
         

VISIT ANALOG.COM

Technical Article

Leveraging a Hardware
Agnostic Approach to
Ease Embedded Systems
Design: The Basics
Giacomo Paterniani�, Field Applications Engineer

Abstract
This article demonstrates an approach that accelerates the prototyping phase
of embedded system design. It will illustrate how to utilize a hardware agnostic
driver in combination with a sensor to make component selection much easier
for an entire embedded system. This article describes the components, the
typical software structure of an embedded system, and the driver implemen-
tation. The subsequent article, “Leveraging a Hardware Agnostic Approach to
Ease Embedded Systems Design: Driver Implementation,” will further detail the
execution.

Introduction
Using a hardware agnostic driver allows designers to choose the type of micro-
controller or processor to manage the sensor without a dependence on hardware.
The benefit of this approach is offering the option to add software layers on top of
the basic one provided by a supplier, as well as simplifying sensor integration. This
article will use an inertial measurement unit (IMU) sensor as an example, but the
approach is scalable to other sensors and components. The driver is configured
using the C programming language and tested with a generic microcontroller.

Component Selection
IMU sensors are mostly used for motion detection and to measure the intensity of
movements through accelerations and rotational speeds. The ADIS16500 IMU sen-
sor (Figure 1) was selected in this exercise as it allows for a simplified, cost-effec-
tive way to integrate accurate, multi-axis inertial sensing into industrial systems,
compared with the complexity and investment associated with discrete designs.

Figure 1. The ADIS16500 evaluation board.

The main applications are:

	X Navigation, stabilization, and instrumentation
	X Unmanned and autonomous vehicles
	X Smart agriculture and construction machinery
	X Factory/industrial automation, robotics
	X Virtual/augmented reality
	X Internet of moving things

https://www.analog.com
https://www.analog.com/
https://www.analog.com/en/products/adis16500.html
https://ez.analog.com
https://www.youtube.com/user/AnalogDevicesInc
https://twitter.com/adi_news
https://www.linkedin.com/company/analog-devices
https://www.facebook.com/AnalogDevicesInc
https://flipboard.com/@AnalogDevices

2  Leveraging a Hardware Agnostic Approach to Ease Embedded Systems Design: The Basics

The ADIS16500 is a precision, miniature microelectromechanical system (MEMS)
IMU that embeds a triaxial gyroscope, a triaxial accelerometer, and a tempera-
ture sensor. See Figure 2. It is factory calibrated for sensitivity, bias, alignment,
linear acceleration (gyroscope bias), and point of percussion (accelerometer loca-
tion). This means that the sensor measurements are accurate over a broad set of
conditions.

This interface allows the microcontroller to write and read the user control reg-
isters, as well as read the output data registers from where the accelerometer,
gyroscope, or temperature sensor data can be acquired. For that reason, all the
software and firmware required to manage the interface has been developed.
Figure 2 shows the data ready (DR) pin. This pin is a digital signal that indicates
when new data is available to be read from the sensor. The DR pin can be eas-
ily managed by a microcontroller, as it can be considered as an input through a
general-purpose input/output (GPIO) port.

From a hardware perspective, the IMU sensor and microcontroller will be con-
nected using the SPI interface, which is a 4-wire interface consisting of the nCS,
SCLK, DIN, and DOUT pins. The DR pin should be connected to one of the microcon-
troller’s GPIOs. The IMU sensor also needs a voltage supply that is between 3 V and
3.6 V, so 3.3 V is sufficient.

Understanding the Typical Software Structure
of an Embedded System

Application

Hardware

Sensor
Driver

Peripheral
Drivers

(SPI, I2C, etc.)

Low Level
Drivers

Figure 3. An SW/FW structure of embedded systems.

Understanding the generic software and firmware structure of an embedded sys-
tem is essential to interfacing with a sensor driver. This will help the designer
to build a software module that is flexible and easy enough to integrate into any
project. Moreover, the driver must be implemented in a modular way, such that the
designer can add higher level functions relying on existing ones.

The software structure of an embedded system is pictured in Figure 3. In Figure 3, the
hierarchy begins with the application layer, which is where the application code is
written. The application layer includes a main file, application modules that rely
on the sensor, and modules that rely on peripheral drivers that manage processor
configuration. Additionally, within the application layer, there are all the modules
related to the tasks that the microcontroller has to process. For example, this
includes all the software that manages a task with interrupt or polling, a state
machine, and more. That layer level will be different depending on the type of
project, so different projects have different codes implemented in it. Within the
application layer, all the sensors of the system are initialized and configured in
accordance with their data sheets. All the public functions offered by the sensor’s
drivers are invokable. For example, the read of a register from which data can
be output, or a procedure that is writing a register that will change a setting/
calibration.

Below the application layer is the sensor’s driver layer, which has two types of
interfaces. At this level, all functions invokable from the application layer are
implemented. Moreover, the function’s prototypes are inserted in the driver header
file (.h). So, by looking into the header file of a sensor’s driver, you can under-
stand the driver’s interface and so its invokable functions from higher levels. The
lower level layers will be interfaced with peripheral drivers that are specific and
dependent on the microcontroller that manages the sensor. The peripheral driv-
ers include all the modules that manage the microcontroller’s peripherals such as
SPI, I2C, UART, USB, CAN, SPORT, etc. or modules that manage processor internal
blocks such as timers, memories, ADCs, etc. They can be called low level functions
because they are strictly related to the hardware. For example, each SPI driver is
different considering different microcontrollers. Let’s look at the ADIS16500 as an
example. The interface is the SPI, so its driver will be wrapped with the micro-
controller’s SPI driver. This will be the same for different sensors and different
interfaces. For example, if another sensor has the I2C interface, then similarly the
wrapping with the I2C driver of the microcontroller will take place in the sensor’s
initialization procedure.

Below the sensor’s driver level are the peripheral drivers, which differ for each
type of microcontroller. In Figure 3, there is a split between peripheral drivers and
low level drivers. In essence, the peripheral drivers offer the functions of reading
and writing through the available communication protocols. Because the low level
driver will manage the physical layer of the signals, there’s a strong dependence

Figure 2. The ADIS16500 block diagram.

DR VDD

GND

DIN

ADIS16500

SCLK
SPIController

Sync

Input/OutputSelf Test

DOUT

Power
Management

Output
Data

Registers

User
Control

Registers

Calibration
and

Filters

Triaxial
Gyroscope

Triaxial
Accelerometer

Temperature
Sensor

RST

CS

Clock

VISIT ANALOG.COM  3

on the hardware that the designer uses. Usually peripheral and low level driver
layers are generated from the integrated development environment (IDE) of the
microcontroller thorough the visual tools, depending on the evaluation board on
which the microcontroller is mounted.

Driver Implementation
A hardware agnostic approach enables the use of the same driver in different
applications, and hence different microcontrollers or processors. This approach is
dependent on how the driver is implemented. To understand the driver implemen-
tation, first, we will look at the interface, or the sensor’s header file (adis16500.h)
pictured in Figure 4.

The header file contains useful public macros. This includes register’s addresses,
SPI max speed, default output data rate (ODR), bitmasks, and the output sensitiv-
ity of the accelerometer, gyroscope, and temperature sensor, which are related
to the number of bits (16 or 32) with which the data is represented. These macros
are reported in Figure 4. Only a few register’s addresses are shown to provide an
example. The code the article is referring to is available in the appendix.

Figure 4. Macros displayed in the ADIS16500 header file (adis16500.h).

Figure 3 in the appendix shows all the public variables and public type decla-
rations that can be used by every module including the adis16500.h. Here, new
types are defined to manage data more efficiently. To provide an example, the
ADIS16500_XL_OUT type is defined as a structure containing three floats, one for
each axis (x, y, and z). There is also an enumeration that allows the sensor to be
configured in different ways, giving the designer the flexibility to choose the con-
figuration that best suits their needs. The most interesting part here is the section
that makes the driver hardware agnostic. At the beginning of the public variables
part (Figure 3 in the appendix), there are three crucial type definitions: pointers to
three fundamental functions, or SPI transmission and reception functions and the
delay function needed between two SPI accesses to produce the right stall time.
These code lines also show the prototype of the function that can be pointed to.
The SPI transmission function takes a pointer to the value to be transmitted as
input and it returns that can be checked to see if the transmission was successful.
The same can be said for the SPI reception function that takes a pointer to a vari-
able, as input, where the value read in reception will be stored. The delay function
takes a float as input representing the number of microseconds that the designer
wants to wait, and has no return (void). In that way, the designer can declare these
three functions with these specific prototypes, at the application layer (in the

main file for example). Once declared, they can assign the three functions to the
fields of an ADIS16500_INIT private structure. To better understand this last step,
an example is provided in Figure 2 in the appendix.

SPI transmitter, receiver functions, and delay function are declared as static in
the main file, so at application level. They are dependent on peripheral driver
functions, so the dependence on hardware is outside the sensor driver. The three
functions are assigned to the fields of this variable that are pointers to functions.
In this way, the designer can wrap the sensor and microcontroller without modi-
fying the sensor driver code. If the designer changes the microcontroller, they
only need to adjust the main file by substituting the low level functions inside the
three static functions with the appropriate functions for the new microcontroller.
This approach makes the driver hardware agnostic because the designer does
not need to change the sensor’s driver code. Low level functions like spiSelect,
spiReceive, spiUnselect, chThdSleepMicroseconds etc., are usually already avail-
able from the IDE of the microcontroller. In that specific case, the microcontroller
evaluation board used was SDP-K1, which embeds an STM32F469NIH6 Cortex®-M4
microcontroller. The IDE, indeed, was ChibiOS, which is a free Arm® development
environment.

Figure 4 in the appendix shows prototypes of the invokable functions from
the application level. Those prototypes are in the header file of the sensor’s
driver (adis16500.h), along with all the other software and firmware discussed
in figures 2 and 3 in the appendix. First, there is the initialization function
(adis16500_init) that takes a pointer to an ADIS16500_INIT structure as input
and returns a status code indicating whether the initialization was success-
ful. The implementation of the initialization function is done in the source file
(adis16500.c) of the sensor’s driver. Figure 5 in the appendix shows the code for
the adis16500_init function. First a type called ADIS16500_PRIV is defined, which
contains at least all the fields of ADIS16500_INIT structure, and then a private
variable called _adis16500_priv of that type is declared. Within the initialization
function all the fields of the ADIS16500_INIT structure passed by the application
layer will be assigned to the private variable’s fields _adis16500_priv. This means
that any subsequent calls to the sensor driver will use the SPI write and read
functions, and the processor delay function, that were passed in by the applica-
tion layer. This is a key point because it is what makes the sensor driver hardware
agnostic. If the designer wants to change the microcontroller, they only need to
change the functions that they pass to the adis16500_init function. They do not
need to modify the sensor driver code itself. At the beginning of the initialization
function the initialized field of _adis16500_priv variable is set to false because
the initialization process has not yet been completed. At the end of the func-
tion before the return it will be set to true. Every time the designer calls another
public function (Figure 4 in the appendix) the following check is performed: if the
_adis16500_priv.initialized is true it can proceed, if it is false it will immediately
return an error called ADIS16500_RET_VAL__ERROR. This is to prevent users from
calling a function without first initializing the sensor driver. Continuing with the
initialization function discussion, the following steps are performed:

1. Check the product ID, which is known a priori, by reading the ADIS16500_REG_
PROD_ID register.

2. Set the Data Ready (DR) pin polarity by writing the ADIS16500_REG_MSC_CTRL
register in the appropriate bits field, with the value passed from the application
layer (main.c).

3. Set the sync mode by writing the ADIS16500_REG_MSC_CTRL register in the
appropriate bits field, with the value passed from the application layer (main.c).

https://www.analog.com
https://www.analog.com/media/en/technical-documentation/tech-articles/leveraging-hardware-agnostic-approach-appendix.pdf
https://www.analog.com/en/design-center/evaluation-hardware-and-software/evaluation-boards-kits/sdp-k1.html
https://www.chibios.org/dokuwiki/doku.php?id=chibios:products:chibistudio:start

4  Leveraging a Hardware Agnostic Approach to Ease Embedded Systems Design: The Basics

4. Set the decimation rate by writing the ADIS16500_REG_DEC_RATE register, with
the value passed from the application layer (main.c).

The initialization function depends on the read and write register functions
(Figure 6 in the appendix). That is why the above four routines are done after the
assignments to the _adis16500_priv variable. Otherwise, when the read or write
register functions are called, they would not know which SPI transmitter, receiver,
and processor delay functions to use.

Referring to Figure 4 in the appendix, there are other public functions that can be
invoked after the initialization function. A description of the functionality of the
implemented routines is given below, showing the low level ones. The second part
of the article will go through details of other driver’s implemented functions. All
of the following functions must be called only after the initialization function. For
this reason, a double check will be done at the beginning of each function to see
if the sensor has been initialized or not. If the answer is no, then the procedure
immediately returns an error.

	X adis16500_rd_reg_16

This function is used to read a 16-bit register. Its implementation is available at
Figure 6 in the appendix. The inputs are ad that is a uint8_t variable representing
the address of the register to be read and *p_reg_val that is a pointer to a vari-
able of uint16_t type, that represents where the read value will be assigned. To do
a read of a register through the SPI protocol, two SPI accesses are needed; the
first to transmit the address, the second to read back the value of the addressed
register. In between the two accesses a stall time is required, that is why a delay
function is needed. During the first access we transmit the read/write bit, in that
case is 1 (R = 1, W = 0), with the register address shifted by 8 bit plus 8 bit at 0, so
the following sequence:

R/W | AD6 | AD5 | AD4 | AD3 | AD2 | AD1 | AD0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

Where AD stands for address and R/W is the read/write bit.

After a delay, the function reads the value through the SPI and passes it to the
input pointer. The registers of the ADIS16500 have a high address containing the
high value (8 most significant bits) and a low address containing the low value (8
low significant bits). In order to get the entire value (low and high) of 16 bits it is
sufficient to use the low address as ad, because the low and high addresses are
consecutive.

	X adis16500_wr_reg_16

This function is used to write a 16-bit register. Its implementation is available at
Figure 6 in the appendix. The inputs are ad that is a uint8_t type variable repre-
senting the address of the register to be written and reg_val that is a uint16_t type
variable, which represents the value to be written in the register. As for reading
function low and high addresses and values are to be taken into consideration. For
this reason, according to the data sheet, writing the ADIS16500’s register requires
two SPI accesses in transmission. The first will send the R/W bit equal to 0 fol-
lowed by low register address followed by low value, so the sequence will be the
following:

R/W | AD6 | AD5 | AD4 | AD3 | AD2 | AD1 | AD0 | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 |

Where D stands for data.

The second SPI transmitter access will send the R/W bit equal to 0 followed by
high register address followed by high value, so the sequence will be the following:

R/W | AD14 | AD13 | AD12 | AD11 | AD10 | AD9 | AD8 | D15 | D14 | D13 | D12 | D11 | D10 | D9 | D8 |.

The write and read register functions could actually also be defined as private and
therefore not visible and invokable from outside the driver software module. The
reason they are defined as public is to enable debugging. This allows the designer
to quickly access any register in the sensor for reading or writing, which can be
helpful for troubleshooting problems.

	X adis16500_rd_acc

This function reads x, y, z acceleration data from the output data registers, and
returns their values in [m/sec2]. Its implementation is available at Figure 7 in the
appendix. The input is a pointer to an ADIS16500_XL_OUT structure, which simply
embeds three fields: x, y, z acceleration, expressed as a float type. The way the
acceleration is read is the same for all the three axis, the only differences are the
registers to be read. Each axis has its own: x-axis has to be read on x-acceleration
output data register, y– and z– axis accordingly. The acceleration value will be
represented with a 32-bit value, so the registers to be read are two. One for the
most significant 16 bits and one for the least significant 16 bits. For this reason,
having a look to the code, there are two register reading accesses with appropri-
ate shift and OR bit operations. These operations allow the entire binary value to
be stored on a private int32_t variable called _temp. At this point binary to two-
complement conversion will take place. After the conversion the two-complement
value is divided by the sensitivity expressed in [LSB/(m/sec2)] so that the final
value will be the acceleration expressed in [m/sec2]. This value will be registered
in the x, y, or z field of the pointer to the structure that has been passed as input.

	X adis16500_rd_gyro

The gyroscope reading function does exactly the same as the acceleration read-
ing function. Obviously, it will read x, y, z gyroscope data expressed in [°/sec]. Its
implementation is reported in Figure 8 in the appendix. The input of the func-
tion is, as for acceleration case, a pointer to an ADIS16500_GYRO_OUT structure
embedding x, y, and z gyroscope data, expressed as float type. The registers read
are the gyroscope output data registers. The binary value will be represented with
32 bits, and the same steps as for acceleration are required to reach the two-
complement value. After the binary to two-complement conversion, the value will
be divided by the sensitivity expressed in [LSB/(°/sec)], so that the final value will
be expressed in [°/sec], and it will be registered in the x, y, or z field of the pointer
to the structure that has been passed as input.

Conclusion
In this article, a typical software/firmware stack of an embedded system has been
illustrated. The IMU sensor’s driver implementation was introduced. A hardware
agnostic approach offers a repeatable method for various sensors or compo-
nents, even if the interfaces (SPI, I2C, UART, etc.) are different. The subsequent
article, “Leveraging a Hardware Agnostic Approach to Ease Embedded Systems
Design: Driver Implementation,” explains the sensor driver implementation in fur-
ther detail.

VISIT ANALOG.COMFor regional headquarters, sales, and distributors or
to contact customer service and technical support,
visit analog.com/contact.

Ask our ADI technology experts tough questions, browse
FAQs, or join a conversation at the EngineerZone Online
Support Community. Visit ez.analog.com.

©2024 Analog Devices, Inc. All rights reserved.
Trademarks and registered trademarks are
the property of their respective owners.

TA24982-5/24

About the Author
Giacomo Paterniani earned a biomedical engineering degree at University
of Bologna. He completed his master’s degree in electronics engineering
at University of Modena and Reggio Emilia. After graduating, he spent a
year as a research fellow at University of Modena and Reggio Emilia. In
April 2022, he joined Analog Devices’ graduate program as a graduate field
applications engineer. In April 2023, he became an FAE.

Engage with the ADI technology experts in our online support community.
Ask your tough design questions, browse FAQs, or join a conversation.

	 Visit ez.analog.com

https://www.analog.com
https://www.analog.com/contact
https://ez.analog.com
https://www.analog.com
https://ez.analog.com
https://ez.analog.com

	Button 42:
	Page 1:

	Button 41:
	Page 1:

	Button 40:
	Page 1:

	Button 39:
	Page 1:

	Button 38:
	Page 1:

	Button 37:
	Page 1:

