , etc).

3.4 Pin combinations to be tested.

- a. Each pin individually connected to terminal A with respect to the device ground pin(s) connected to terminal B. All pins except the one being tested and the ground pin(s) shall be open.
- b. Each pin individually connected to terminal A with respect to each different set of a combination of all named power supply pins (e.g., \(\lambda_{S1} \), or \(\lambda_{S2} \) or \(\lambda_{S3} \) or \(\lambda_{CC1} \), or \(\lambda_{CC2} \)) connected to terminal B. All pins except the one being tested and the power supply pin or set of pins shall be open.
- c. Each input and each output individually connected to terminal A with respect to a combination of all the other input and output pins connected to terminal B. All pins except the input or output pin being tested and the combination of all the other input and output pins shall be open.


Mil Std 883D Method 3015.7 Notice 8

☑ BONDABLE AREA

NOTE: CAVITY DOWN

PKG. CODE: X5-1					& PROPRIETARY	
CAV./PAD SIZE:	PKG.			BOND DIAGRAM #:	REV:	
35×34	DESIGN			05-2801-0019	Α	

