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Design Trade-Offs for Single-Supply Op Amps

Apr 03, 2000

Abstract: The trend toward low-voltage, single-supply systems is fueled by designers' attempts to balance the often
contradictory goals of lower product size and cost vs. longer battery life and better system performance. This trend
may be good for consumers, but it complicates the task of choosing an appropriate op amp for a given application.

Single-supply operation is generally synonymous with low-voltage operation, and moving from £15V or 5V to a
single 5V or 3V supply rail reduces the available signal range. Consequently, the common-mode input range, output-
voltage swing, CMRR, noise, and other op-amp limitations become much more important. As in all engineering, you
must often sacrifice one aspect of system performance to improve another. The following discussion of trade-offs
among single-supply op amps also explains how these low-voltage amplifiers differ from their higher voltage
predecessors.

Input Stage Concerns
Input common-mode voltage range is one of the first issues a designer should consider in specifying a single-supply

op amp. The first impulse is to eliminate this concern by specifying a Rail-to-Rail input capability. Certain penalties
must be paid, however, for true rail-to-rail operation.

Most of Maxim's low-voltage op amps have input common-mode voltage ranges that include the negative supply rail
(Table 1), but only some allow inputs that extend to the positive rail as well. Others allow input voltages only within
one or two volts of the positive rail. Op amps that allow signals only to the negative rail will be referred to as ground-
sensing amplifiers. Those that allow signals to either rail will be referred to as rail-to-rail input amplifiers.

Table 1. Maxim low-voltage op amps
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Vos and I Concerns

In many applications, the amplifier provides a gain of +2V/V or more to a ground-referred signal. In these cases, a
ground-sensing amplifier is generally adequate for handling the signal's common-mode range. If so, it could provide
better performance than one with a rail-to-rail input. Typical rail-to-rail input stages use two differential input pairs
instead of one (Figure 1).
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Figure 1. A rail-to-rail input stage (a) has two differential pairs, while a standard ground-sensing input stage (b) has
only one.

As the input signal moves from one supply rail to the other, the amplifier shifts from one input pair to the other. At
the crossover point, this shift can cause changes in the input bias current and offset voltage that affect both the
magnitude and the polarity of these parameters. These offset-voltage changes typically worsen the distortion
performance and precision specifications of rail-to-rail amplifiers (in comparison with ground-sensing types). To
minimize offset-voltage shifts and smooth the transition from one input pair to another, Maxim trims the offset of its
rail-to-rail amplifiers at both the high and the low ends of the common-mode range.

To reduce offset voltages caused by input bias currents, the designer should match impedances at the op amp's
inverting and noninverting nodes. Because input bias currents are typically larger than input offset currents, this
impedance matching is good practice for all types of op amps, not just rail-to-rail input amplifiers.

To illustrate this point, Figure 2 shows the change in input bias current vs. common-mode range for the MAX4122—
MAX4129 family of op amps (which feature rail-to-rail capability at both the input and output). As the common-mode
input voltage ramps from OV to 5V, the input bias current makes an absolute change of 85nA (from -45nA to +40nA).
In contrast, the specification for input offset current is only £1nA. Thus, changes at the inverting and noninverting
inputs (input offset current) track each other closely, despite significant changes in the magnitude and sign of the
bias currents. By matching impedances at these nodes, you can minimize the offset voltage induced by changes in
input bias current.
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Figure 2. As the common-mode input voltage of a rail-to-rail input amplifier sweeps from one supply rail to the other,
the input bias current can change, both in sign and in magnitude.

Figure 3 shows how to match impedances in the classic inverting and noninverting op-amp configurations. The
inverting configuration (Figure 4) offers one way to eliminate changes in the input bias current by keeping the
amplifier's common-mode input voltage constant at a reference voltage (VrRer). The output is given by VouTt = (-VIN
x R2/R1) + VRep(1 + R2/R1). If R2 = R1, this becomes Vout = -VIN + 2VREE. For VRer = 2V and V)N between 0V
and 3V, Vourt ranges from 4V to 1V. The common-mode range is fixed, so CMR errors are eliminated as well. Table
2 lists references suitable for use in low-voltage systems.

Page 4 of 12



“Ri= R || R

Figure 3. Matching the resistance at the inverting and noninverting nodes minimizes offset errors caused by input

bias currents for both the noninverting (a) and inverting (b) configurations.
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Figure 4. By holding the common-mode input voltage constant, the inverting-amplifier configuration eliminates
common-mode-rejection errors.

Table 2. Maxim low-voltage references
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Slew Rate

Slew rate can also suffer when a rail-to-rail input amplifier is used in place of a ground-sensing amplifier. The
ground-sensing amplifier's simpler input stage can take advantage of many slew-rate-enhancing circuit techniques
that are simply not available to amplifiers with the two-pair, rail-to-rail input. For example, MAX4212 family op amps
(Table 1) have ground-sensing inputs that help them achieve 600V/us slew rates and 300MHz bandwidths with
supply currents of only 7mA maximum. If they had rail-to-rail input stages and all other specs remained unchanged,
the slew rates would be several times lower.

Output Stage Concerns

While low-voltage designs may not require op amps with rail-to-rail input stages, they typically require rail-to-rail
output stages to maximize dynamic range. Because op amps provide gain in most applications, the output voltage is
usually larger than the input voltage. Thus, a rail-to-rail input stage is not always required, but a rail-to-rail output
stage usually is. These output stages differ from those in dual-supply op amps and cause different circuit behavior in
the rail-to-rail output amplifiers.

Rail-to-rail output stages usually incorporate a common-emitter configuration, and standard output stages usually
have an emitter-follower configuration (Figure 5). For common-emitter output stages, the voltage drop from input to
output is relatively low (a single collector-to-emitter saturation voltage, or Vcg(saT)), but the classic emitter-follower
output stage cannot get closer to the rail than Vcg(saT) (due to the current source) plus Vgg (due to the output
transistor).
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Figure 5. A rail-to-rail output stage (a) has a common-emitter configuration, while a standard output stage (b) has an
emitter-follower configuration.
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Because a bipolar transistor's Vcg(saT) depends on the current through the transistor, the output swing of a bipolar
op amp depends on its load current. Thus, despite claims of rail-to-rail performance, an amplifier's output stage
never truly reaches the supply rail. A MAX4122 with 100kQ load, for instance, swings to within 12mV of the positive
rail and 20mV of the negative rail. With a 250Q load, however, it swings only to within 240mV of the positive rail and
125mV of the negative rail. For CMOS output stages, the analogy to the bipolar transistor's collector-emitter voltage
is the MOSFET's drain-source voltage, which is caused by the product of on-resistance and channel current in the
MOSFET. Thus, the output voltage swing for a MOSFET output stage is also a function of the load.

Gain vs. Load

Besides offering a low input-to-output voltage drop, the common-emitter stage of a rail-to-rail amplifier differs from
the emitter-follower stage in other important ways. Common-emitter stages provide voltage gain and have relatively
high-impedance outputs; emitter-follower stages provide unity voltage gain and have low-impedance outputs. For
that reason, rail-to-rail op amps usually include the output node as part of the compensation network, while standard
op amps typically take their compensation at a preceding stage. For rail-to-rail op amps, the resulting dependency of
gain on load current can make them unstable when driving capacitive loads.

These properties of rail-to-rail outputs can be suppressed with careful op-amp design, but the trade-off tends to be a
higher supply current than required by op amps with emitter-follower output stages. The MAX4122-MAX4129 family
of op amps offers good capability for driving capacitive loads (Table 1). Featuring rail-to-rail inputs and outputs that
remain stable while driving 500pF, these op amps are useful for driving both improperly terminated cables and the
capacitive inputs of analog-to-digital converters. The features that allow them to drive heavy capacitive loads also
allow them to maintain good large-signal voltage gain, even with heavy resistive loads.

Open-Loop Gain vs. Output Swing

As is true for all op amps, the open-loop gain for a rail-to-rail output amplifier is a function of the output voltage
swing. Thus, to evaluate a rail-to-rail output amplifier, you must specify the gain both at a given output voltage and
with a given load. Maxim specifies gain this way, but not all vendors include such data in their data sheets. For
example, an op amp may have 106dB of open-loop gain and the capability to drive a 250Q load to within 125mV of
the rails, but it may not be able to exhibit those capabilities at the same time. The MAX4122—-MAX4129 data sheet,
for instance, properly specifies large-signal voltage gain and output voltage swing in its Electrical Characteristicstable
(Figure 6). Large-signal voltage gain vs. output voltage and load graphs for these devices are shown in Figure 7.
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Figure 6. A proper specification for large-signal voltage gain includes both the load and the output voltage swing.
Output voltage swing is a function of the load being driven.
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Figure 7. These graphs show a dependence of gain on the load and the output voltage swing for rail-to-rail output
amplifiers.

Charge-Pump Op Amps

The MAX4162 op-amp family illustrates a novel approach to the problems of the standard rail-to-rail output stage.
These op amps have a classic emitter-follower output stage, but achieve rail-to-rail outputs with an internal charge-
pump converter that provides internal supply voltages to bias the output stage. The charge-pump converter also
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provides power to the amplifier's other stages. Thus, the input stage has a standard ground-sensing configuration,
but allows inputs to swing from ground to Vcc. Specifications for this family are listed in Table 1. Each device draws
only 35pA (including the charge-pump converter) while providing a 200kHz bandwidth. Supply currents are low, but
these amplifiers can drive relatively heavy loads of 20kQ and 500pF.

Because a charge pump enables the construction of op amps with standard input and output structures, such
amplifiers can offer performance superior to that of rail-to-rail op amps. Charge-pump op amps have very good
common-mode rejection, and their single input-transistor pair is not prone to the offset-voltage changes caused by
switchover between input pairs. In addition, the classic emitter-follower output stage provides high open-loop gain,
even with a relatively heavy resistive load. It also allows the amplifier to remain stable while driving large capacitive
loads.

General Issues

Single-supply operation also aggravates the problems of noise, biasing, and distortion.

Noise

Single-supply applications are generally low voltage, and lower supply rails force the designer to make a
corresponding reduction in noise just to maintain the system's signal-to-noise ratio. Unfortunately, low-voltage
operation usually goes hand-in-hand with low-power operation, and as supply current decreases, amplifier noise
tends to increase. All else being equal, a lower noise amplifier requires higher power dissipation.

To evaluate op-amp noise, consider all noise sources: input voltage noise, input current noise, and thermal noise
caused by the gain-setting resistors. Figure 8 illustrates these noise sources with a voltage-feedback op amp. C1 is
stray capacitance at the op amp's inverting input, C2 limits noise gain and signal bandwidth at the higher
frequencies, and R1/R2 are the standard gain-setting resistors. R3 balances the resistances seen by the inverting
and noninverting inputs.

MR MRz
WO
f " ouT

Figure 8. Major noise sources in a voltage-feedback op amp are as shown.

At low frequencies, the noise gain is given by 1 + R2/R1 (Figure 9). The noise gain sees its first zero at a frequency
given by 1/2INR1C1, then increases at 6dB per octave until it hits the pole caused by C2. At this pole (1/2ITR2C2),
the noise gain is flat and equal to 1 + C1/C2. Noise gain then intercepts the open-loop gain of the amplifier and rolls
off at 6dB per octave (the standard single-pole rolloff of the amplifier's open-loop gain).
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Figure 9. This graph shows noise gain and open-loop gain for the amplifier in Figure 8.
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Because the input voltage noise, noninverting current noise, and noise due to R3 are integrated over the entire
closed-loop bandwidth and multiplied by the circuit's noise gain, you can see (from the plots of noise gain and open-
loop gain) that circuit noise can be minimized by choosing an op amp with a lower unity-gain-crossover frequency.
For the inverting input, current noise and the thermal noise due to R1 and R2 are integrated only over the signal
bandwidth (1/2[MR2C2). Since capacitor C2 is not present for current-feedback op amps, noise for those types is
integrated over the entire closed-loop signal bandwidth.

Distortion

An amplifier's loop gain minimizes the distortion that would otherwise result from nonlinearities in its input-to-output
transfer function. Because amplifier gain falls off at higher frequencies, the amplifier's harmonic distortion increases.

Thus, for a given frequency, an op amp can achieve superior harmonic performance if it operates in its more linear

region, with maximum loop gain. This usually means biasing the output away from the supply rails, as in Figure 4
(which introduces signal inversion and offset) or Figure 10 (which introduces offset but no signal inversion).
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Figure 10. Providing both gain and offset to the input signal, this circuit biases the output voltage away from the
supply rails.

The inverting method shown in Figure 4 eliminates common-mode nonlinearities by keeping the common-mode input
voltage constant. This feature is particularly useful for rail-to-rail input amplifiers, whose nonlinearities are produced
by changes in the common-mode input (as the input stage shifts from one input pair to the other).

Focus again on the output stage. A light load will improve the harmonic performance of rail-to-rail amplifiers,
because gain is a function of load current. An amplifier's voltage excursion also affects distortion. All op amps tend to
benefit from loads that require a minimal voltage excursion (internal nodes don't have to travel too far, so they tend
to remain in their linear regions). An amplifier's slew rate, which is related to full-power bandwidth, also affects
harmonic distortion. In running the amplifier above its full-power bandwidth, the associated slew-rate limitations
cause severe nonlinearities.

Generating a Second Supply

High-performance, single-supply op amps are becoming more common, but to maximize performance you must
sometimes choose a dual-supply amplifier. The selection of dual-supply types is greater because dual-supply
systems have been available longer, and dual-supply op amps are not designed with the same restrictions as their
single-supply cousins.

Countless methods are available for generating a negative supply from an existing positive one. Switching regulators
are the most flexible, but charge-pump voltage converters offer the simplest, smallest, and cheapest alternative.
Because charge-pump converters provide voltage conversion with external capacitors rather than inductors, they
excel at providing integer multiples of the input voltage (-V|n, +2V|N, etc.). Their output voltages are typically
unregulated, but if load currents are relatively light, the output voltages remain fairly close to an integer multiple of
the input.

Because charge-pump converters can have very low quiescent supply currents, they can be highly efficient under
light loads. In Figure 11, a charge-pump converter is configured to generate a negative voltage that is equal to the
input in magnitude but opposite in polarity. Pin-strap options set the internal oscillator frequency at 13kHz, 100kHz,
or 250kHz, allowing the designer to trade off quiescent current consumption, charge-pump capacitor size, or output
voltage ripple.
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Figure 11. Simple, small, and inexpensive charge-pump converters can readily generate a negative supply rail from a
positive one.

Related Parts

MAX4122 Single/Dual/Quad, Wide-Bandwidth, Low-Power, Single-Supply Free Samples
Rail-to-Rail /O Op Amps

MAX4165 High-Output-Drive, Precision, Low-Power, Single-Supply, Rail- Free Samples
to-Rail /0 Op Amps with Shutdown

MAX861 50mA, Frequency-Selectable, Switched-Capacitor Voltage Free Samples
Converters

More Information

For Technical Support: http://www.maximintegrated.com/support

For Samples: http://www.maximintegrated.com/samples

Other Questions and Comments: http://www.maximintegrated.com/contact

Application Note 656: http://www.maximintegrated.com/an656
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