ANALOG
DEVICES

AHEAD OF WHAT’S POSSIBLE™

TECHNICAL ARTICLE

POWERING GSPS OR

Umesh Jayamohan

High Speed Converter
Application Engineer,
Analog Devices, Inc.

L 4 | Share on Twitter in | Share on LinkedIn = | Email

Analog Introduction

The analog-to-digital converter (ADC) is an integral component in any
system that depends on gathering information from the outside (analog)
world for (digital) processing. These systems vary in applications from
communications receivers to electronic test and measurement, to military
and aerospace, to name a few. Advancements in silicon processing
technology (such as 65 nm CMOS and 28 nm CMOS) have enabled the high
speed ADC to cross the GSPS (gigasample per second) barrier. What this
provides the systems designer with is the ability to sample wider and wider
bandwidths for digital processing. Systems designers are constantly trying
to reduce overall power for environmental and cost reasons. Traditionally,
low noise LDO (low dropout) regulators have been recommended by ADC
manufacturers for powering GSPS (or RF sampling) ADCs in order to extract
maximum performance. However, this is not an efficient power delivery
network (PDN) implementation. Systems designers are increasingly
demanding to use switching power regulators to power the GSPS ADC
directly without a significant drop in ADC performance.

The solution lies in careful PDN implementation and layout to ensure
that the ADC performance is not compromised. This article discusses the
difference between linear and switching supplies and demonstrates that

RF SAMPLING ADCS:
SWITCHER VS. LDO

combining a GSPS ADC with a dc-to-dc converter can significantly improve
system power efficiency without any penalty in ADC performance. This
article discusses the performance of the GSPS ADC using a combination

of power delivery networks and makes comparative analyses on cost

and performance.

Traditionally Recommended PDN for GSPS ADCs

A high bandwidth, high sample rate ADC (or GSPS ADC) can have multiple
power domains (such as AVDD or DVDD). With the shrinking geometries,
not only have the power domains increased in number, but the number of
different voltages required to power the ADC have increased as well. For
example, the AD9250," a 14-bit,170 MSPS/250 MSPS, JESD204B, dual
analog-to-digital converter, is built using the 180 nm CMOS process and
has three domains: AVDD, DVDD, and DRVDD. However, all three domains
are the same voltage: 1.8 V.

Now consider the AD96802 a 14-hit 1.25 GSPS/1 GSPS/820 MSPS/
500 MSPS JESD204B, dual analog-to-digital converter, which is built
on a 65 nm CMOS process. This GSPS ADC has seven different domains
(AVDD1, AVDD1_SR, AvDD2, AVvDD3, DVDD, DRVDD, and SPIVDD) and
three different voltages: 1.25V,2.5V, and 3.3 V.

The proliferation of these supply domains and the various voltages is
somewhat of a necessity for operation at these sample rates. They
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Figure 1. Default PDN for the AD9680 evaluation board.
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are required to ensure proper isolation between the various circuit A Simpler PDN for GSPS ADCs
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P p : y the domains that have the same voltage value (say all 1.25 V analog
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gure 1 Shows the block diagram representation ot the defau use designs. The simplified PDN is shown in Figure 2 as implemented on the

the AD9680 evaluation board. The power input is derived from the 12V/1 A . - ; ;
and 3.3 V/3 A supplies offered by the FMC (FPGA mezzanine card) connector ﬁgiﬁi%?::'ﬁ;ﬂgnab;ﬁ;?é Ig ;h\llsilnrgﬂementatlon, the entire ADIGB0 can
using the Vita57.1 specification. The ADP2384° and ADP2164* dc-to-dc ' '

converters were used to step down the voltages to a manageable level A DC-to-DC Converter Driving the AD9680
so the LDOs can regulate without having to go into thermal shutdown. o ) )
A further simplification to the PDN can be implemented by removing

It does not take much to realize that this is an expensive implementation, the LDO that supplies the 1.25 V domains altogether. This would be the

with seven LDO regulators, one for each domain. This PDN may be the most efficient and cost-effective solution. The challenge here is to ensure
most optimal in terms of performance, but it certainly is not the most cost  stable operation to the dc-to-dc converter so as to not affect the ADC’s
effective or efficient in terms of cost of operation. Systems designers find performance. The PDN where the ADP2164 drives all the 1.25 V domains

it challenging to implement a system with multiple ADCs. For example, a (AVDD1, AVDD1_SR, DVDD, and DRVDD) of the AD9680 is shown in Figure 3.
phased array radar implementation will contain hundreds of AD9680s all

working synchronously. It is unreasonable to ask the systems designer to

have one LDO regulator per voltage domain across hundreds of ADCs.
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Figure 2: Simplified PDN for the AD9680 evaluation board.
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Figure 3: Using a dc-to-dc converter to power the AD9680.
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Comparing the Various PDNs

The three PDNs discussed above were put to test along with a fourth
network where the AD9680 evaluation board was powered from the bench
supplies. Table 1 lists the various power delivery networks implemented
on the AD9680 evaluation board.

Table 1. List of Power Delivery Networks

PON Setup

Bench AD9680 run using bench supply

PDN #1 Default PDN on evaluation board (shown in Figure 1)
PDN #2 All 1.25 V domains driven from one LDO (shown in Figure 2)
PDN #3 All 1.25 V domains driven from a dc-to-dc converter

(shown in Figure 3)

Since SPIVDD could support 1.8 V to 3.3 V and was considered a
noncritical node, it was powered using a 1.8 V LDO output. In a regular
system implementation, the SPIVDD can be connected to the 2.5V or
3.3V domain. That said, the SPIVDD connection should still be monitored
in systems where the SPI bus is shared between many ADCs and DACs.
If this is the case, care must be taken to ensure that the normal SPI
operation does not cause supply transients on the SPIVDD domain. Their
supply transients might trigger a power-on reset (POR) situation if the
SPIVDD goes lower than the threshold level.

Table 2. SNR Performance Comparison (dBFS)

Frequency Bench Default Simplified Switcher
(MH2) (PDN #1) (PDN #2) (PDN #3)

66.5 66.5 66.6 66.7
170 66.4 66.1 65.9 66.2
340 64.8 64.5 64.5 64.7
450 64.0 63.7 63.6 63.8
765 62.5 62.2 62.2 62.3
985 61.3 61.0 61.0 61.1
1283 59.8 59.5 99.5 99.5
1725 57.7 57.4 57.4 57.5
1983 56.7 56.4 56.5 56.6

Table 3. SFDR Performance Comparison (dBFS)

Frequency Bench Default Simplified Switcher
(MHz) (PDN #1) (PDN #2) (PDN #3)
63 83 82 88 83

170 86 85 85 84
340 77 76 76 76
450 72 72 Il 71
765 77 76 76 82
985 7 76 76 83
1283 74 74 74 75
1725 67 67 68 67
1983 60 60 60 60

Table 2 and Table 3 show the SNR and SFDR performance respectively
of the AD9680 when using the various PDNs. The recommendations for
front-end network and register settings for various Nyquist zones were
followed as per the AD9680 data sheet?
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The PDN using just the dc-to-dc converter to power the AD9680’s
1.25V domains (PDN #3) shows good performance over the input
frequencies. This proves that it is possible to combine domains and
power them efficiently and cost effectively without paying a huge
penalty in ADC performance. The PDN supplied from the bench provides
the best noise performance as it is the lowest noise power source.
However, it is worth noting that PDN #3 consistently shows better SNR
performance than the default network (PDN #1). This could be attributed
to the fact that LDOs are good for low frequency cleanup but do not do
much above a few 100 kHz even when they are in the circuit. This could
explain the 0.2 dB advantage in SNR when using the PDN #3.

FFT Plots

Figure 4 and Figure 5 show the single tone FFTs at 170 MHz and
785 MHz input, respectively. The FFT shows no spectral degradation
due to the fact that the 1.25 V domains have been powered from a
single dc-to-dc converter.
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Figure 4. Single-tone FFT at 170 MHz input, with PDN #3.
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Figure 5. Single-tone FFT at 785 MHz input, with PDN #3.
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Figure 6. 1.2 MHz sideband switching spur at 170 MHz input. Spur level = —105 dBFS.

Switching Spurs

In addition to the noise performance, the dc-to-dc converter
implementation should also be checked for spurious content due to
the switching elements and the magnetics involved. This is where
careful layout techniques to reduce ground loops and ground bounce
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Figure 7. 1.2 MHz sideband switching spur at 785 MHz input. Spur level = —94 dBFS.

PDN. ADIsimPE is a convenient and powerful tool that helps the systems
engineer design, optimize, and analyze power supply networks.

Figure 9 shows the output ripple at the output of the first stage and the
filtered output after the second stage of the circuit, simulated in ADIsimPE.
The ripple as shown here is around 3 mV p-p.

will be beneficial. There are many resources that can help with
measurement of the switching supply noise>¢ The sideband spurs \ /~ N [
appear on either side of the fundamental offset by the switching 1.282 N\ \ N
frequency (in this example, 1.2 MHz). It must be noted that the output \/
filter stage shown in Figure 2 or Figure 3 is a two-stage filter. This 128 \/ \/
two-stage filter is a main contributor in reducing the switching noise
(ripple) that helps improve the ADC noise (SNR) performance. In the 1278
same token, the two-stage filter also helps in reducing the switching ’ [stage 1 Output
spurs that manifest itself in the output FFT. These are shown in Stage 2 Output]
Figure 6 and Figure 7 for 170 MHz and 785 MHz, respectively. 1276
The level of the sideband spur can be estimated by understanding the 1074
PSRR (power supply rejection ratio) or the ADC’s power supply domain? X
Simulating DC-to-DC Converter 1212 . 2(/)5.5 206 2065 207 207.5 208 208.5 209502;)9.5/0_
Switching Circuits mes e
9 . . Figure 9. Stage 1 and Stage 2 outputs of the ADISImPE simulation.
The two-stage filter at the output of the dc-to-dc converter can be simulated
using a tool such as ADIsimPE? Figure 8 shows the ADIsimPE schematic
generated to simulate the output noise and stability characteristics of the
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Figure 8. ADIsimPE schematic of ADP2164 driving the 1.25 V domains.
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Table 4. Bill of Material of PDN Shown in Figure 2
REFDES

Description MFG
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Part Number

C1 1 22 yF, 6.3V, X5R 0805 capacitor Murata GRM21BR60J226ME39L 22 uF
C2 4 22 uF, 6.3V, X5R 0805 capacitor Murata GRM21BR60J226ME39L 22 uF
Cf 1 0.1 pF, 10V, X5R 0402 capacitor Murata GRM155R61A104KA01D 0.1 pF
g$5031gs1 ?60% 58,09, C10CIT, G12, €13, 14, 4 47 F, 6.3V, X5R 0402 capacitor Murata GRM155R60J475MEA7D 4.7 F
E1, E2, E3, E4, E5, E6 6 Ferrite chip 10 Q 0402 Murata BLM15AX100SN1D 10 Q
L1 1 1.0 pH shielded power inductor, 10 mQ Coilcraft XAL5030-102ME 1.0 pH
L2 1 2.2 pH shielded power inductor, 0.1 Q Coilcraft ME3220-222ML 2.2 uH
Rf1 1 4.99 kQ, 1% 1, W/10 W 0402 resistor Panasonic ERJ-2RKF4991X 4.99 kQ
Rf2 1 41.2 kQ, 1% 1, W/10 W 0402 resistor Panasonic ERJ-2RKF4122X 41.2 kQ
Rb 1 23.2kQ, 1% 1, W/10 W 0402 resistor Panasonic ERJ-2RKF2322X 23.2 kQ
ADP2164 1 IC, REG, buck ADJ, 4 A, sync, 16-lead LFCSP  Analog Devices ADP2164ACPZ-R7

ADP1741 3 IC, REG, LDO, ADJ, 2 A, 16-lead LFCSP Analog Devices ADP1741ACPZ-R7

ADP171 2 IC, REG, LDO, ADJ, 0.3 A, 5-lead TSOT-23 Analog Devices ADP171AUJZ-R7

Bill of Material This is because the dielectric of the ceramic capacitor degrades as the

Table 4 shows the bill of material used for the simplified PDN of the
AD9680 evaluation board, which is shown in Figure 2. By using the
network shown in Figure 3, a systems designer can realize savings of up
to 40% to 45% in BOM cost. The BOM cost is estimated by calculating
the 1k unit prices of the components on a popular electronic component
vendor website.

Component Selection and Layout

The performance of the ADC when running on the various PDNs depends
on not only careful design, but also the selection of components and
their layout on the PCB. The high currents produced in a switching
power supply often lead to strong magnetic fields that can couple into
other magnetic components on the board, including inductors found in
matching networks and transformers used to couple analog and clock
signals. Careful board layout techniques must be utilized to prevent
these fields from coupling into critical signals.

Inductor Selection

Since the inductor and the capacitor that form the output filter stage
perform the bulk of the power delivery, they need to be selected carefully.
In this example, a mix of shielded and unshielded inductors were used.
The first filter stage used a shielded inductor. The second stage could do
with an unshielded inductor in this case. However, it is recommended to
use shielded inductors in both stages to minimize possible EMI emissions.
The inductors also were chosen to have enough headroom in terms of
saturation current (ISAT) and dc resistance (DCR) to make sure they didn’t
go into saturation or cause too much voltage drop across themselves.

Capacitor Selection

X5R or X7R capacitors are recommended for use as output filter
capacitors. The capacitors also have to have low ESR (equivalent series
resistance). The low ESR helps in reducing switching ripple at the
output. Another trick that is employed to minimize the total ESR and

ESI (equivalent series inductance) is to combine capacitors in parallel.
As shown in Figure 3 and Table 4, the first filter stage uses 2x 22 pF
capacitors, whereas the second filter stage 4x 22 yF capacitors. The

voltage rating of the capacitors is also an important factor in its selection.

dc bias increases. This means that a 6.3 V rated 22 uF capacitor could
degrade by up to 50% at a 4 V dc bias?'° In this example, the 6.3 V rated
capacitor is used for the 1.25 V supplies. Adding more capacitors at the
output does increase the BOM cost and board space slightly but this is

a good insurance against switching noise and ripple that could interfere
with ADC performance.

Ferrite Bead Selection

As shown in Figure 3, ferrite beads are used to isolate the various
domains. The selection of the ferrite bead is also critical, as a higher
than desired DCR (dc resistance) of the ferrite bead will cause lower
than optimal voltage at the domains. This low voltage results in less
than optimal ADC performance (SNR and SFDR). Sufficient attention
must be paid to the impedance characteristics, maximum dc carrying
capability, and the DCR of the ferrite bead."

PCB Layout Considerations

In order to minimize the interactions between the switching regulator
and the ADC, the dc-to-dc converter and its switching elements should
be placed far away from any magnetics that interact with the ADC
(such as the front-end matching network or clock network). Within the
dc-to-dc converter layout, the two stage filter should be placed as close
to the dc-to-dc converter as possible so as to minimize loop currents.
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Conclusion

RF sampling (or GSPS) ADCs offer a unique advantage in systems design
by allowing the digitization of wide swaths of bandwidth. The industry is
keen on reducing the complexity, size, and cost of power supply designs
for these GSPS ADCs. It is possible to have a low noise and cost-effective
PDN that can power a GSPS ADC by paying adequate attention to the design,
component selection, and PCN layout. Thus implemented, switching regulators
also help improve power system efficiency and provide operational cost and
BOM savings, without any penalty in performance.
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