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TUTORIAL 3628

Mathematical Basics of Band-Limited Sampling
and Aliasing

Sep 25, 2005

Abstract: This article presents a theoretical approach for sampling and reconstructing a signal without
losing the original contents of the signal. The effects of aliasing are covered. The MAX19541 ADC is
used as an example for comparing over- and under-sampled input frequencies.

A similar version of this article appeared in the January, 2005 issue of RF Design magazine.

Introduction

Modern applications often require that we sample analog signals, convert them to digital form, do
operations on them, and finally reconstruct them as analog signals. The important question explored in
this article is how to sample and reconstruct an analog signal while preserving the full information of the
original.

Band-Limited Signals

To begin, we concern ourselves exclusively with band-limited signals. The reasons are both
mathematical and physical, as we discuss later. A signal is said to be band-limited if the amplitude of its
spectrum goes to zero for all frequencies beyond some threshold called the cutoff frequency. For one
such signal, G(f) in Figure 1, we see that the spectrum is zero for frequencies above a. In that case, the
value a is also the bandwidth (BW) for this baseband signal. (The bandwidth of o baseband signal is
defined only for positive frequencies, because negative frequencies have no meaning in the physical
world.)
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Figure 1. Frequency spectrum of the signal G(f).

The next step is to sample g(t). We can express that operation mathematically by multiplying g(t) with a
train of delta functions separated by the interval T. By multiplying g(t) with a delta function we select only
the value of g(t) corresponding to the instant at which the delta function occurs; the product equals zero
for all other times. This is analogous to sampling g(t) with a frequency fsampLing = 1/T. This operation is

expressed in Equation 1, and the new sampled signal is called s(t):

s(t) = g{tlg i{t -nT) (Eq. 1)

The next step is to find the spectrum of the sampled signal, s(t). We do that by taking its Fourier
transform:

s = Fls(v) = [ se 2t (Eq.2)

Evaluation of the above integral is somewhat cumbersome. To simplify it, we note that s(t) is the
effective multiplication of g(t) with a train of impulses. We also note that multiplication in the time domain
corresponds to convolution in the frequency domain. (For proof of that assertion, consult any text on
Fourier transformations.) Thus, we can express S(f) as:

S() = G(f) » ﬂng 3t~ nT)) (Eq. 3)

Further, note that the asterisk in Equation 3 denotes convolution, not multiplication. Since we know the
spectrum of the original signal, g(t), we need find only the Fourier transform of the train of impulses. To
do so, we recognize that the train of impulses is a periodic function, and can therefore be represented by
a Fourier series. Consequently, we write:

= = T
3 8(t-nT) = 2 AT T (Eq. 4)
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Where the Fourier coefficients are:
" = o n
Ag=—["" S a(t- nTye 2T T ot (Eq. 5)
Tirgne

The limits of integration for Equation 5 are specified only for one period. That is not a problem when
dealing with the delta function. However, to make the above expressions more robust, note that
substitutions can be made: The integral can be replaced with a Fourier integral from minus infinity to
infinity, and the periodic train of delta functions can be replaced with a single delta function—the basis
for the periodic signal. Thus, we can rewrite Equation 5 as:

(Eq. &)
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The train of delta functions then assumes the following simplified expression, which is easily Fourier
transformable:
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niau )= 3 el2m (Eq.7)
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Recognizing that a signal can be synthesized from its Fourier transform,
it =| Fine2mar (Eq.8)
And also that,

-t} = | B(f - fp)e'2™Mgf = ei2mot (Eq. 9)
We can finally write:

o2 Tt | 5(F - Lyeizmigy
o T1 ) B (Eq. 10)
FL3(t-nT)}= - X 0lf- %} = %nl: B(f - nfsampLING)
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Having obtained this result, we again focus our attention on the sampled baseband signal. We can now
express its Fourier transform as follows:

S(f) = G(f ) » %ﬂz &(f - nfgampeLing) (Eq. 11)
The convolution of two signals A(f) and B(f) is defined as:

A + BN = [ AB( - 1) = [ BFA- 1)dr (Eq. 12)

And we can express S(f) as:

S() = G(f) « ~ 3. 8(f - nfsampLing) =J?3(f'] L3 8(f - - nfsampLnc)df'=
Th=- = Thn=-= (Eq. 13)

L5 _[_MG[f'}ﬁ{f - 1= nfsampLing JdF = %EGU’- nfSAMPLING)

Tn:. NS em

Equation 13, commonly called the sampling theorem, is the result for which we have been working. It
shows that sampling in the time domain at intervals of T seconds replicates the spectrum of our
unsampled signal every 1/T cycles per second. Figure 2 shows our result in graphic form. That result, in
turn, now allows us to answer the original question clearly and intuitively: How do we sample in a way
that preserves the full information of the original signal?
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Figure 2. Frequency spectrum of the sampled signal, s(t).

The Effects of Aliasing

To preserve all information in the unsampled baseband signal, we must ensure that the spectrum
"islands" do not overlap when replicating the spectrum. If they do (a phenomenon called aliasing), we
can no longer extract the original signal from the samples. Aliasing allows higher frequencies to disguise
themselves as lower frequencies, as can be seen in Figure 3.
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Figure 3. Diagram of a signal affected by aliasing.

To avoid aliasing, you must preserve the following condition: 1/T = 2a, or 1/T = 2BW. This result can be
expressed in terms of the sampling frequency:

fsampLing = 2BW (Eq. 14)

Thus, the minimum sampling frequency necessary for sampling without aliasing is 2BW. This result is
generally known as the Nyquist criterion.

Figure 3 depicts a sampled signal suffering from aliasing. Note that the high-frequency component, fy,
appears at a much lower frequency. You can recover a signal from its sampled version by using a
lowpass filter to isolate the original spectrum, and cutting (attenuating) everything else. Thus, extracting
the signal with a lowpass filter of cutoff frequency o does not eliminate the aliased high frequency, but
allows it to corrupt the signal of interest.

Recalling that aliasing can corrupt the signal of interest, consider a special class of band-limited signals
known as bandpass signals. A bandpass signal is characterized by a bandwidth not bounded by zero at
its lower end. To illustrate, the bandpass signal shown in Figure 4 has signal energy between the
frequencies ap and ay, and its bandwidth is defined as ay - ar. Thus, the main difference between

bandpass and baseband signals is in their definition of bandwidth: The bandwidth of a baseband signal

Page 4 of 7



equals its highest frequency, while the bandwidth of a bandpass signal is the difference between its
upper- and lower-bound frequencies.
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Figure 4. lllustration of a bandpass signal.

From the discussion above, we know that by sampling this signal we replicate its spectrum at intervals of
1/T. Because that spectrum includes a substantial zero-amplitude band between zero and the signal's
lower frequency bound, the actual signal bandwidth is smaller than ay. We can, therefore, use smaller
shifts in the frequency domain, which allows a sampling frequency lower than that required for a signal
whose spectrum occupies all frequencies from zero to ay. Assume, for example, a signal bandwidth of
ay/2. To satisfy the Nyquist criterion our sampling frequency equals ay, producing the sampled-signal
spectrum of Figure 5.
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Figure 5. Spectrum of sampled bandpass signal.

You can see that this sampling produces no aliasing. We could, therefore, extract the original signal from
the samples if we had a perfect bandpass filter. It is important to note in this example the difference
between a baseband signal and a bandpass signal. For baseband signals, the bandwidth and hence the
sampling frequency depend solely on the highest frequency present. For bandpass signals, bandwidth is
usually smaller than the highest frequency.

These characteristics determine the method for recovering the sampled signal. Consider a baseband
and a bandpass signal, each with the same value of maximum frequency. The bandpass signal permits
a lower sampling frequency only if the recovery method includes a bandpass filter that isolates the
original signal spectrum (the white rectangles in Figure 5). A lowpass filter used for baseband recovery
cannot recover the original bandpass signal, because it includes the shaded areas shown in Figure 5.
Thus, if you use a lowpass filter to recover the bandpass signal in Figure 5, you must sample at 2oy to

avoid aliasing.

Thus, band-limited signals can be sampled and fully recovered only when observing the Nyquist criterion.
For bandpass signals the Nyquist criterion will ensure no aliasing only when the recovery of the signal is
done with a bandpass filter; otherwise a higher sampling frequency will be required. This knowledge is
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important when choosing the sampling frequency of any analog to digital converter.

One last consideration is our assumption of band-limited signals. Mathematically, a signal can never be
truly band-limited. A law of Fourier transformations says that if a signal is finite in time, its spectrum
extends to infinite frequency, and if its bandwidth is finite, its duration is infinite in time. Clearly we cannot
have a time-domain signal of infinite duration, so we can never have a truly band-limited signal. Most
practical signals, however, concentrate most of their energy in a definite portion of the spectrum. The
analysis above is effective for such signals.

Sampling Sinusoidal Signals

A very easy, convenient, and practical way of illustrating the disguising of higher frequencies as lower
frequencies that are inherent in aliasing is by sampling sinusoidal signals. This is because pure
sinusoidal signals have spectrums consisting only of spikes (delta functions) at the respective frequency;
aliasing with pure tones is seen as the spike moving from one location to another. This other location is
referred to as the image and is, in reality, the aliased signal.

The results presented below were taken with the MAX19541, 125Msps, 12-bit ADC. Figure 6 shows the
spectrum at the converter's output for the input frequency fiy = 11.5284MHz. The data shows that the

main spike occurs exactly at this frequency. There are a number of other spikes which are harmonics
introduced by the nonlinearities of the converter, but they are irrelevant to our discussion. The sampling
frequency, fsampLING = 125MHz, is more than twice the input frequency as required by the Nyquist

criterion, and therefore no aliasing occurs.

FFT Plot (16384 Samples)

S0

-20f

30k

a0l

]

-B0 P

Amplitude (dB FS)

Frequency (MHz)

Figure 6. Spectrum of signal sampled with MAX19541 ADC. Here fsampLING = 125MHz, fiNy =
11.5284MHz.

Next, consider what will happen to the location of the main spike if we increase the input frequency to
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fin = 183.4856MHz. This input frequency is higher than fsampLiNG/2, and we expect aliasing to occur.
The resulting spectrum given in Figure 7 shows that the main spike is now located at 58.48MHz, and
this is the aliased signal. In other words, an image has appeared at 58.48MHz when, in fact, our input
signal did not contain this frequency. Note that in both Figures 6 and 7 we plotted the spectrum only up
to the Nyquist frequency. This is because the spectrum is periodic and this portion contains all the
essential information.

FFT Plot (16384 Samples)
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Figure 7. Spectrum of a signal sampled with MAX19541 ADC. Here fsampLING = 125MHz, fiy =
183.4856MHz.

Related Parts

MAX19541 12-Bit, 125Msps ADC with CMOS Outputs for Wideband
Applications

More Information

For Technical Support: http://www.maximintegrated.com/support

For Samples: http://www.maximintegrated.com/samples

Other Questions and Comments: http://www.maximintegrated.com/contact

Application Note 3628: http://www.maximintegrated.com/an3628
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