
         

VISIT ANALOG.COM

Technical Article

A Guide to Battery Fast
Charging—Part 2
Franco Contadini�, Staff Engineer, and
Alessandro Leonardi�, Account Manager, Field Sales

In “A Guide to Battery Fast Charging—Part 1,” we covered some of the challenges
involved in designing fast-charging battery systems. By implementing fuel gauge
functionality in the battery pack, original equipment manufacturers (OEMs) can
design smart fast chargers that increase system flexibility, minimize power
dissipation, ensure safe charging/discharging, and improve the overall user
experience. In Part 2, we’ll explore the implementation details of a fast-charging
system with parallel batteries using evaluation kits and a Raspberry Pi board.

Evaluating 1S2P Architectures
Evaluating a simple charging system and testing its functionality can typically
be done with an evaluation kit. These kits include all the necessary hardware
and software applications, as well as graphical user interface (GUI)-based tools
and APIs, to configure charging systems.

However, complex systems that require multiple cells are correspondingly more
complex to evaluate. Complex systems may have several devices that need to
be characterized. Developers will need to write some software code to read the
signals generated from different system parts, analyze them, and take action.
Consider a two Li+ cells in a parallel battery fast charging system using the
MAX17330. As described in the data sheet, the MAX17330 can be used to charge
and control two Li+ cells simultaneously. This system requires two MAX17330 ICs
each managing one Li+ cell, and a buck converter (such as the MAX20743) with the
capability to change its output voltage on-the-fly.

A microcontroller is required to configure and manage battery charging as well
as to handle communication between the two ICs. Because it is a commonly used
platform for system testing, we chose a Raspberry Pi board using Python as the
programming language. The Raspberry Pi manages communications over I2C and
logs important system parameters useful for evaluation and debugging, including
charge current, battery voltage, and battery state of charge (SOC). These values
are stored in an Excel file to enable offline analysis.

Testing the 1S2P Architecture
This section shows how the charger and fuel gauge (MAX17330) are tested. It also
describes the real performance that can be expected from parallel charging. For
the most flexibility and control, the device is programmed by a microcontroller
using I2C.

Figure 1 shows the 1S2P system architecture and the connections that are needed
to evaluate the charging of two cells in parallel. The Raspberry Pi controls the
three EVKITs: one MAX20743EVKIT (buck converter) and two MAX17330EVKITs
(charger + fuel gauge). Data is logged in an Excel file.

MAX17330_A EVKIT

MAX17330_B EVKIT

SYSP BATTP

SYSN BATTN

Charger
Fuel Gauge

ALRT

SYSP BATTP

SYSN BATTN

Charger
Fuel Gauge

ALRT

MAX20743 EVKIT

Step Down

VOUT

GND

I2C

I2C

12 V

ALRT_B

ALRT_B

A
LR

T_
A

Raspberry Pi

SDA1-SCL1
(Pin 3, Pin 5)

GPIO27
(Pin 13)

GPIO24
(Pin 18)

BATT_B

BATT_A

Figure 1. A 1S2P charging system evaluation architecture using Raspberry Pi.

The GUI-based, MAX17330 EV Kit Software is available and can be downloaded
from the MAX17330 product page under the Tools and Simulations tab. It can be
used to generate initialization files (.INI) for the MAX17330 using the Configuration
Wizard (select from the Device tab). The INI file contains the register initialization
information for the device in a register address/register value format. This is the
file used by the microcontroller to configure the MAX17330 register by register.

The MAX17330EVKIT data sheet details the different steps required to generate
the initialization file. The configuration, shown in Figure 2, is used to begin paral-
lel charging. Next, step charging is enabled (see Figure 3). Figure 4 shows the
expected step charging profile based on the step charging configuration found
in Figure 3.

https://www.analog.com
https://www.analog.com/en/technical-articles/a-guide-to-battery-fast-charging-part-1.html
https://www.maximintegrated.com/en/products/power/battery-management/MAX17330.html
https://www.maximintegrated.com/en/products/power/switching-regulators/MAX20743.html
https://www.analog.com/en/design-center/evaluation-hardware-and-software/evaluation-boards-kits/max17330x2evkit.html#eb-overview
https://ez.analog.com
https://www.youtube.com/user/AnalogDevicesInc
https://twitter.com/adi_news
https://www.linkedin.com/company/analog-devices
https://www.facebook.com/AnalogDevicesInc
https://flipboard.com/@AnalogDevices

2  A Guide to Battery Fast Charging—Part 2

The ALRT signal is used to open the path between the
charge source and battery, and parallel charging is enabled

Figure 2. Configuring the MAX17330 for parallel charging.

Figure 3. Enable step charging.

The MAX20734 buck converter is used to increase the voltage applied to the two
MAX17330EVKITs when needed. The MAX20734 buck converter changes the output
voltage according to the value of the internal register at address 0x21. The buck
converter can be controlled via I2C; a class in Python has been written to do so.

Finally, as shown in Figure 5, the MAX20743EVKIT output voltage divider is modi-
fied for an output range from 3 V to 4.6 V (using the values R6 = 4K7 and R9 = 1K3).

Table 1. Conversion Output Voltage Based on Register
0x21 for the MAX20743

0x21 Register Value Voltage

0x014E 3 V

0x0150 3.05 V

0x0158 3.1 V

0x015C 3.15 V

0x0162 3.2 V

0x0166 3.25 V

0x016E 3.3 V

0x0172 3.35 V

0x0178 3.4 V

0x017C 3.45 V

0x0182 3.5 V

0x0188 3.55 V

0x018E 3.6 V

0x0192 3.65 V

0x019E 3.7 V

0x01A4 3.75 V

0x01A9 3.8 V

0x01AE 3.85 V

Table 1. (continued)

0x21 Register Value Voltage

0x01B4 3.9 V

0x01BA 3.95 V

0x01BF 4 V

0x01C4 4.05 V

0x01CB 4.1 V

0x01D1 4.15 V

0x01D6 4.2 V

0x01DC 4.25 V

0x01E2 4.3 V

0x01E8 4.35 V

0x01ED 4.4 V

0x01F3 4.45 V

0x01F8 4.5 V

0x01FE 4.55 V

0x0204 4.6 V

From Table 1, we can extract the curve:

Register = 0 × 014e +
X – 3

0.1 × 11
where x is the voltage we want to apply at the output. While this approach will
have a slight error, it is a good way to estimate the desired value of the register
from the voltage.

Powering Up and Initialization
When the MAX17330 is first connected to a battery, default register value set-
tings force the IC into a shutdown state. To wake the device, press the PKWK
button. This will short the temporary protection MOSFETs and wake up both
MAX17330EVKITs in this way.

Next, the Raspberry Pi needs to communicate via I2C with all three devices.
Carefully initialize the I2C hardware to avoid device address conflicts. By default,
the two MAX17330EVKITs use the same I2C address. The first step is to change the
address of one of the two fuel gauges.

The MAX17330 has both volatile and nonvolatile registers, with nonvolatile regis-
ters identified with the “n” prefix. This also results in a pair of node addresses, 6Ch
(volatile registers) and 16h (NV registers).

There are two ways to change device node addresses on the MAX17330:

	X Set the nPackCfg NV register using the I2CSid field. This change can be set
using the Configuration Wizard. See Table 3.

	X The I2CCmd register allows dynamic changes to the I2C bus. See Table 4.

For ease of use, we use the second way to change the address so that the same INI
file can be used to initialize both devices. Generating settings that can be shared
by the two devices simplifies the configuration of the devices and eliminates the
potential for user error when the address must be entered manually.

https://www.analog.com/en/products/max20734.html

VISIT ANALOG.COM  3

Figure 5. The output voltage divider has been modified for an output range of 3 V to 4.6 V (with R6 = 4 K7 and R9 = 1 K3).

R3
Do Not Stuff
0402

MAX20743

PGMAPGMA 4

SMALERTSMALERT 3

PGMBPGMB 15

STATSTAT 13

OEOE 9

DATADATA 14

CLKCLK 12

A
GN

D
11

GN
D

6

VSENSE+ VSENSE+1

VSENSE- VSENSE-2

BST BST8

VX VX7

V C
C

VD
DH

10 5

V C
C

VD
DH

U1

C36
10 μF
X5R
0402

C51
10 μF
X5R
0402

C9
10 μF
X5R
0402

C8
0.22 μF
X7R
0402

VX1

R10
1 kΩ
0402

1

GND2

1

L1

170 nH
R12
Do Not Stuff
0402

C37
Do Not Stuff
0402

SENSE_VOUT

C39
Do Not Stuff
0402

R6
1.87 kΩ
0402

R14

Diff Pair

0 0402

R9
3.48 kΩ
0402

R13
Do Not Stuff
0402

C38
Do Not Stuff
0402

VCC

R5 0402 20 kΩ
STAT

R8 0402 20 kΩ
OE
C32
1000 pF
0402

PMBus® Addr = 1010 000b
Tss = 3 ms
VBOOT = 0.6484 V

3.3 V

R15 0402 Do Not Stuff

RGAIN = 0.9 m-Ω
Valley OCP = 35 A
Fsw = 400 kHz

PGMA PGMB SMALERT

R1
1.78 kΩ
0402

C4
Do Not Stuff
0402

C23
Do Not Stuff
0402

C31
Do Not Stuff
0402

R2
162 kΩ
0402

Figure 4. An expected step charging profile based on step charging configuration in Figure 3.

Full Voltage

STEPCURRO

STEPCURR1

STEPCURR2

ICHGTERM
IPREQUAL

Time

Current

Highest Current,
Lowest Voltage

Medium Current Reduced Current
Until Full

STEPVOLT1
STEPVOLT0

VCELL SOC

30%

SOC
50%

90%

4.20

500 mA

406 mA

281 mA

4.16 V
4.12 V

https://www.analog.com

4  A Guide to Battery Fast Charging—Part 2

Since the two MAX17330 devices share the same I2C bus, this procedure requires
that the ALRT signal of one device has to be set low while the other one is set high.

Table 5. I2C ALRT Settings

GoToSID Alert High Alert Low

Primary/Secondary Address Primary/Secondary Address

0b00 ECh/96h 6Ch/16h

0b01 64h/1Eh ECh/96h

0b10 E4h/9Eh 64h/1Eh

0b11 6Ch/16h E4h/9Eh

Table 4, from the MAX17330 data sheet, shows how the I2CCmd register can
dynamically change the address of the device based on the ALERT GPIO pin value.
In this case, the GoToSID and INcSID fields are used to change the I2C address:

	X Set ALRT_A logic low
	X Set ALRT_B logic high
	X Write I2CCmd = 0 × 0001 	 MAX17330_A address remains at 6Ch/16h

							  MAX17330_B address set to ECh/96h

Once each device has its own unique address, the entire system can be controlled
by a single microcontroller.

Here is the script for the microcontroller to complete I2C configuration. This will be
part of the system initialization.

	X Load .INI file
	X Assert ALRT_A and ALRT_B to keep the path between SYSP and BATTP open
	X Read VBATT_A and VBATT_B
	X VMAX = max (VBATT_A, VBATT_B)

	X Set VOUT = VMAX + 50 mV
	X Release ALRT_A and ALRT_B
	X Set nProtCfg.OvrdEn = 0 to use ALRT as Output

See Table 6.

Some registers in the nonvolatile space require the firmware to be restarted for
the change to take effect. Thus, the following step is required:

	X Assert Config2.POR_CMD to restart firmware

See Table 7.

Next, we need to enable interrupts from the chargers:

	X Set (Config.Aen and Config.Caen) = 1

See Table 8.

Now the devices are initialized.

Table 2. MAX17330 Registers

Register Page Lock Description 2-Wire Node Address 2-Wire Protocol 2-Wire External Address Range

00 h
Modelgauge M5 EZ data block 6 channels I2C 00 h – 4 Fh

01 h – 04 h Lock 2

05 h – 0Ah Reserved

0 Bh Lock 2 Modelgauge M5 EZ data block (continued) 6 channels I2C B0 h – BFh

0 Ch SHA SHA memory 6 channels I2C C0h – CFh

0 Dh Lock 2 Modelgauge M5 EZ data block (continued) 6 channels I2C D0h – DFh

0 Eh – 0 Fh Reserved

10 h – 17 h SBS data block 16 channels SBS 00 h – 7 Fh

18 h – 19 h Lock 3 Modelgauge M5 EZ nonvolatile memory block

16 channels I2C 80 h – EFh1 Ah – 1 Bh Lock 1 Life logging and configuration nonvolatile memory block

1 Ch Lock 4 Configuration nonvolatile memory block

Table 3. nPackCfg (1B5h) Register Format

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

0 S_Hib THCfg THType 000 0 ParEn I2CSid 0001

Table 4. I2CCmd (12Bh) Register Format

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

0 GoToSID 0 IncSID

VISIT ANALOG.COM  5

Logging Data and Interrupts
We need to be able to read registers to log data and check if an interrupt has been
generated on the ALERT GPIO lines. We can use this script:

	X Set 500 ms Timer
	X VMIN = min (VBATT_A, VBATT_B)

	X Vsys_min = nVEmpty[15:7]
	X CrossCharge = False
	X If (VMIN<Vsys_min)  CrossCharge = True

Evaluate if the minimum battery voltage exceeds the minimum operating
voltage of the system

	X If FProtStat.IsDis = 0
Charging signal is detected

	X Clear Status.AllowChgB
Indicate charger presence to all batteries

	X If (VBATT > VMIN + 400 mV and !Cross Charge)
Determine which battery to block to avoid cross-charging

	 Config2.BlockDis = 1

	 else

	 Config2.BlockDis = 0
	 Allow discharging if the low battery is much lower than the high battery

See tables 9, 10, and 11.

When ALRT is asserted from the MAX17330, the host will perform the following:

	 Read Status register data
	 If Status.CA is set
			 Read ChgStat register
			 If ChgStat.Dropout = 1  increase VOUT
			 If (ChgStat.CP or ChgStat.CT) = 1  decrease VOUT
			 Clear Status.CA

See tables 12 and 13.

Figure 6 shows the parallel charging plot extracted from the logged data (Excel
file). Note how it follows the step charging profile.

Table 6. nProtCfg (1D7h) Register Format

D15 D14 D13 D12 D11 D10 D9 D8

ChgWDTEn nChgAutoCtrl FullEn SCTest CmOvrdEn ChgTestEn PrequalEn

D7 D6 D5 D4 D3 D2 D1 D0

Reserved PFEn DeepShpEn OvrdEn UVRdy FetPFEn BlockDisCEn DeepShp2En

Table 7. Config2 (OABh) Register Format

D15 D14 D13 D12 D11 D10 D9 D8

POR_CMD 0 AtRtEn 0 0 0 0 0

D7 D6 D5 D4 D3 D2 D1 D0

dSOCen TAlrtEn 0 1 DRCfg CPMode BlockDis

Table 8. Config (O0Bh) Register Format

D15 D14 D13 D12 D11 D10 D9 D8

0 SS TS VS 0 PBen DisBlockRead ChgAutoCtrl

D7 D6 D5 D4 D3 D2 D1 D0

SHIP COMMSH FastADCen ETHRM FTHRM Aen CAen PAen

https://www.analog.com

6  A Guide to Battery Fast Charging—Part 2

4.3

3.6
1 5538

3.7

3.8

4

300020001000

I vs. V

3.9

4.1

4.2

700

-100

100

200

300

500

600

400

0

4000 5000

VCELL_1
VPCK_1
VCELL_2
VPCK_2
ICELL_1
ICELL_2

Figure 6. A parallel charging plot.

Optionally, once the device moves from the constant current (CC) phase to the
constant voltage (CV) phase, the voltage generated from the step-down converter
can be reduced as follows:

	X If VBATT = ChargingVoltage
		 Read ChgStat Register
		 If ChgStat.CV = 1 decrease VOUT until VPCK = ChargingVoltage + 25 mV

These are all the steps needed to manage a 1S2P charging configuration. Included
in MAX17330-usercode.zip is the Python code for configuring the buck converter
(MAX20743) as well as the charger and fuel gauge (MAX17330). It also includes
the Excel data log to capture important charging parameters and evaluate the
step charging profile. By managing alert signals generated from the MAX17330, a
microcontroller keeps the linear charger of the MAX17330 close to dropout, mini-
mizing power dissipation and therefore allowing high charging current. A battery
pack using the MAX17330 stores the parameters for the installed battery that the
host microcontroller needs to implement efficient fast charging. This allows OEMs
to replace a standard charger IC device with a simpler and less expensive buck
converter without compromising performance or reliability.

Conclusion
Device charging time is one of the most important user experience consider-
ations. Using a buck converter like the MAX17330 makes it possible to efficiently
manage a very high current to decrease charging time in a small IC package. The
ability to support parallel charging with a very high current, such as with two
MAX17330, enables developers to charge multiple batteries in a safe, reliable man-
ner that keeps charging time to a minimum.

FProtStat Register
Table 9. FProtStat (0DAh) Register Format

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

X IsDis X Hot Cold Warm

Table 10. Status (000h) Register Format

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

PA Smx Tmx Vmx CA Smn Tmn Vmn dSOCi Imx AllowChgB X Bst Imn POR X

Table 11. Config2 (0ABh) Register Format

D15 D14 D13 D12 D11 D10 D9 D8

POR_CMD 0 AtRtEn 0 0 0 0 0

D7 D6 D5 D4 D3 D2 D1 D0

dSOCen TAlrtEn 0 1 DRCfg CPMode BlockDis

Table 12. Status Register (000h) Format

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

PA Smx Tmx Vmx CA Smn Tmn Vmn dSOCi lmx AllowChgB X Bst Imn POR X

Table 13. ChgStat (0A3h) Register Format

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

Dropout X X X X X X X X X X CP CT CC CV

https://www.analog.com/media/en/technical-documentation/tech-articles/max17330-user_code.zip

VISIT ANALOG.COMFor regional headquarters, sales, and distributors or
to contact customer service and technical support,
visit analog.com/contact.

Ask our ADI technology experts tough questions, browse
FAQs, or join a conversation at the EngineerZone Online
Support Community. Visit ez.analog.com.

©2023 Analog Devices, Inc. All rights reserved.
Trademarks and registered trademarks are
the property of their respective owners.

TA24441-5/23

About the Authors
Franco Contadini has over 35 years of experience in the electronics
industry. After 10 years as a board and ASIC designer, he became a field
applications engineer supporting industrial, telecom, and medical cus-
tomers and focusing on power and battery management, signal chains,
cryptographic systems, and microcontrollers. Franco has authored several
application notes and articles on signal chains and power. He studied elec-
tronics at ITIS of Genoa, Italy.

Alessandro Leonardi is an account manager at Analog Devices, Milan. He
studied electronics engineering and received a bachelor’s and master’s
degree from Politecnico di Milano. After graduating, he became part of the
field applications trainee program at ADI.

Engage with the ADI technology experts in our online support community.
Ask your tough design questions, browse FAQs, or join a conversation.

	 Visit ez.analog.com

https://www.analog.com
https://www.analog.com/contact
https://ez.analog.com
https://www.analog.com
https://ez.analog.com
https://ez.analog.com/

	Button 36:
	Page 1:

	Button 35:
	Page 1:

	Button 34:
	Page 1:

	Button 33:
	Page 1:

	Button 32:
	Page 1:

	Button 31:
	Page 1:

