

MAX9295D User Guide
GMSL SerDes Applications Team

Version 0

January, 2024

Table of Contents
Table of Contents .. 2

MAX9295D Serializer ... 3

Start-up and Programming Sequence ... 4

Configuration ... 6

Software Override ... 15

I2C Control Channels .. 19

UART Control Channels ... 27

Serial Peripheral Interface (SPI) ... 30

Frame Synchronization (FSYNC) .. 36

Power Manager and Sleep Mode .. 39

Bandwidth Efficiency Optimization ... 44

Error Flags .. 46

General-Purpose Input and Output (GPIO) ... 48

Video Pattern Generator (VPG) ... 56

Pairing with GMSL1 Deserializers .. 60

Complete Use Case Programming Examples ... 67

Appendix .. 71

Revision History ... 73

MAX9295D Serializer
Device Overview
This user guide is intended for use in conjunction with other documents such as the MAX9295D data sheets,
errata documents, and other user and design guides. It provides explanations, examples, and instructions to
help set up video configurations and use various features. Within the examples, the serializer I2C address can be
assumed to be 0x80, unless otherwise noted.

Examples may be shown without errata writes necessary to ensure reliable operation in production. Be sure to
contact the Analog Devices, Inc. Field Applications Engineer or representative to obtain the errata documents.
Make sure to include any relevant errata writes in the final production software. In addition to the errata, it is
also important to have the latest revision of the MAX9295D device for testing.

GMSL2TM serial links use packet-based, bidirectional architecture with forward and reverse channels. The
forward channel transfers data from the serializer to the deserializer; the reverse channel transfers data from
the deserializer to the serializer. MAX9295D is capable of 3 Gbps or 6 Gbps forward link rate (selectable with
resistors connected to the CFG pin or with register writes) and a 187.5 Mbps reverse direction rate.

Application Use Case
In a typical configuration, the MAX9295D is used to support cameras in the 1 MP to 8 MP range. Typically, each
camera’s image sensor feeds the video into the D-Phy CSI input port of the MAX9295D serializer. The serializer
then takes that data, converts it to GMSLTM, and sends it out over the link to a deserializer. In Figure 1, there is
one MAX9295D operating and sending data from two cameras out to a deserializer. Coax or shielded twisted-
pair (STP) cables can be used for the GMSL link.

CS
I

SENSOR A

D-
PH

Y

MAX9295D

D-
PH

Y

CS
I

D-
PH

Y

CS
I

COAX

GMSL2

1/2/3/4
LANE

CS
I

SENSOR B

D-
PH

Y 1/2/3/4
LANE

 GMSL2
DESERIALIZER

D-
PH

Y

CS
I

D-
PH

Y

CS
I

SOC

D-
PH

Y
D-

PH
Y

CS
I

CS
I

VIDEO
MEMORY

VIDEO
MEMORY

1/2/3/4
LANE

1/2/3/4
LANE

Figure 1. MAX9295D Two-Camera Application Example

Start-up and Programming Sequence
Overview
GMSL2 devices have many applications use cases and features that work in conjunction with each other. To
avoid feature and system sequencing issues, Table 1 outlines the preferred sequence order. Features or
configuration changes may not be required and may be skipped in the start-up sequence. This depends on
system requirements and data configurations.

Table 1. MAX9295D Start-Up Sequence

MAX9295D Startup and Programming Sequence
Sequence
Number

Configuration Setup Notes

0 Ramp up Voltage Power Supply No power supply voltage sequencing required; voltage
rails are internally independent and managed by on-
chip power management block.

1 Release PWNDB Pin (LH)
(If Necessary)

2 I2C Wakeup Time Time from power-up or rising edge of PWDNB for local
register access. For remote register access, I2C wakeup
is the same as GMSL Link Lock time.

3 CFG Pins Automatically Set Link CFG pins sampled on every POR and/or PWDNB LH
transition.

4 Link Configuration (Single Link vs.
Multilink Operation Setup)

Some deserilaizers power-up in single link mode while
others in multilink modes. Read register map for
correct registers to set up correct link operation mode.

Refer to the deserializer user guide link initialization
section for more information.

5 GMSL Link Lock is Established If GMSL Link Lock is not established, verify the
following:

1) Voltage rails are correct per DS specification.
2) Datarate, Coax/STP mode, and GMSL settings

match between serializer and deserializer
6 I2C Rate Adjustment

(If Necessary)
SerDes has I2C rate register settings that need to match
up to I2C main.

 7 SER I2C Device Address Reassignment
(If Necessary)

Reassigning SER I2C device address can help in multi-
camera systems.

8 Disable DES CSI Output Set register bitfield CSI_OUT_EN=0.
9 DES Errata Settings

(If Necessary)
Ensure errata settings match DEV_REV and use case.

10 DES MIPI TX Configuration -MIPI Port Config
-Lane Count
-Lane Mapping/Polarity Swap
-Pipe to Controller Mapping
-Deskew (>1.5 Gbps/Lane)

-MIPI Data Rate
11 DES GPIO and Other Feature

Configurations
-GPIO Forwarding
-FSYNC
-I2C/UART Pass-through Channels
-Line Fault

12 DES Interrupt Handling (ERRB) and ASIL
Configuration

Refer to the ‘Error Flags’ section and ‘Safety
Documents’ of the Deserializer for more information

13 SER Errata Settings
(If Necessary)

Ensure errata settings match DEV_REV and use case

14 SER MIPI RX Configuration -Lane Count
-Lane Mapping/Polarity Swap
-Pipe to Controller Mapping
-Deskew (>1.5 Gbps/Lane)
-MIPI Continuous vs. Non-Continuous Mode

15 SER GPIO and Other Feature
Configurations

-GPIO Forwarding
-FSYNC
- I2C/UART Pass-through Channels
-Reference Clock Out
-ADC
-Line Fault

16 SER Interrupt Handling (ERRB) and ASIL
Configuration

Refer to the ‘Error Flags’ section and ‘Safety
Documents’ of the serializers for more information.

17 RESET LINK=1 Reset whole data path to allow configuration and
errata settings to take effect. (While this bit is ‘1’
remote access to link is not possible).

18 RESET LINK=0 Release of reset, link relocks. Remote access is possible
after link is locked.

19 DES Enable CSI Output Set register bitfield CSI_OUT_EN=1.
20 Enable Deserializer Register CRC Safety

Mechanism (If Necessary)
Review the safety documents of the deserializer for
more information.
Refer to the deserializer user guide ‘Register CRC’
section for more information.

21 Enable Serializer Register CRC Safety
Mechanism (If Necessary)

Review safety documents of the serializer for more
information.
Register CRC is not available with MAX9295D.

22 Start Video Source

Notes:
1. Perform any configuration changes before enabling video source.
2. If changes are needed after video has started; stop the video, make changes, and restart video.
3. Dynamic configuration is not supported.

Configuration
Overview
The forward video path of the MAX9295D serializer is configured with the following programming:

• Link Initialization
• MIPI PHY Settings
• Video Pipes and Datatype (DT)/Virtual Channel (VC) Filtering

Only after the video path is configured should video be enabled; dynamic configuration is not supported. The
following sub-sections detail the operation of each of these steps with descriptions of relevant registers and
programming examples.

Link Initialization
Link initialization establishes the device link modes and link speeds. The MAX9295D is a GMSL2/GMSL1, dual-
port serializer that can support coax or shielded-twisted pair (STP) cables. The MAX9295D can transmit at 3
Gbps or 6 Gbps in the forward direction over the GMSL link. Using the following registers, the GMSL link rate and
COAX or STP cabling may be selected. Any changes to the GMSL link should be followed by a link reset to
reinitialize the link (toggle RESET_LINK HIGH and then LOW). CFG pins are the preferred method of setting up
the GMSL rate and transmission mode (Table 2). The selected configuration becomes the new default on power-
up once the CFG pins are set and the part is power cycled.

Table 2. Basic Settings

CFG1
Value

Coax/
STP

HIM/Data
Rate

GMSL1/GMSL2

0 COAX 6 Gbps GMSL2
1 COAX HIM

Enabled
GMSL1

2 COAX HIM
Disabled

 GMSL1

3 STP 6 Gbps GMSL1
4 STP 3 Gbps GMSL1
5 STP HIM

Enabled
 GMSL1

6 STP HIM
Enabled

 GMSL1

7 COAX 6 Gbps GMSL2

Link Initialization Registers

Table 3. Link Initialization Registers

Register Bitfield Name Bits Default Value Decode
0x0001 TX_RATE[1:0] 3:2 0b10 (dependent on

CFG pins)
01 = 3 Gbps
10 = 6 Gbps

0x0011 CXTP_A 0 0b1 0 = Shielded twisted pair drive
1 = Coax drive

0x0010 RESET_ALL 7 0b0 0 = no action
1 = activate chip reset (PWDNB)

0x0010 RESET_LINK 6 0b0 0 = release link reset
1 = activate link reset

0x0010 RESET_ONESHOT 5 0b0 0 = no action
1 = activate oneshot reset on link (bit self clears)

Note: A link reset on CSI-2 serializers resets the entire data path of any video connected to the reset PHY. Link
resets should not be used when video is being fed to the device. Doing this may corrupt data and have
unintended consequences.

Link Lock Check
If the device configuration is correct, the link automatically locks upon connection. Pin #22 (MFP9) is used as
LOCK indication by default. Bit 3 in register 0x0013 asserts if the link is locked.

MIPI PHY Settings
The MIPI PHY settings must be programmed so that the serializer expects the appropriate number of lanes, clock
type, desired lane swapping, lane polarities, etc. The MAX9295D is a dual MIPI ports device. Each port has one
controller connected to two MIPI PHYs that can support up to 4-lane inputs (Figure 2).

In an example PHY configuration, 1x4 mode, the two MIPI PHYs (PHY1 and PHY2) are combined to establish the
4-lane configuration. By default, PHY 2 is the master PHY providing the MIPI clock for port B. So, if only two lanes
are used, only PHY2 is sending data.

Figure 2. Inputs, PHY, and Controller Diagram (MIPI Port B Only)

VC reassignment is supported. VC assignments can be altered through the CTRL0_VC_MAPand CTRL1_VC_MAP
registers.

MIPI Lane Swap
Lane swapping is available for pins on the same MIPI port. Any of the data pins can be interchanged among each
other, not including the clock pins. If a customer’s data pins are not aligned properly on their layout, they can
just swap the pins through the phy{1,2}_lane_map registers instead of fabricating a new board. See Table 4 for
the register description.

Lane Swap Example
The data pins can be swapped within each port, but the clock location is fixed. For example, the default
mappings of the D0, D1, D2, and D3 pairs can be swapped to different output pins. Additionally, the polarity of
each output data pairs and the clock lane support polarity inversion (phy{1,2}_pol_map). Figure 3 shows an
example where all four lanes are being swapped.

Figure 3. D-PHY Lane Swap Example (MIPI Port B Only)

Lane Swap Programming Example
This example programs the lane swapping as shown in Figure 3.
Set lane mapping for all 4 lanes on ctrl 1. This is written to completely swap
the device pinout from default as shown in the figure.
0x80,0x0332,0x10 #D0 mapped to D3, D1 mapped to D2
0x80,0x0333,0x0B #D2 mapped to D1, D3 mapped to D0

MIPI Deskew
The MIPI interface can be configured to use interlane deskew using deskew patterns from the transmitter, but
this is only recommended when the bit transmission rate is 1.5 Gbps/lane and above. Deskew is optional for
data rates lower than 1.5 Gbps/lane. Deskew is initiated by the transmitter under CSI-PPI control. The

MAX9295D only has one bit for enabling the deskew calibration (ctrl1_deskewen), which can be found in REG
0x331 (see Table 4).

MIPI PHY Settings Registers

Table 4. MIPI PHY Settings Registers

Register Bitfield Name Bits Default Value Description

0x0330 ctrl1_vc_map_en 5 0b0 0 = disable virtual channel mapping
1 = enable virtual channel mapping

0x0330

mipi_rx_reset

3 0b0

0 = do not reset MIPI receiver
1 = reset MIPI receiver
(This bit should be toggled HIGH and then LOW
before any video is received – per errata).

0x0330 phy_config[2:0] 2:0 0b000 0 = 1x4 (only available option)

0x0331 ctrl1_vcx_en 7 0b0 0 = extended virtual channel disabled
1 = extended virtual channel enabled

0x0331 ctrl1_deskewen 6 0b0 0 = deskew calibration disabled
1 = deskew calibration enabled

0x033C,
0x033E

phy{1,2}_hs_err[7:6]
7:6 0b0000

Bit 7 represents lane 0, Bit 6 represents lane 1
0 = Deskew calibration pattern flag not received
1 = Deskew calibration pattern flag received

0x033C,
0x033E

phy{1,2}_hs_err[5:4]
5:4 0b0000

Bit 5 represents lane 0, Bit 4 represents lane 1
0 = Default
1 = Deskew calibration failure

0x0331

ctrl1_num_lanes[1:0]

5:4 0b11

00 = 1 data lane
01 = 2 data lanes
10 = 3 data lanes
11 = 4 data lanes

0x0332

phy1_lane_map[3:2]

7:6 0b11

00 = map lane0 to lane3
01 = map lane1 to lane3
10 = map lane2 to lane3
11 = map lane3 to lane3

0x0332

phy1_lane_map[1:0]

5:4 0b10

00 = map lane0 to lane2
01 = map lane1 to lane2
10 = map lane2 to lane2
11 = map lane3 to lane2

0x0333

phy2_lane_map[3:2]

3:2 0b01

00 = map lane0 to lane1
01 = map lane1 to lane1
10 = map lane2 to lane1
11 = map lane3 to lane1

0x0333

phy2_lane_map[1:0]

1:0 0b00

00 = map lane0 to lane0
01 = map lane1 to lane0
10 = map lane2 to lane0
11 = map lane3 to lane0

0x0334 phy0_pol_map[2] 2 0b0 0 = normal polarity for clock lane
1 = inverse polarity for clock lane

0x0334 phy0_pol_map[1] 1 0b0 0 = normal polarity for data lane 3
1 = inverse polarity for data lane 3

0x0334 phy0_pol_map[0] 0 0b0 0 = normal polarity for data lane 2
1 = inverse polarity for data lane 2

0x0334 phy1_pol_map[2] 6 0b0 0 = normal polarity for clock lane
1 = inverse polarity for clock lane

0x0334 phy1_pol_map[1] 5 0b0 0 = normal polarity for data lane 3
1 = inverse polarity for data lane 3

0x0334 phy1_pol_map[0] 4 0b0 0 = normal polarity for data lane 3
1 = inverse polarity for data lane 3

0x0335 phy2_pol_map[2] 2 0b0 0 = normal polarity for clock lane
1 = inverse polarity for clock lane

0x0335 phy2_pol_map[1] 1 0b0 0 = normal polarity for data lane 1
1 = inverse polarity for data lane 1

0x0335 phy2_pol_map[0] 0 0b0 0 = normal polarity for data lane 0
1 = inverse polarity for data lane 0

0x0335 phy3_pol_map[2] 6 0b0 0 = normal polarity for clock lane
1 = inverse polarity for clock lane

0x0335 phy3_pol_map[1] 5 0b0 0 = normal polarity for data lane 1
1 = inverse polarity for data lane 1

0x0335 phy3_pol_map[0] 4 0b0 0 = normal polarity for data lane 1
1 = inverse polarity for data lane 1

0x0345-
0x0347,
0x036C-
0x036F,
0x0377-
0x037F

ctrl1_vc_map{0,15}

7:4 0b0000 Virtual channel reassignment registers. Description
found in last paragraph above table.

Video Pipes and Datatype/Virtual Channel Filtering
The MAX9295D has dual CSI-2 input ports and four total video pipes (X, Y, Z, U). Register 0x0308, shown in Table
5, contains the bits for enabling/disabling MIPI ports.

Default Mapping = MIPI Port A (PHY0/1) MIPI Controller 0 Video Pipe X
Default Mapping = MIPI Port B (PHY2/3) MIPI Controller 1 Video Pipe Z

CSI-2
Controller 0

CSI-2
Controller 1

0

2

1

3

Controller to
Pipe Mapping
(FRONTTOP)

Pipe STR_ID
Assignment

GMSL
Core

Pipe X
VC Filter

Pipe Y
VC Filter

Pipe Z
VC Filter

Pipe U
VC Filter

GMSL

Video Pipes

CSI-2 Port A

CSI-2 Port B

Figure 4. Default Controller to Pipe Mapping

Using the default video routing, any data received on the MIPI input port (A) is automatically routed onto video
pipe X, any data received on the MIPI input port (B) is automatically routed onto video pipe Z, unless filtering
through datatype (DT) or virtual channel (VC) is being used. Every CSI-2 packet includes a header that indicates
the DT and VC. This information can be used to route the incoming data throughout the serial link system.

The data within the serializer’s controller can be filtered so that the user can control what data, if not all, gets
serialized and sent across the GMSL link. The mem_dt_selz registers are used to filter the controller data by CSI-
2 datatype code at the FRONTTOP before it reaches the video pipe. When using DT filtering, up to four data
types can be routed from the controller to a pipe. The pixel data type codes to be routed must be set in
mem_dt{1,2,7,8}_selz. Bits [5:0] in these registers must match the incoming data type code. Bit 6 enables the
filter.

Another form of filtering is by VC, which is configured with the VC_SELZ bitfield. When multiple data streams are
transmitted over the same pipe with different virtual channels, the VC_SELZ_L and VC_SELZ_H bits must be set
to represent the virtual channels present on that pipe. Each bit place represents a VC within these registers. For
example, if VC_SELZ_L[0] = 1 and VC_SELZ_L[1] = 1, then pipe Z expects to have VC 0 and 1 on the pipe. When a
bit position is set to zero, that VC is not allowed to enter that pipe. The VC_SELZ_L/H registers on this part have
a default value of 0xFF, meaning that all 16 VCs (0 to 15) are allowed onto the pipe, unless programmed
otherwise.

Stream IDs
After data is transmitted through the video pipe, a stream ID is assigned prior to transmission across the serial
link. The stream ID is then used by the deserializer to determine video pipe routing. All video pipes have a
dedicated stream ID set with the TX_STR_SEL[1:0] bitfield.

Note: Stream IDs must be set in the serializer to avoid data Rx conflicts in the deserializer when using ‘Reverse
Splitter’ mode (that is, multiple serializers connected to a single deserializer).

Video Pipe and DT/VC Filtering Registers

Table 5. Video Pipe and Filtering Registers

Register Bitfield Name Bits Default
Value

Decode

0x0308 START_PORTA
START_PORTB

4
5

0b1 0 = CSI on portdisabled
1 = CSI on portenabled

0x0308 CLK_SELX
CLK_SELY
CLK_SELZ
CLK_SELU

0
1
2
3

0b1 0 = Port A selected for the pipe
1 = Port B selected for the pipe

0x0002 VID_TX_EN_X
VID_TX_EN_Y
VID_TX_EN_Z
VID_TX_EN_U

4
5
6
7

0b1 0 = Video transmit on the pipe disabled
1 = Video transmit on the pipe enabled

0x005B TX_STR_SEL[1:0] 1:0 0b10 00 = Stream ID for pipe is 0
01 = Stream ID for pipe is 1
10 = Stream ID for pipe is 2
11 = Stream ID for pipe is 3

0x0318,
0x0319,
0x03DC,
0x03DD

mem_dt{1,2,7,8}_selz[6] 6 0b0 0 = Datatype filtering disabled
1 = Datatype filtering enabled

0x0318,
0x0319,
0x03DC,
0x03DD

mem_dt{1,2,7,8}_selz[5:0] 5:0 0b000000 The value of bits 5:0 in this register should equal the data
type ID of the data type to allow onto the video pipe
(example, RAW12 = 0x2C).

0x03C8,
0x03C9

mem_dt{3,4}_selz[7:6] 7:6 0b00 These two bits select the two LSBs of the virtual channel to
be filtered onto the video pipe.

0x03C8,
0x03C9

mem_dt{3,4}_selz[5:0] 5:0 0b000000 The value of bits 5:0 in this register should equal the data
type ID of the data type to allow onto the video pipe.

0x03D1 mem_dt{3,4}_selz_en 1:0 0b00 0 = Disable filtering set in registers 0x3C8, 0x3C9
1 = Enable filtering set in registers 0x3C8, 0x3C9

0x0309
0x030B
0x030D
0x0310

VC_SELX_L
VC_SELY_L
VC_SELZ_L
VC_SELU_L

7:0 0xFF Bits 0 to 7 represent VC0 to VC7, respectively. If a bit is
high, it means that VC is allowed onto the video pipe
(example, if only bits 0 and 2 are HIGH, then only VC0 and
VC2 are accepted).

0x030A
0x030C
0x030E
0x0310

VC_SELZ_H
VC_SELZ_H
VC_SELZ_H
VC_SELZ_H

7:0 0xFF This register works the same as register 0x30D, except bits
0 to 7 represent VC8 to VC15, respectively.

Video Pipe Filtering Programming Example
This example filters video pipe Z for RAW12 datatype and virtual channel 1
0x80, 0x0318, 0x6C, #enable DT filter for RAW12 (ID = 0x2C)
0x80, 0x030D, 0x02, #only VC1 allowed onto pipe

Limit Heartbeat Mode
By default, all GMSL2 serializers send heartbeat packets during blanking intervals. Heartbeat packets are GMSL
packets that only contain low-frequency HVD signals (HS, VS, DE). Sending these packets during blanking ensures
that the video clock regeneration in the receiver can properly track the number of pixel clocks that should be
generated at the output.

The combination of video payload and heartbeat packets at the same time may exceed the GMSL maximum
allowable payload, and heartbeat mode may need to be disabled. To ensure GMSL maximum payload is not
exceeded, contact the Analog Devices applications team to verify the use case before disabling heartbeat.

Heartbeat mode settings must match between the serializer and deserializer. Heartbeat mode can be disabled
for all video pipes (if needed) by setting LIM_HEART = 1 in the serializer.

Note: Heartbeat mode must be enabled when using a non-CSI-2 deserializer.

Table 6. Heartbeat Disable Register

Register Address
(Video Pipe) Bitfield Name Bits Default

Value Decode

0x102 (Pipe X)
0x10A (Pipe Y)
0x112 (Pipe Z)
0x11A (Pipe U)

LIM_HEART 2 0b0 0b0: Heartbeat enabled during blanking
0b1: Heartbeat disabled during blanking

Complete Configuration Examples

1. Configuration with DT and VC filtering:
a. Only a 2-lane, RAW12 input assigned as VC1 is allowed onto the video pipe.
b. Lane swap and polarity inversion used to remap the data pins.
c. Limit heartbeat mode is disabled to save bandwidth.
d. Data is transmitted over the GMSL link at 3 Gbps with a stream ID of 1.

Figure 2. Complex Configuration Example

Software Override
Overview
The software override is used to manually override the video data type (DT) (that is, packet header), virtual
channel number (VC), or bits per pixel (BPP). This operation affects the specification of the video data between
the video pipe and MIPI controller. Overriding the DT and VC information is used for easier MIPI controller
mapping on the deserializer side. See Table 7 for a list of software override registers.

Note: VC can be changed individually. However, DT and BPP must be adjusted together to ensure settings
compatibility. A specific DT could have a range of BPP values depending on if doubling or zero padding is used.

Here are some examples of software override settings for pipe Z:
• DT: soft_dtz[5:0]

DT = 0x24 = 0b100100 for RGB888
• VC: soft_vcz[1:0]

VC = 0x03 = 0b11 for VC3
• BPP: soft_bppz[4:0]

BPP = 0xC = 0b01100 for RAW12

Software Override Registers

Table 1. Software Override Registers

Register Bitfield
Name

Bits Default Value Decode

0x031C
(Pipe X)
0x031D
(Pipe Y)
0x031E
(Pipe Z)
0x031F
(Pipe U)

soft_dtx_en
soft_dty_en
soft_dtz_en
soft_dtu_en

7 0b0 0 = Data type software override disabled on the pipe
1 = Data type software override enabled on the pipe

0x031C
(Pipe X)
0x031D
(Pipe Y)
0x031E
(Pipe Z)
0x031F
(Pipe U)

soft_vcx_en
soft_vcy_en
soft_vcz_en
soft_vcu_en

6 0b0 0 = Virtual channel software override disabled on the pipe
1 = Virtual channel software override enabled on the pipe

0x031C
(Pipe X)
0x031D
(Pipe Y)
0x031E
(Pipe Z)
0x031F
(Pipe U)

Soft_bppx_en
soft_bppy_en
soft_bppz_en
soft_bppu_e
n

5 0b0 0 = BPP software override disabled on the pipe
1 = BPP software override enabled on the pipe

0x031C
(Pipe X)
0x031D
(Pipe Y)
0x031E
(Pipe Z)
0x031F
(Pipe U)

Soft_bppx[4:
0]
soft_bppy[4:
0]
soft_bppz[4:0
]
soft_bppu[4:
0]

4:0 0b11000 These bits should be set to the smallest input BPP (before
padding and after doubling).

0x0320 soft_vcx[1:0]
soft_vcy[1:0]
soft_vcz[1:0]
soft_vcu[1:0]

1:0
3:2
5:4
7:6

0b00 00 = VC0
01 = VC1
10 = VC2
11 = VC3

0x0321
0x0322
0x0323
0x0324

soft_dtx[5:0]
soft_dty[5:0]
soft_dtz[5:0]
soft_dtu[5:0]

5:0 0b110000 These bits should be set to the appropriate data type ID.

Input BPP Manipulation
The video data can be manipulated, such as by doubling or zero padding. Doubling the BPP of a data type allows
for more efficient bandwidth usage. Zero padding is used to match the BPP of two or more data types so that
they can share a video pipe.

Double Mode
Double mode is a data arrangement available for data types with BPP = 8, 10, or 12. With double mode enabled,
two input pixels are concatenated and processed as a single pixel within the video pipe. This concatenation
reduces the internal PCLK and increases the GMSL2 bandwidth efficiency. Double mode is enabled on a BPP
basis.
Further, user-defined 8-bit data types (UDP or UDT), which have header codes 0x30, 0x31 to 0x37, or 0x10 to
0x11, can alternatively be combined and transmitted by the serializer as 24-bit data. Set ctrl1_mode_UDT = 1 to
treat these data types as 24 BPP. This mode cannot be used simultaneously while bpp8dblz = 1, and tripled data
types can only share a pipe with data types that use 24 BPP or other tripled 8-bit data types.
When using double or triple mode, the new internal BPP must be programmed into the serializer in addition to
enabling the mode. Video pipe Z for example has a soft_bppz bitfield that must be set to the new BPP (example,
8->16, 8->24, 10->20, 12->24) and a soft_bpp_en bit.

Note: The connected deserializer must also be set appropriately to revert (undouble) the concatenated pixels to
the original BPP.

Table 2. Double Mode Registers

Register Bitfield Name Bits Default
Value Decode

0x312

bpp8dblx
bpp8dbly
bpp8dblz
bpp8dblu

0
1
2
3

0b0

0: Send as 8-bit pixels
1: Send 8-bit pixels as 16-bit pixels

0x313

bpp10dblx
bpp10dbly
bpp10dblz
bpp10dblu

0
1
2
3

0b0

0: Send as 10-bit pixels
1: Send 10-bit pixels as 20-bit pixels

0x313 bpp12dblx 4 0b0 0: Send as 12-bit pixels

bpp12dbly
bpp12dblz
bpp12dblu

5
6
7

1: Send 12-bit pixels as 24-bit pixels

0x337 ctrl1_mode_UDT 5 0b0 0: Treat UDP as 8 bits
1: Treat UDP as 24 bits

Zero Padding
Pixel data being received by MAX9295D can be zero padded as it enters a video pipe up to a resulting BPP of 16.
With zero padding, an input with multiple BPP rates can be routed through a video pipe if the following
conditions are met:

1. 8 ≤ BPP ≤ 16 for all incoming BPP rates routed to the a video pipe.
a. Zero padding occurs after doubling. The 8 ≤ BPP ≤ 16 requirement applies to the resulting BPP

after doubling.
2. Bandwidth is lost proportionally to the amount of zero padding. Some amount of GMSL2/3 bandwidth is

dedicated to sending zeros instead of the original CSI-2 data. Ensure system bandwidth requirements
can be met using the calculations in the ‘GMSL2 User Guide Bandwidth’ section.

3. Video pipe’s PCLK drift detection must be disabled.

Zero padding applies to all data being routed in the pipe. When enabled, the pipe PCLK is set to the fastest
incoming PCLK (smallest BPP) and all data within the pipe is treated as having a pixel width set by the BPP
bitfield. To enable zero-padding, set AUTO_BPP = 0, BPP = largest BPP in the pipe (≤16), soft_bpp = smallest BPP
in the pipe, and soft_bpp_en = b1. PCLK drift detection must also be disabled using the pipe’s DRIFT_DET_EN bit.
Using this method, all incoming data types with a BPP < BPP (Register) are zero padded so that all BPP rates
within the pipe are equal. See Table 9 for zero padding registers.
The zero-padded data is automatically recovered correctly on the deserializer based on the DT information that
is automatically transmitted to the deserializer. But any DT doubled in the serializer must be undoubled in the
deserializer.

Table 9. Zero Padding Registers

Register Bitfield Name Bits Default
Value Decode

0x110 AUTO_BPP 3 0b1 0: Use BPP from BPP register
1: Use BPP from MIPI receiver

0x111 BPP 5:0 0b011000 Number of bits per pixel (AUTO_BPP must = 0)

0x112 DRIFT_DET_EN 1 0b1 Enables PCLK frequency drift detection, resets
video pipeline upon error and reports it.

Double Mode and Zero Padding Example
EMB8, RAW12, and RAW16 can share a pipe. EMB8 is doubled to 16 BPP. RAW12 is zero padded to 16 BPP.
RAW16 is unmodified. All data types are 16 BPP inside the pipe. EMB8 is doubled rather than zero padded
because doubling is more efficient than zero padding, and EMB8 (DBL) has a BPP equal to the largest BPP in the
pipe (RAW16). The following example is for pipe Z only.

• AUTO_BPP = 0 – Do not set BPP based on CSI-2 header.
• BPP = 0x10 – Force the Pipe BPP to 16 by zero-padding.
• soft_bppz = 0x0C – Must be set to the smallest input BPP (before padding and after doubling).
• soft_bppz_en = 1 – This enables software override of BPP.

• bpp8dblz = 1 – This doubles all incoming BPP = 8 DT’s.
• DRIFT_DET_EN = 0 – PCLK frequency drift detection is disabled for the pipe.

I2C Control Channels
Overview
The MAX9295D features one main I2C channel and two pass-through I2C channels.

When making changes to any of the serializer or deserializer’s I2C configuration, such as enabling or disabling an
I2C port, a 10 µs delay from the write acknowledgement (ACK) to the next transaction is required.

Main I2C Control Channel
The main I2C control channel is used to provide access to both the serializer and deserializer registers across the
GMSL link. This provides flexibility where the registers for both serializer and deserializer are accessible from
whichever side the controller microcontroller resides (for MAX9295D applications, the controller microcontroller
typically resides on the deserializer side).

I2C Pass-Through Channel
There are two pass-through I2C channels to send I2C data across the GMSL link. These channels prevent multi-
controller conflict. Thus, register access of the serializer/deserializer is not possible on the pass-through I2C
channels.

Port Access and Routing
The MFPs in Table 10 are used for the I2C control and pass-through channels.

Table 3. MFPs for I2C

MFP Pin Main I2C
Function

Other I2C
Functions

Default Function Notes

MFP11 SDA1 GPIO11
MFP12 SCL21 GPIO12
MFP15 SDA SDA2 SDA/RX SDA (I2C) or RX (UART)

functionality determined by CFG0
status on power-up.

MFP16 SCL SCL2 SCL/TX SCL (I2C) or TX (UART)
functionality determined by CFG0
status on power-up.

On power-up, the device should be set to the I2C mode through the CFG0 latch. The function names in Table 10
and ensuing I2C sections assume the device is configured for I2C mode.

By default, the main I2C control channel lines are brought out on MFP15 and MFP16 for SDA and SCL,
respectively. One can disable the main control channel’s line access by setting field DIS_LOCAL_CC in register
0x1. One can also disable access to remote device control by setting field DIS_REM_CC in register 0x1.

Note: A minimum 10 µs delay is required after enabling/disabling the I2C functionality through the
DIS_LOCAL_CC and DIS_REM_CC fields in register 0x1.

The user can bring out the first pass-through I2C channel on MFP11 and MFP12 for SDA1 and SCL1, respectively.
The second pass-through I2C channel overlaps with MFP pins for the main I2C control channel, as stated above,
which is brought out again on MFP15 and MFP16 for SDA2 and SCL2, respectively. As mentioned above, it is
possible to only use at most two channels at one time. Both pass-through channels are enabled by setting the
fields IIC_1_EN and IIC_2_EN in register 0x1.

I2C Registers

Table 4. MAX9295D I2C Registers

Register Bits Default Value Description

0x0001 7:6 0x08
I2C Enable Register:
Bit [7]: Enable pass-through I2C Control Channel 2 (SDA2, SCL2)
Bit [6]: Enable pass-through I2C Control Channel 1 (SDA1, SCL1)

0x0006 4 0x80

I2C Selection Register:
Bit [4]: Enables I2C when set to a 1 or UART when set to a 0.
Note: This bit is set according to the CFG0 pin value on power-
up. Writing to this register is not recommended.

Control Channel Programming Example
This example enables pass-through I2C Channel 1, normally disabled by default.

Enable pass-through I2C Control Channel 1
0x80,0x0001,0x48

I2C BroadcastingOverview
When transmitting to a multilink input deserializer, each device on the serializer side requires a unique address
for individual programming and identification. Through I2C translation and address reassignment, each serializer
and image sensor can have both a unique address and a broadcasting address. This allows for selective
programming of each device and the ability to broadcast commands to all devices at the same time. When
broadcasting, if any remote GMSL I2C port ACKs the packet, it ACKs for all remote GMSL I2C ports.

When making changes to any of the serializer or deserializer’s I2C configuration, such as enabling or disabling an
I2C port, at least a 10 µs delay from the write acknowledgement (ACK) to the next transaction is required.

An example of I2C broadcasting is discussed in the ensuing section. Four equivalent camera modules, including
an image sensor and GMSL2 serializer with the same respective addresses, are connected to a GMSL2 quad-
deserializer. Each of the camera modules comprise a MAX9295D serializer at the default I2C address 0x80 and an
image sensor at address 0x20.

µCHW ADD = 0x4E

Address = 0x80

Camera Module 1

Camera Module 2

Camera Module 3

Camera Module 4 GMSL2 Serializer

GMSL2 Serializer

GMSL2 Serializer

GMSL2 Serializer

GMSL2
Deserializer

GMSL2

GMSL2

GMSL2

GMSL2

I2C

Address =
0x20

Address =
0x20

Address =
0x20

Address = 0x80

Address = 0x80

Address = 0x80

Address =
0x20

Figure 5. I2C Interfaced Camera-Module System with Default Address Settings

I2C Broadcasting Technique
The I2C broadcasting technique allows to communicate with multiple camera-serializer modules with a single
microcontroller, streamlining the transmission process.

The general procedure is to:

• Isolate a single camera/serializer module for remote I2C access, meaning no other device with the same
address should be connected to the I2C data line.

• Change the serializer address to a unique address.
• Modify the first I2C address translation register with a common source address but the unique

destination address. This is to streamline the interface with the serializer.
• Modify the second I2C address translation register with a unique source address but the default image

sensor addresses for the destination address. This is to streamline the interface with the image sensor.
• Repeat this process for each camera serializer module.
• When making changes to any of the serializer or deserializer’s I2C configuration, such as enabling or

disabling an I2C port, at least a 10µs delay from the write acknowledgement (ACK) to the next
transaction is required.

I2C Broadcasting GMSL2 Use Case Example
The procedure for the I2C broadcasting example is described as follows.

1) Isolate camera module 1, by enabling deserializer Link A only for remote I2C access.
2) Change the serializer device address in camera module 1 from 0x80 to 0x82. This is done with a register

write to DEV_ADDR[6:0], located in REG0.
3) Modify the first address translation register in this serializer to give a broadcast address (0xC4) to the

serializer. Program 0xC4 into the source register SRC_A[6:0], and 0x82 in the destination register
DST_A[6:0]. Thus, for the serializer in camera module 1, anything sent to address 0xC4 is sent to address
0x82 instead.

4) Modify the second translation register in this serializer to give a unique address to the image sensor.
Program 0x22 into the source register SRC_B[6:0], and 0x20 into the destination register DST_B[6:0].
Thus, for the serializer in camera module 1, anything sent to address 0x22 is sent to address 0x20
instead.

5) Isolate camera module 2, by enabling deserializer Link B only for remote I2C access.
6) Change the serializer device address in camera module 2 from 0x80 to 0x84. This is done with a register

write to DEV_ADDR[6:0], located in REG0.
7) Modify the first address translation register in this serializer to give a broadcast address (0xC4) to the

serializer. Program 0xC4 into the source register SRC_A[6:0], and 0x84 in the destination register
DST_A[6:0]. Thus, for the serializer in camera module 2, anything sent to address 0xC4 is sent to address
0x84 instead.

8) Modify the second translation register in this serializer to give a unique address to the image sensor.
Program 0x24 into the source register SRC_B[6:0], and 0x20 into the destination register DST_B[6:0].
Thus, for the serializer in camera module 2, anything sent to address 0x24 is sent to address 0x20
instead.

9) Isolate camera module 3, by enabling deserializer link C only for remote I2C access.

10) Change the serializer device address in camera module 2 from 0x80 to 0x86. This is done with a register
write to DEV_ADDR[6:0], located in REG0.

11) Modify the first address translation register in this serializer to give a broadcast address (0xC4) to the
serializer. Program 0xC4 into the source register SRC_A[6:0], and 0x86 in the destination register
DST_A[6:0]. Thus, for the serializer in camera module 3, anything sent to address 0xC4 is sent to address
0x86 instead.

12) Modify the second translation register in this serializer to give a unique address to the image sensor.
Program 0x26 into the source register SRC_B[6:0], and 0x20 into the destination register DST_B[6:0].
Thus, for the serializer in camera module 3, anything sent to address 0x26 is sent to address 0x20
instead.

13) Isolate camera module 4, by enabling deserializer Link D only for remote I2C access.
14) Change the serializer device address in camera module 4 from 0x80 to 0x88. This is done with a register

write to DEV_ADDR[6:0], located in REG0.
15) Modify the first address translation register in this serializer to give a broadcast address (0xC4) to the

serializer. Program 0xC4 into the source register SRC_A[6:0], and 0x88 in the destination register
DST_A[6:0]. Thus, for the serializer in camera module 4, anything sent to address 0xC4 is sent to address
0x88 instead.

16) Modify the second translation register in this serializer to give a unique address to the image sensor.
Program 0x28 into the source register SRC_B[6:0], and 0x20 into the destination register DST_B[6:0].
Thus, for the serializer in camera module 4, anything sent to address 0x28 is sent to address 0x20
instead.

17) Now enable all the links for remote main I2C port access.
18) All devices should be present on the I2C bus. Continue with any additional required system

configuration.

Figure 6 shows the same camera module system with translated addresses. Table 12 and Table 13 summarize
the changes.

µCHW ADD = 0x4E

New A ddress = 0x82

Camera Module 1

Camera Module 2

Camera Module 3

Camera Module 4

New A ddress = 0x84

New A ddress = 0x86

New A ddress = 0x88

Sensor
0x22

Sensor
0x24

Sensor
0x26

Sensor
0x28

GMSL2 Serializer

GMSL2 Serializer

GMSL2 Serializer

GMSL2 Serializer

GMSL2
Deserializer

GMSL2

GMSL2

GMSL2

GMSL2

I2C

Figure 6. Camera-Module System with Translated Address Settings

The serializers are assigned a single device address to allow writes to all devices as a broadcast.

Table 5. I2C Broadcasting (Quad) Example (Serializer)

I2C Address SRC_A DST_A Sink Device(s)
0x82 0xC4 0x82 Serializer in Camera Module 1
0x84 0xC4 0x84 Serializer in Camera Module 2
0x86 0xC4 0x86 Serializer in Camera Module 3
0x88 0xC4 0x88 Serializer in Camera Module 4

Each image sensor is assigned a unique device address.

Table 6. I2C Broadcasting (Quad) Example (Image Sensor)

I2C Address SRC_B DST_B Sink Device(s)
0x20 0x22 0x20 Image Sensor in Camera Module 1
0x20 0x24 0x20 Image Sensor in Camera Module 2
0x20 0x26 0x20 Image Sensor in Camera Module 3
0x20 0x28 0x20 Image Sensor in Camera Module 4

I2C Broadcasting Programming Examples
This script sets up the I2C broadcasting (Figure 6).

Enable Link A remote control channel only
0x4E,0x0003,0xFE
Change I2C address for this Link A serializer
0x80,0x0000,0x82
Set Ser source to 0xC4
0x82,0x0042,0xC4
Set Ser destination to 0x82
0x82,0x0043,0x82
Set Image sensor source to 0x22
0x82,0x0044,0x22
Set Image sensor destination to 0x20
0x82,0x0045,0x20
Enable Link B remote control channel only
0x4E,0x0003,0xFB
Change I2C address for this Link B serializer
0x80,0x0000,0x84
Set Ser source to 0xC4
0x84,0x0042,0xC4
Set Ser destination to 0x84
0x84,0x0043,0x84
Set Image sensor source to 0x24
0x84,0x0044,0x24
Set Image sensor destination to 0x20
0x84,0x0045,0x20
Enable Link C remote control channel only

0x4E,0x0003,0xEF
Change I2C address for this Link C serializer
0x80,0x0000,0x86
Set Ser source to 0xC4
0x86,0x0042,0xC4
Set Ser destination to 0x86
0x86,0x0043,0x86
Set Image sensor source to 0x26
0x86,0x0044,0x26
Set Image sensor destination to 0x20
0x86,0x0045,0x20
Enable Link D remote control channel only
0x4E,0x0003,0xBF
Change I2C address for this Link D serializer
0x80,0x0000,0x88
Set Ser source to 0xC4
0x88,0x0042,0xC4
Set Ser destination to 0x88
0x88,0x0043,0x88
Set Image sensor source to 0x28
0x88,0x0044,0x28
Set Image sensor destination to 0x20
0x88,0x0045,0x20
Enable All Links A-D remote control channel
0x4E,0x0003,0xAA

UART Control Channels
Overview
The MAX9295D features one main universal asynchronous receiver-transmitter (UART) control channel and two
pass-through UART channels. When making changes to any of the serializer or deserializer’s UART configuration,
such as enabling or disabling a UART port, at least a 10 µs delay from the write acknowledgement (ACK) to the
next transaction is required.

Main UART Control Channel
The main UART control channel is used to provide access to both the serializer and deserializer registers across
the GMSL link. This provides flexibility where the registers for both the serializer and deserializer are accessible
from whichever side the controller microcontroller resides (for MAX9295D applications, the controller
microcontroller usually resides on the deserializer side).

Base Mode
Base mode allows the device registers of both the serializer and the deserializer to be accessed by the host
microcontroller. It is the default mode for the main UART control channel on power-up.

Bypass Mode
In bypass mode, both the serializer and deserializer ignore all UART commands from the microcontroller. The
serializer/deserializer registers are not accessible and the microcontroller can freely communicate with any
peripherals using its own defined UART protocol. In this mode, the UART commands are still sent over the
GMSL2 link. This mode serves to prevent inadvertent programming of the serializer/deserializer registers and
can be switched in and out of during normal operation.

Pass-Through UART Channel
There are two pass-through UART channels used to send data across the GMSL2 link. Serializer/deserializer
registers are not accessible in this mode but any other peripherals on the link with compatible UART protocol
are accessible. This makes either of the pass-through UART channels equivalent to running the main UART
control channel in bypass mode (as described above).

Port Access and Routing
The MFPs in Table 14 are used for the UART control and pass-through channels.

Table 7. MFPs for UART

MFP Pin Main
UART
Function

Other
UART
Functions

Default
Function

Notes

MFP10 MS Mode select (MS) is used as a hard trigger to run main UART
channel (TX/RX) in bypass mode.

MFP11 RX1
MFP12 TX1
MFP15 RX RX2
MFP16 TX TX2

On power-up, the device should be set to UART mode through the CFG0 latch. The function names in Table 14
 and ensuing UART sections assume the device is configured for UART mode.

By default, the main UART control channel lines are brought out on MFP15 and MFP16 for RX and TX,
respectively. Disable the main control channel’s line access by setting field DIS_LOCAL_CC in register 0x1. Also
disable access to remote device control by setting field DIS_REM_CC in register 0x1.

Enabling UART Bypass Mode Through Register Setting (Soft-Bypass)
UART bypass mode can be enabled through register setting by first setting field BYPASS_EN in register 0x48.
Next, configure a timeout (2ms, 8ms, 32ms, or no-timeout) by setting the field BYPASS_TO in register 0x48.
Bypass mode is active only if there is UART activity. When there are no UART transitions detected for the
selected timeout duration, then the device exits bypass mode and re-enters base mode. The timeout is optional.
If field BYPASS_TO is set for no timeout, then the device remains in bypass mode until the next power-cycle.

Enabling UART Bypass Mode Through Pin Setting (Hard-Bypass)
UART bypass mode can also be enabled by the mode select (MS) pin, which the user can bring out on MFP10. In
this state, a high-voltage level on the MS pin enables bypass mode while a low voltage level disables bypass
mode. To enable this setting, set field REM_MS_EN in register 0x48.

Additionally, the MS pin can be set to use the GPIO2 pin instead of the function MS on MFP10. To enable this
setting, set the field LOC_MS_EN in register 0x48. This setting might be needed if MFP10 is needed for another
use.

Enabling the UART Pass-Through Channels
The user can bring out the first pass-through UART channel on MFP11 and MFP12 for RX1 and TX1, respectively.
The second pass-through UART channel overlaps with MFP pins for the main UART control channel, as stated
above, which the user can bring out on MFP15 and MFP16 for RX2 and TX2, respectively. As mentioned above, it
is possible to only use, at most, two channels at one time. Both pass-through channels are enabled by setting
the fields UART_1_EN and UART_2_EN in register 0x3.

Table 8. MAX9295D UART Registers

Register Bits Default Value Description

0x0001 5:4 0x08

UART Control Channel Enable Register:
Bit [5]: Disable main UART Control Channel connection to TX/RX
pins
Bit [4]: Disable access to remote device control-channel over
GMSL2 connection

0x0003 5:4 0x00
UART Pass-Through Channel Enable Register:
Bit [5]: Enable pass-through UART Channel 2
Bit [4]: Enable pass-through UART Channel 1

0x0006 4 0x80

UART Selection Register:
Bit [4]: Enables UART when set to a 0. Note: This bit is set
according to the CFG0 pin value on power-up. Writing to this
register is not recommended.

0x0048 5:0 0x42

UART Bypass Mode Control Register:
Bit[5]: Enable UART bypass mode control by remote GPIO pin
(Function MS on MFP10)
Bit[4]: Enable UART bypass mode control by local GPIO pin
(GPIO2)
Bit[3]: Enable or disable parity bit in bypass mode
Bit[2]: UART soft-bypass timeout duration
Bit[1]: Enable UART soft-bypass mode

0x004F 7:6
3:2 0x00

UART Pass-Through Channels Config Register:
Bit[7]: Use standard or custom bit rate
Bit[6]: Enable parity bit
Bit[3]: Use standard or custom bit rate
Bit[2]: Enable parity bit

Enable Pass-Through UART Channel 1
This example enables pass-through UART Channel 1.

Enable pass-through UART Channel 1
0x80,0x0003,0x08

Serial Peripheral Interface (SPI)
Overview
SPI is available on the MAX9295D. Unlike I2C and UART, SPI is never able to modify any registers in either the
serializer or deserializer. It is only used to transfer SPI data across the link from serializer to deserializer or vice
versa. Typical SPI use cases are to send commands for other devices or to stream data other than video data
(example, for sensors). With GMSL, SPI transmission at up to 25 MHz is possible.

SPI with GMSL devices requires more considerations than a normal SPI setup. Unlike a typical direct IC to IC SPI
connection, the GMSL link introduces an inherent variable delay. SPI cannot appear immediately at the other
end of the link because its transmission across the link must be scheduled with other types of data like video.

Figure 7 shows the GMSL SPI architecture. On each side of the link, the GMSL devices become part of a
controller-target pair and have transmit and receive buffers inside.

SPI
Subordinate

SPI GMSL2
Packet Tx

SPI GMSL2
Packet Rx

Pin
Control

GMSL2External
SPI

Main

sck

mosi
miso

ro
bne

SPI
Main

SPI GMSL2
Packet Tx

SPI GMSL2
Packet Rx

Pin
Control

GMSL2

External
SPI

Subordinate

External
SPI

Subordinate

sck
mosi
miso

ss0
ss1

Figure 7. SPI Architecture

CFG Pin Setup
There are important setup considerations when using SPI with GMSL:

• Some MFP pins may have default alternate functions that must be disabled before enabling SPI. If this is
not done, the SPI pin may not work correctly. The MAX9295D may be confused if multiple features are
enabled at the same time on the MFP pin. Be sure to check the data sheet to verify that each pin has the
proper features enabled and disabled. Consider using the MFP status tool in the GMSL GUI to check this.

• If any of the SPI pins are also used as CFG pins, do not let any SPI devices pull the CFG pins up or down
until the device powers up and the CFG pins are latched. Power on the part with the SPI external SPI
controller/generator not connected, or not pulling on the pins up or down. Otherwise, the part boots
into an unwanted configuration.

SPI Setup Registers in MAX9295D
Table 16 shows the most critical setup registers. There are other settings within the 0x170 to 0x178 register
range that may be important depending on the arrangement (which is the controller, and which is the target,
clock timings, etc.). See the example script in the following section for examples with those registers.

Table 16. Important SPI Register Settings

Register Bitfield Name Bits Default Value Description

0x170 SPI_EN 0 0 0 = SPI not enabled
1 = SPI enabled

0x170 MST_SLVN 1 0 0 = SPI slave
1 = SPI master

0x170 SPI_IGNR_ID 2 1 0 = Accept packets with proper ID
1 = Ignore ID and accept all packets (recommended)

0x172 SPIM_SS1_ACT_H 0 1 0 = SS1 is active low
1 = SS1 is active high

0x172 SPIM_SS2_Act_H 1 1 0 = SS2 is active low
1 = SS2 is active high

0x176 RWN_IO_EN 0 0 0 = Do not bring RO out to MFP pin
1 = Bring out RO to MFP pin

0x176 BNE_IO_EN 1 0 0 = Do not bring BNE out to MFP pin
1 = Bring out BNE to MFP pin

0x176 BNE 5 0 0 = No bytes to read
1 = Bytes ready to read

0x177 SPI_TX_OVRFLW 6 0 0 = No overflow
1 = Overflow

0x177 SPI_RX_OVRFLW 7 0 0 = No overflow
1 = Overflow

SPI example setup script (0x80 is the serializer address, 0x98 is the deserializer address). Note: This example
does not apply to the MAX96724, as it does not have SPI.

0x98,0x003,0x3 #enable info frames
0x98,0x162,0x0 #select SPI link
0x80,0x170,0x9 #enable SPI, default set to slave, and ignore the SPI header ID
0x80,0x171,0x1D #default, sets SPI packet size and GMSL link scheduler priority
0x80,0x172,0x0 #default, slave select is active low, SPI mode is 0, etc.
0x80,0x173,0x0 #default, delay between assertion of slave select and clock start
0x80,0x174,0x0 #default, SPI clock low time
0x80,0x175,0x0 #default, SPI clock high time
0x80,0x176,0x3 #enable RO and BNE
0x80,0x178,0x0 #default, timeout delay
0x98,0x170,0xB #Enable SPI channel, set as master
0x98,0x171,0x1D #GMSL link scheduler priority
0x98,0x172,0x0 #default, slave select is active low, SPI mode is 0, etc.
0x98,0x173,0x1E #default, delay between assertion of slave select and clock start

0x98,0x174,0x1E #SPI clock low time
0x98,0x175,0x1E #SPI clock high time
0x98,0x176,0xC #Enable slave select 1 and 2, RO and BNE not enabled
0x98,0x178,0x0 #SPI timeout delay

SPI Example Using GMSL GUI and Evaluation Boards
• Make sure that the SPI output is at a slightly faster rate than the SPI input as a general best practice and

to prevent buffer overflows. The output rate can be adjusted with register writes.
• Disconnect SPI external controller/generator and RO source from circuit.
• Power up EV boards (make sure VDDIO on the EV board of the SPI external controller/generator side

matches the SPI external controller/generator voltage).
• Start GMSL GUI.
• Load GMSL script (.csv).
• Reconnect SPI external controller/generator and RO source.
• Put RO high and write A0 A4. Explanation: A0 to A3 are for SPI ID selection, mostly useful when using

quad deserializers. A4 asserts SS1, A5 asserts SS2, and A6 deasserts both SS1 and SS2.
• As a best practice, check BNE to ensure the buffer is empty. If BNE is high, there is data in the RX buffer

ready to be read by the external SPI controller/generator. Set RO high and write FF until BNE = 0.
• Put RO low and write the normal SPI data. Data can now be streamed.

SPI With and Without Video Running
The MAX9295D’s TX and RX buffers have a 32-byte 16-bytes capacity, respectively. Figure 8 and Figure 9 show
the SPI oscilloscope probes on the SPI clock and data output (the receiving end at the deserializer). The data is
flowing consistently without the video running. For 90% of the video, there are some intermittent pauses. The
32-byte buffer compensates for this scheduling delay and makes continuous streaming of the data possible.

Figure 8. SPI Clock and Data at Final Output (at External SPI Target), No Video on GMSL Link

Figure 9. SPI Clock and Data at Final Output (at External SPI Target), 92% Video on GMSL Link

Table 17. Video Details for the Example
Parameter Value
4-lane rate in Gbps 0.35
Pixels in line 2522
Number of lines 1388
BPP 12
FPS 28
Horizontal blanking (%) 10.0%
UI Period 2.86
Horizontal blanking (ns) 2161.71
Minimum horizontal blanking (ns) 1357
Bits per line 30264
Total line bits including blanking 33290.4
Data rate [Gbps] 1.4
Total line time [ns] 23778.86
% video 0.924142

Data Integrity and Avoiding Buffer Overflow
In general, SPI streams continuously and without having the SPI external controller/generator read back any of
the values. However, the techniques in this section are additional steps recommended to be implemented in the
application to ensure that all the data is sent correctly.

After a byte is sent across the link, the GMSL device on the other side sends the data out on the MFP pins. It also
sends the data back across the link so that the SPI external controller/generator can read back the data.

State of read only (RO) pin dictates direction of data movement.

• RO = 0: Data transmitted between controller and target through MOSI.
• RO = 1: Data transmitted between controller and target through MISO, BNE is high if there are bytes in

this buffer to be read back.

Note that the word “read” in the name of the RO pin does not mean that it is an output pin; it is, in fact, an input
pin toggled externally high or low depending on what operation is desired.

It is recommended to limit the amount of bytes in transit (bytes sent but not received) to 16. The SPI external
controller/generator can compute this value (= valid bytes sent – valid bytes read).

One way of doing this is to send the data in a group of 16 bytes or less. If more than 16 bytes at a time are sent,
it is still possible (depending on timing) that all the data is sent properly. But it is not possible to easily be sure
that the data is sent properly.

Figure 10 shows an example of sending data in a group of four bytes. This is the timeline of events:

1) RO is pulled high, and the A0 and A4 control commands are entered.
2) RO is pulled low, and data (0x80, 0x04, 0x01, 0x47) is sent from the external SPI controller/generator

into the input side (serializer).
3) See bottom half of graph (slight overlap in time with step 2, RO is still low, and the bytes are observed

coming out of the deserializer (output side)).

4) RO is high, and the bytes are read back by the external SPI controller/generator. Note BNE is high as the
bytes are available (there is a time delay for them to come back).

Figure 10. SPI Transmission Example

It is also possible to check overflow buffers. Each buffer has overflow detection logic with status bits that can be
read at SPI_TX_OVRFLW and SPI_RX_OVRFLW. It is a good practice to have the external system components
monitor these.

Frame Synchronization (FSYNC)
Overview
Frame synchronization (FSYNC) is used to align image frames sent from multiple sources in surround view
applications and is required for deserializer functions like concatenation. In FSYNC mode, the deserializer sends
a sync signal to each serializer connected; the serializers then send the signal to the connected image sensor.
Video frame synchronization occurs by synchronizing the vertical sync (VS) signals of the various video streams
at the image sensors. This is done on the serializer side of the link by enabling GPIO tunneling and selecting a
GPIO to act as an output to the image sensor. Frame synchronization has more configurable options on the
deserializer side of the link (see the user guide of the deserializer for additional details).

Figure 3. Frame Alignment (Without Frame Sync)

Figure 12. Frame Alignment (Frame Sync Enabled)

Configuration
The frame synchronization can be enabled on any multifunction pin (MFP) of the serializer. This is done by
making the selected MFP a general-purpose output. The deserializer must be programmed to send the FSYNC
signal to the selected MFP’s RX_ID to ensure the FSYNC signal is transmitted across the link. The deserializer
programming is determined by whether the frame sync is generated externally by an SOC or internally by the
deserializer.

Programming Examples

External FSYNC (GMSL2)
The following script configures and enables external FSYNC in GMSL2 mode through GPIO tunneling.

This is GMSL2 Ext. FSYNC example; MAX96724 MFP2/SER MFP1 are used for GPI/GPO.
Update SER MFP1 RX ID = 1 to match MFP2 of MAX96724
0x80,0x02C3,0x01
Config SER MFP1 to forward GPIO from the MAX96724. MFP1 is set to be an output.
0x80,0x02C1,0x84
Config MAX96724 MFP2 to receive external FSYNC signal for each link
0x4E,0x0306,0x83
Config MAX96724 MFP2 TX ID = 1 for links A-D
0x4E,0x0307,0xA1
0x4E,0x033D,0x21
0x4E,0x0374,0x21
0x4E,0x03AA,0x21

Use Case Example

Example FSYNC application using externally generated 30Hz signal from an SOC.
This is then tunneled through the deserializer and two serializers out to the image
sensors.

MAX9295D
Serializer

MAX9295D
Serializer

MAX96724
Deserializer

Image
Sensor

Image
Sensor

GMSL Link

GMSL Link

FSYNC Output
(MFP Pin)

FSYNC Output
(MFP Pin)

FSYNC Input
(MFP Pin)

SOC

FSYNC
Generator

FSYNC Input
(MFP Pin)

FSYNC Input
(MFP Pin)

Tunneled FSYNC

30 Hz

Tunneled FSYNC

Image
Sensor

Image
Sensor

FSYNC Output
(MFP Pin)

FSYNC Output
(MFP Pin)

FSYNC Input
(MFP Pin)

FSYNC Input
(MFP Pin)

Figure 13. Frame Sync Application Diagram

Power Manager and Sleep Mode
Overview
MAX9295D includes an integrated power manager that ensures the reliable and efficient operation of various
power functions. The power manager controls the internal switched supply domains during the full sequence of
power states so that the device powers up and down smoothly. During power-up, the power manager guards
the device until the internal supplies are validated and the digital core assumes normal operations. In all power
modes, the power manger monitors power supplies for undervoltage and overvoltage conditions. In sleep mode,
the power manager minimizes current consumption and can quickly restore device configurations after waking
up.

Table 18. Power Manager and Sleep Mode Availability for MAX9295D Family

Part Number Power Manager Sleep Mode
MAX9295D Supported Supported

Device Power Operation
The part uses three common power rails (VDD, VDD18, and VDDIO) and an integrated internal VDD regulator.

The power manager block minimizes required user interaction while providing extensive diagnostic indicators.
Power manager status registers can be polled for valid supply levels, and a system-level interrupt (ERRB = 0) can
be generated in a device power failure.

Note: If the power manager sends an ERRB interrupt due to a power fail condition, check PWR0, PWR1, and
other diagnostic registers to identify the source of the failure. See the voltage monitoring section for additional
details.

Power Supplies
The MAX9295D shares a common set of power supply voltages that powers universal functions such as the
digital core, GMSL link circuitry, and GPIO. The following is a summary of the power supplies:

• VDD: The input voltage to the VDD rail can be between 1.0 V and 1.2 V. An internal LDO regulates the
voltage to 1.0 V.

• VDD18: 1.8 V power rail.
• VDDIO: 1.8 V or 3.3 V I/O power rail for I/O.
• VDD_sw (CAP_VDD pin): Internal 1 V power rail that powers the digital core logic.

External power is supplied directly to VDD, VDD18, and VDDIO, but the VDD_sw (CAP_VDD pin) just has external
capacitors connected.

Power Manager States
At device power-up, the power manager block automatically controls the power sequencing process. Power
supplies can ramp in any order and do not need to be externally sequenced. When power is applied, the power
manager senses the presence of each domain. When the voltage threshold is reached for all supplies, the power
manager signals to the other device domains that power is stable and begins to transition into run mode.

The power manager state machine has a total of four power states: boot, run, saved, and reset (power
down/sleep). The power manager circuitry is in the “always-on” VDD18 domain so that all power domains may be
managed and monitored during the full sequence of power states. This architecture allows for a seamless
resume from sleep to run mode and draws minimal current. Retention memories are also powered by the VDD18
domain so that device configuration and register settings can be saved and restored.

Figure 14 shows the state diagram for the power manager.

Figure 14. Power Manager State Diagram

Reset (Power Down/Sleep)
Power down and sleep are two sub-states of the reset state.

The device enters the power down state if the PWDNB pin is asserted (low), VDD_sw falls below the internally
set threshold, or if any other supply falls below the associated POR value. In power down, all registers in the
digital core revert to default reset values. Power failure latches are retained unless VDD18 falls too low.
Deasserting PWDNB (high) releases the chip from the power down state and into the boot state.

Sleep is a low-power consumption state that preserves the configurations and settings saved in the previous
state and enables a much faster return to running operation than from power down. When the device is in the
run state, the system (µC/SoC) can initiate sleep state with an I2C/UART command (SLEEP = 1). Sleep mode is
entered automatically after the retention memory is loaded following the SLEEP=1 command. In the sleep state,
the VDD18 supply must be continuously maintained to ensure that previous configurations and settings are
preserved. It is recommended that all other supplies be maintained during sleep mode to simplify the sleep and
wakeup sequences.

BOOT
The device can enter the boot state from reset after external supplies have ramped up or the device has
resumed operation from sleep. In boot, all power switches are turned on, and all power manager sub-blocks are
enabled. When all post-switch supplies are valid, the chip enters run state. The power manager has an inrush
current control feature. In boot state, the core supply switches are turned on gradually.

RUN
The run state is the normal operating mode of the device. The device enters run when all power supplies to the
chip are valid. Once entering this state, the crystal begins to warm up, on-board calibration is initiated, and the
GMSL handshake begins the process of establishing link lock.

SAVED
Saved mode is initiated with an I2C/UART command (SLEEP = 1) while the device is in run. Before the power
manager enters the saved state, the core saves the current device configuration and register values to retention
memory. In the saved state, all power switches are turned off and the power manager blocks are disabled. The
device enters the sleep state.

Sleep Mode
The MAX9295D supports sleep mode, which provides a low power state from which prior configuration
information is automatically loaded upon wakeup. This enables fast recovery from low power sleep to full run
operation by eliminating the need to reprogram configuration registers required after a full power cycle.

In run mode (normal operation), writing SLEEP = 1 starts the process of saving device configuration and register
settings. The power manager shuts down all internal power supplies, the clocks are disabled, and the chip enters
the very low power consumption sleep state. VDD18 must remain stable to provide continuous power to the data
retention memory, and it is recommended that all supplies be maintained in their nominal operating range.

Sleep and Wakeup Sequences
There are two ways to enable and wake up from sleep mode. Depending on the device (remote or local to
microcontroller) desired to be in sleep mode, follow these procedures:

Enable sleep mode:

• Remote device
o Write SLEEP = 1 to remote device.
o Write RESET_LINK = 1 to local device (note: perform within 8ms after the SLEEP = 1 command).

• Local device
o Write register WAKE_EN_A = WAKE_EN_B = 0 to local device (note: this prevents the local

device from being woken up from the remote side).
o Write RESET_LINK = 1 to local device.
o Write SLEEP = 1 to local device.

Wakeup (exit sleep mode):

• Remote device
o Write RESET_LINK = 0 to local device (or power-up/wake-up the local device).
o Wait for LOCK = 1.
o Write SLEEP = 0 to remote device (note: perform within 8 ms after LOCK = 1).

• Local device
o Perform a dummy I2C/UART transaction (note: this wakes up the device).
o Wait 5ms.
o Write SLEEP = 0 to local device.
o Write RESET_LINK = 0 to local device to enable the link.

If devices at both ends of a GMSL link are sleeping, the host processor must initiate the wakeup sequence by
waking up the local device first and waiting for link lock. The host can then immediately disable sleep mode in
the remote device.

The opposite sequence is used when transitioning devices at both ends of a GMSL link into sleep mode. The host
must first configure sleep mode in the remote device while the link is locked. It can then immediately place the
local device in sleep mode.

Sleep Mode Limitations
Note: Sleep mode should not be used in conjunction with RESET_ALL.

The GMSL2 family includes a global soft reset function called RESET_ALL. This is a self-clearing reset command to
reset all sub-systems to their default configurations. However, if a device has previously gone through a
sleep/wake cycle, issuing a RESET_ALL resets the device and erroneously loads the contents of the retention
memory stored when the most recent SLEEP command is executed. As a result, the device resets to the state
configured before entering sleep mode previously, rather than recovering in a clean power-up default state. The
most severe implication of this is that the SLEEP = 1 state is saved in the retention memory. So, the device
recovers from reset and immediately enters sleep mode.

Note: Due to the above-described behavior, RESET_ALL and sleep should never be used together.

Not All Registers are Saved in Retention Memory
Most key registers corresponding to common device configuration are saved in retention memory. However,
applications requiring extensive low-level configuration or infrequently used features may require writing to
registers not saved in retention after resume from sleep. In these cases, full recovery from sleep mode to the
presleep device state requires some repeated register configuration following resume from sleep. Registers that
are stored in retention memory are marked with “*” in the register map in the data sheet.

Bandwidth Efficiency Optimization
Overview
Before implementing a new design, it is critical to do bandwidth (BW) calculations to verify the right devices and
settings are used. If this is not done, it is possible that data is lost or corrupted. Although the MAX9295D family
can transmit at 3 Gbps or 6 Gbps depending on part number and configuration, the maximum allowable video
payload is smaller due to the overhead of the GMSL link. The video payload should not exceed the values shown
in Table 19.

Table 19. Maximum Video Payloads

GMSL2 Mode Maximum Video Payload
3Gbps Mode 2.6Gbps (2600Mbps)
6Gbps Mode 5.2Gbps (5200Mbps)

Calculating Bandwidth
The basic video payload can be calculated using the following equations.

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝐻𝐻𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 × 𝑉𝑉𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 × 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓𝑓𝑓𝑟𝑟𝑓𝑓 𝑶𝑶𝑶𝑶 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿_𝑃𝑃𝐿𝐿𝐶𝐶 × 𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿_𝑅𝑅𝐿𝐿𝐶𝐶𝐿𝐿

𝑏𝑏𝑏𝑏𝑏𝑏

𝑉𝑉𝑉𝑉𝑉𝑉𝑓𝑓𝑉𝑉 𝑃𝑃𝑓𝑓𝑃𝑃𝑃𝑃𝑉𝑉𝑓𝑓𝑉𝑉 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 × 𝑏𝑏𝑏𝑏𝑏𝑏

Note: (1) Htotal and Vtotal must include the horizontal and vertical blanking. (2) Use a BPP of 9 when calculating the
BW for 8 BPP data types. This is the minimum BPP required for the video pipe.

As long as the lane speeds on the MIPI receiver are fast enough to handle the video payload, the part should not
overflow. After calculating the video payload, overhead is added to calculate the total GMSL bandwidth.

𝑉𝑉𝑉𝑉𝑉𝑉𝑓𝑓𝑉𝑉 𝐵𝐵𝐵𝐵 = [(𝑣𝑣𝑉𝑉𝑉𝑉𝑓𝑓𝑉𝑉 𝑏𝑏𝑓𝑓𝑃𝑃𝑃𝑃𝑉𝑉𝑓𝑓𝑉𝑉) + (𝑣𝑣𝑉𝑉𝑉𝑉𝑓𝑓𝑉𝑉 𝑏𝑏𝑓𝑓𝑝𝑝𝑝𝑝𝑓𝑓𝑟𝑟 ℎ𝑓𝑓𝑓𝑓𝑉𝑉𝑓𝑓𝑓𝑓) + (𝑣𝑣𝑉𝑉𝑉𝑉𝑓𝑓𝑉𝑉 𝑏𝑏𝑉𝑉𝑝𝑝𝑓𝑓𝑃𝑃 𝑃𝑃𝑅𝑅𝑃𝑃)] × (9b10b 𝑓𝑓𝑒𝑒𝑝𝑝𝑉𝑉𝑉𝑉𝑉𝑉𝑒𝑒𝑒𝑒)
× (𝑠𝑠𝑃𝑃𝑒𝑒𝑝𝑝 𝑤𝑤𝑉𝑉𝑓𝑓𝑉𝑉𝑠𝑠)

𝑉𝑉𝑉𝑉𝑉𝑉𝑓𝑓𝑉𝑉 𝐵𝐵𝐵𝐵 = PCLK × �(𝐵𝐵𝑃𝑃𝑃𝑃) + �
1
2
� + �

1
2
�� × �

10
9
� × �

2048
2047

�

The majority of GMSL2 serial link bandwidth comprises video transmission. The total link bandwidth consumed
by video is derived from the incoming video stream and calculated by multiplying the pixel clock (PCLK)
expressed in MHz, bits per pixel (BPP), and GMSL2 link overhead factors. Note that control channel features
(example, GPIO, SPI) affect link bandwidth consumption and must be considered if enabled.

Bandwidth Optimization Example
The GMSL GUI has a very useful tool called bandwidth calculator to calculate the total GMSL bandwidth
consumed by the link. The following example compares the tool’s calculations between identical links with and
without utilizing double mode.
Case 1: Transmitting 4-lanes of RAW8 data at 1100 Mbps/lane without doubling the BPP.

• RAW8 data type, without doubling, gives a total GMSL BW of roughly 5,829 Mbps.
• Note that the pipe BPP is 9 instead of 8. This is the minimum BPP supported on the pipe.

Figure 15. Bandwidth Calculations without Doubling

Case 2: Transmitting 4-lanes of RAW8 data at 1100 Mbps/lane with doubling the BPP to 16.

• RAW8 data type, with doubling, gives a total GMSL BW of roughly 5,064 Mbps.
o Doubling the BPP saved over 750 Mbps worth of BW.

• Note that the pipe BPP is 16, confirming that RAW8 is doubled.

Figure 16. Bandwidth Calculations with Doubling

Error Flags
Overview
The device contains many internal error detection mechanisms to alert the system or user to any issues. Error
flags are register bits that can be checked to see if an error occurred.

The error bar (ERRB) pin is an MFP pin that logically NORs many of the errors. So, it is a convenient way to check
for errors. It is available at MFP3 or at MFP8 as an alternative. Whether an error is included in the ERRB output
depends on if its output-enable (OEN) is high. Most OENs are high by default.

Error A

Error B

Error C

Error Z

A_
ER

R_
OE

N
B_

ER
R_

OE
N

C_
ER

R_
OE

N
Z_

ER
R_

OE
N

Select if
ERR is
reported
to ERRB

ERRB
(on MFP3)

Figure 17. ERRB Reporting Flow

See Table 20 for a description of each error flag in the MAX9295D.

Table 20. Error Flags Table for MAX9295D

Error Flag Error Description
EOM_ERR_FLAG_A Eye opening is below the configured threshold
VDD_OV_FLAG VDD overvoltage indication
MAX_RT_FLAG Combined ARQ maximum retransmission limit error flag
RT_CNT_FLAG Combined ARQ retransmission event flag
PKT_CNT_FLAG Packet count flag
VDDCMP_INT_FLAG Combined undervoltage comparator output. Asserted when GMP_SATATUS is asserted.
PORZ_INT_FLAG PORZ interrupt flag. PORZ is monitoring of undervoltage levels of VDD18 and VDDIO.
VDDBAD_INT_FLAG Combined VDD bad indicator. Asserted when either with VDDBAD_STATUS or CAP_VDD <0.82 V.
ADC_INT_FLAG ADC interrupt
MIPI_ERR_FLAG MIPI RX error flag
REM_ERR_FLAG Received remote side error status

LFLT_INT Line-fault interrupt asserted when either one of line-fault monitors indicates a fault status
IDLE_ERR_FLAG Idle-word error flag
DEC_ERR_FLAG Errors detected in GMSL packet
SPI_RX_OVRFLW SPI Rx buffer overflow flag
SPI_TX_OVRFLW SPI Tx buffer overflow flag
adc_overflow_ie ADC digital correction overflow enabled
adc_lo_limit_ie Enable ADC low limit monitor interrupt
adc_hi_limit_ie Enable ADC high limit monitor interrupt
adc_ref_ready_ie Enable ADC ready interrupt
adc_done_ie Enable ADC conversion completed Interrupt
DRIFT_ERR VID_TX_PCLK drift error detected
FIFO_WARN Transmitted video (VID_TX_FIFO) is more than half full
OVERFLOW VID_TX FIFO overflow occurred
CMP_STATUS VDD18, VDDIO, and CAP_VDD supply voltage comparator status bits. Latched when the supply

voltages are not in range.
phy*_lp_err Unrecognized commands or Invalid line sequences are detected. *May be replaced with 1 or 2

for phy1/phy2.
phy*_hs_err HS sync pattern with error detected on data lanes. *May be replaced with 1 or 2 for phy1/phy2.
ctrl1_csi_err_l ECC or CRC errors detected in CSI-2 controller, low byte
ctrl1_csi_err_h Packets terminated early or/and frame count error detected in CSI-2 controller

General-Purpose Input and Output (GPIO)
Overview
MAX9295D has seventeen multifunction pins (MFPs). Depending on the pin, they can be used as either full or
partial general-purpose input and output (GPIO) pins or for other functionality (example, I2C, LOCK, ERRB, etc.).
This section explains the GPIO function of MFP pins. Refer to the data sheets for additional details regarding
GPIO capabilities and default states after power-up.

The GPIO blocks of MAX9295D communicate and regenerate state changes of GPIO pins from one side of the
serial link to the other. An input GPIO value on one side of the GMSL link may be sent to any of the GPIO outputs
on the opposite side of the link.

Operation
GPIO pin mapping is coordinated across the serial link through GPIO pin ID assignments. Each GPIO input is
assigned a pin ID that is included in the packet sent across the serial link and corresponds with a GPIO output. By
default, the GPIO mapping is GPIO0 to GPIO0, GPIO1 to GPIO1, GPIO2 to GPIO2, etc. The GPIO mappings can be
changed through registers.

The MAX9295D uses 5-bit pin IDs that can support mapping up to 32 GPIO pins. Note that the usable number of
GPIOs is limited by the device-specific GPIO pinout. Each GPIO is controlled by three registers: GPIO_A, GPIO_B,
and GPIO_C. In the register documentation, the GPIO mapping is sequential (that is, the first three GPIO
registers correspond to GPIO0, then next three to GPIO1, etc.). Additional details related to these registers can
be found in the GPIO Registers section.

When programming GPIOs, it is important to program the GPIO Rx before the GPIO Tx to avoid asynchronous
initial states. For example, if Tx is low but Rx is high, the first transition of Tx from low to high is ignored by Rx as
Rx is already high. All subsequent transitions are correctly observed.

DeserializerSerializer

RX_ID = 3

TX_ID = 3

MFP0
(GPIO0)

GMSL Link

MFP3
(GPIO3)

Figure 18. GPIO Forwarding Example with a Transition from MFP3 to MFP0

MFP3

MFP0

t0 t1

GPI-to-GPO Delay

Figure 19. GPIO Forwarding Timing Diagram

MFP Capabilities: GPIO vs. GPI vs. GPO vs. ODO
The MAX9295D has seventeen MFPs; five of these MFPs are GPIO (general-purpose input or output), six are GPO
(general-purpose output), and six are ODO_GPI (open-drain output or general-purpose input). Table 21 shows
the GPIO capabilities of each MFP:

Table 21. MFP Capabilities

 MAX9295D
MFP0 GPIO0
MFP1 GPO1
MFP2 GPO2
MFP3 GPIO3
MFP4 GPO4
MFP5 GPO5
MFP6 GPO6
MFP7 GPIO7
MFP8 GPIO8
MFP9 GPIO9
MFP10 GPIO10
MFP11 ODO11_GPI11
MFP12 ODO12_GPI12
MFP13 ODO13_GPI13
MFP14 ODO14_GPI14
MFP15 ODO15_GPI15
MFP16 ODO16_GPI16

GPIO Pull-Up and Pull-Down Resistor Setup
Each GPIO can be programmed to have either a pull-up, pull-down, or no resistor. The pull-up or pull-down
resistance can be set to either 40 kΩ or 1 MΩ.
The resistor is configured with the PULL_UPDN_SEL[1:0] register:

• 00: No resistor
• 01: Pull-up resistor
• 10: Pull-down resistor
• 11: Reserved

The resistance value of the resistor is set using the RES_CFG register:

• 0: 40kΩ
• 1: 1MΩ

GPIO Output Driver Setup
The GPIO output driver can be enabled or disabled. When enabled, the output driver can be configured to be
either open drain or push-pull. The output driver is enabled by writing GPIO_OUT_DIS = 0 and disabled by
writing GPIO_OUT_DIS = 1. The output driver is configured for open-drain mode (that is, NMOS output driver
enabled) by writing OUT_TYPE = 0 and for push-pull mode (that is, both NMOS and PMOS output driver enabled)
by writing OUT_TYPE = 1.

Configuring GPIO Forwarding
GPIO forwarding is the transmission and regeneration of state changes of GPIO pins on the local side of the
serial link to the corresponding GPIO pins on the remote side. To forward the pin value, the local and remote
side GPIOs must be properly configured. Each GPIO has configurable registers GPIO_TX_ID and GPIO_RX_ID used
for mapping GPIO pins across the serial link. Note that this configuration applies to both the serializer-to-
deserializer and deserializer-to-serializer communications.

Configuring Input GPIO:

1. Set GPIO_TX_ID with a value from 0 to 31 to assign the GPIO pin ID.
2. Write GPIO_TX_EN = 1 to enable the GPIO transmit block.

Configuring Output GPIO:
1. Set GPIO_RX_ID with a value from 0 to 31 to assign the GPIO pin ID. This must be the same value used

for GPIO_TX_ID to map the input and output GPIO pins.
2. Write GPIO_RX_EN = 1 to enable the GPIO receive block for the GPIO pin.

By default, the GPIO_TX_ID and GPIO_RX_ID are the same value as the GPIO number. For example, the default
GPIO_TX_ID and GPIO_RX_ID values for GPIO1 is 1; accordingly, GPIO1 is mapped to GPIO1 on the opposite side
of the serial link by default.

GPIO Broadcasting
The same concept of GPIO forwarding can be configured so that a transition on a single GPIO input is mapped to
multiple GPIO outputs (broadcasting). To do this, set the GPIO_TX_ID of the input GPIO to the same GPIO_RX_ID
of multiple output GPIO pins. Figure 20 is an example diagram of this configuration.

DeserializerSerializer

RX_ID = 0TX_ID = 0
MFP0

(GPIO0)

GMSL Link

MFP0
(GPIO0)

RX_ID = 0 MFP3
(GPIO3)

Figure 20. GPIO Broadcasting

Delay Compensation
In non-delay-compensated mode (default), the GPI transition is sent as fast as possible across the link, based on
priority and available link bandwidth. As a result, there is a variable delay between an input transition and the
subsequent transition on the other side of the GMSL2 link. Delay compensation can be used to ensure that the
timing delay between input transition and output transition is constant. The typical values and registers to set
delay compensation are as following.

Table 22. Delay Values with and without Compensation

Direction Delay Compensation Delay

GPIO forwarding from serializer to deserializer
0 1 μs

1 3.5 μs
(default)

GPIO forwarding from deserializer to serializer
0 6 µs

1 15 µs
(default)

Table 23. Compensation Delay Registers

Register Bits Default Value Description
0x2F 5:0 0b000001 GPIOA:

Bit [5:0]: GPIO_FWD_CDLY
Compensation delay multiplier for the forward direction.
This must be the same value as GPIO_FWD_CDLY of the chip on
the other side of the link.
Total delay is the (value + 1) multiplied by 1.7 μs. Default delay
is 3.4 μs.

0x31 5:0 0b001000 GPIOB:
Bit [5:0]: GPIO_REV_CDLY
Compensation delay multiplier for the forward direction.
This must be the same value as GPIO_REV_CDLY of the chip on
the other side of the link.
Total delay is the (value + 1) multiplied by 1.7 μs. Default delay
is 3.4 μs.

Toggling GPIO Manually with Registers
GPIO pins can be manually controlled through I2C or UART register writes. Write to the local device to toggle
local GPIO pins; write to the remote device using the control channel to toggle remote GPIO pins.

• Set GPIO_OUT_DIS = 0 to enable the output driver and configure OUT_TYPE to the desired output mode
(open drain or push-pull).

• Set GPIO_RX_EN = 0 to disable the GPIO receive block for the GPIO pin. This sets the GPIO to receive its
value from the bitfield GPIO_OUT instead of from the value being transmitted across the GMSL2 link.

• Set GPIO_OUT to the desired value.

GPIO Registers

Table 24. GPIO Registers

Register Bits Default Value Description
0x2BE 7:0 0x99 GPIO0 A:

Bit 7: RES_CFG
0 = 40KΩ, 1 = 1MΩ

Bit 4: GPIO_OUT
0 = Drive output to 0, 1 = Drive output to 1

Bit 3: GPIO_IN, GPIO input level 0 or 1

Bit 2: GPIO_RX_EN
0 = Disable receiving from the link.
1 = Enable receiving from the link

Bit 1: GPIO_TX_EN
0 = Disable transmitting to the link.
1 = Enable transmitting to the link

Bit 0: GPIO_OUT_DIS
0 = Output driver enabled
1 = Output driver disabled

0x2BF 7:0 0xA0 GPIO0 B:
Bit [7:6]: Resistor configuration
00 = None
01 = Pull-up
10 = Pull-down

Bit 5: OUT_TYPE
0 = Open-drain
1 = Push-pull

Bit [4:0]: GPIO_TX_ID,
Address = 0-31

0x2C0 6:0 0x40

GPIO0 C:
Bit 6: GPIO_RECVED, Received GPIO Value 0 or 1

Bit [4:0]: GPIO_RX_ID,
Address = 0-31

0x2C1 - 0x2DE … … Repeat Registers A, B, C for GPIO1-10

GPIO Programming Example
In this example, GPIO0 on a MAX9295D serializer is forwarded across the link to GPIO0 on a MAX96724
deserializer. This example could be adjusted to use different GPIO pins or forward a GPIO on the local side to the
remote side, depending on the desired application. An important note is to set up the GPIO Rx side before
setting up the GPIO Tx side to prevent asynchronous states.

DeserializerSerializer

RX_ID = 0TX_ID = 0
MFP0

(GPIO0)

GMSL Link

MFP0
(GPIO0)

Figure 21. GPIO Forwarding Programming Example

Table 25. GPIO Programming Example

Step Action Device Read/Write Register
Address Value

1
Set up deserializer GPIO0 Rx enable, enable output driver,
and set resistor to 1 MΩ. DES W 0x300 0x84

2
Set up deserializer GPIO output type to push-pull and
configure resistor as pull-down. DES W 0x301 0xA0

3 Set up deserializer GPIO0 to receive ID GPIO_RX_ID to be 0. DES W 0x302 0x00
4 Set up serializer GPIO0 Tx enable. SER W 0x2BE 0x83
5 Set up serializer GPIO0 transmit ID GPIO_TX_ID to be 0. SER W 0x2BF 0xA0

MFP Slew Rate
The MAX9295D’s multifunction pins (MFPs) have configurable rise and fall times (slew rate). This parameter may
be referred to as the I/O “speed (control),” “slew (rate),” or “edge rate” in register control bit names. Note that
the MFP slew rate cannot be adjusted independently on a per-pin basis. MFPs are divided into separate speed
groups; the slew rate adjustment register contains a bitfield for each group that configures the rise and fall time
to all pins in the group. Refer to the data sheet for the relevant register map and MFP speed grouping details.

The MFP edge transitions must be fast enough to meet the application’s requirement; however, the high-speed
I/O of the GMSL link and video protocols (example, MIPI) are sensitive to coupling and crosstalk from MFP
transitions. Care should be taken at a system level to prevent high edge rates and high frequencies on the MFP
inputs close to these I/O. In general, the MFP pins should be configured to the slowest slew rate that allows
proper function to mitigate I/O interference.

Note: Coupling refers to both inductive and capacitive coupling. Higher VDDIO supply values increase the MFP
edge rate and energy; this can introduce additional noise into the high-speed I/O.

High MFP slew rates, especially combined with high toggle frequencies, near the GMSL or high-speed video pins
may adversely affect performance of the data path, including CRC errors, 9b10b code or disparity errors,
reduction of link margin, and/or loss of link lock.

MFP Slew Rate Operation
The configurable slew rate applies to the various MFP functions differently:

1. I2C/UART: MFP pins operating as an I2C or UART function (that is, control channel or pass-through) are
not affected by the MFP rise/fall setting. The I2C/UART circuitry has a fixed falling-edge slew rate, and
the rising-edge slew rate is determined by the external pull-up resistor.

2. Dedicated Function: The rise and fall times of MFP pins assigned dedicated functions (example, SPI,
RCLKOUT, or LOCK & ERR) can be adjusted by the MFP slew rate control registers.

3. GPIO: MFP pins operating as GPI or GPO can be adjusted by the MFP rise/fall slew rate control register.

The VDDIO supply voltage affects the I/O slew rate. The impact of the chosen VDDIO voltage must be considered
when programming MFP slew rates.

MFP Slew Rate Programming and Configuration
MFPs are divided into speed groups by digital function. The slew rate adjustment register configures the rise and
fall times for each MFP in the group simultaneously. The MFP slew rate can be adjusted at any time, and the
changes are applied immediately.

The MFP slew rate configuration applies to all pins in the speed group regardless of the enabled function of the
pin. For example, the speed setting is applied to a GPIO and a dedicated pin function if both are in the same MFP
speed group.

The I2C/UART functions are not affected by the MFP slew rate adjustment. If an MFP is used as an I2C or UART
pin, the slew rate is automatically adjusted to meet the applicable specification.

The device VDDIO level determines the available range of the slew rate configuration options. For each VDDIO
level, the MFP speed groups have four available speed options configured by two speed control bits.

CMU4 is the MFP speed control register for the MAX9295D.
Refer to the corresponding device’s data sheet “Control- and Side-Channel Typical Rise and Fall Times” section
for VDDIO timing details. Typical rise and fall times for GMSL2 devices are presented in the following table.

Table 26. Typical Rise/Fall Times for GMSL2 Devices

Register Value
Rise/Fall Time

VDDIO=1.8V VDDIO=3.3V
0x0 2n 1n
0x1 4n 2n
0x2 8n 4n
0x3 16n 8n

MFP Slew Rate Example
Example 1. CMU4 Register Example Using the CSI-2 Serializer
The MAX9295D CMU4 (0x304) register to configure the MFP slew rate. This register has the following mapping:

Table 27. CMU4 Register

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
SPI_MS_SLW SPI_LS_SLW REFOUT_SLW GP_SLW

Video Pattern Generator (VPG)
Overview
The VPG creates either a checkerboard or gradient pattern with programmable parameters. These patterns can
be used to replace the incoming video to create an RGB888 video pattern when no video is present on the
serializer input. Its ability to generate test images is useful for evaluation and debugging.

Video Pattern Generator Operation
The MAX9295D has an internal video pattern generator (VPG) that accommodates a wide range of resolutions
and frame rates. The VPG requires an external PCLK source from the CSI input. Link lock is not required for the
VPG to be used.

The VPG block generates and outputs video data based on specified timing parameters. The video timing is
sourced from the input video stream. The VPG outputs either a color gradient pattern or a checkerboard pattern
with user-definable color parameters and pattern details.

The VPG allows users to perform video tests without a video source. In Figure 22 and Figure 23, patterns
generated by the serializer are sent through the serial link, received by the deserializer, and output to test the
serial link and downstream devices such as displays.

The GMSL GUI allows easy evaluation of the VPG. To enable VPG from GUI, go to the Tools tab and open Video
Timing and Pattern Generator. A window pops up (Figure 22).

Figure 22. GMSL GUI Video Timing and Pattern Generator

The GMSL SerDes GUI can be used to set up the VPG and generate VPG register write example codes.

Figure 23. VPG Pattern Options, Gradient (Top), and Checkerboard (Bottom)

VPG Configuration
In gradient mode, the length of the gradient pattern and gradient direction are configurable. In checkerboard
mode, two colors (color A and color B) are selected and the size of the pattern is user-defined. The VPG can
generate in RGB888 format. The following table lists the configuration registers for the MAX9295D.

Table 28. VPG Configuration Registers for MAX9295D

Parameter Register Bitfield Decode and Description

Select the pattern type VTX29 PATGEN_MODE[1:0]

Select the VPG pattern.
00: Pattern generator disabled; use video from the
serializer input (default)
01: Generate checkerboard pattern
10: Generate gradient pattern
11: Reserved

In gradient mode:
select the gradient
direction

VTX29 GRAD_MODE[0]

0: Gradient mode increasing. Each gradient color
starts from a value of 0x00 and increases to 0xFF.
1: Gradient mode decreasing. Each gradient color
starts from a value of 0xFF and decreases to 0x00.

In gradient mode:
select the gradient pattern
length

VTX30 GRAD_INC[7:0]

Selects the value each pixel increments. Program
to the desired increment amount multiplied by 4.
The default value of 4 results in each pixel
incrementing by 1, resulting in a pattern length of
256 pixels per color.

In checkerboard mode:
set the value of color A

VTX31
VTX32
VTX33

CHKR_A_L[7:0]
CHKR_A_M[7:0]
CHKR_A_H[7:0]

Sets the red component of color A
Sets the green component of color A
Sets the blue component of color A

In checkerboard mode:
set the value of color B

VTX34
VTX35
VTX36

CHKR_B_L[7:0]
CHKR_B_M[7:0]
CHKR_B_H[7:0]

Sets the red component of color B
Sets the green component of color B
Sets the blue component of color B

In checkerboard mode:
set the length of color A VTX37 CHKR_RPT_A[7:0] Sets the number of pixels of color A. The first line

outputs color A first.

In checkerboard mode:
set the length of color B VTX38 CHKR_RPT_B[7:0]

Sets the number of pixels of color B. The first line
outputs color B after CHKR_RPT_A pixels. Set
equal to CHKR_RPT_A for a square checkerboard
pattern.

In checkerboard mode:
set the height of the
checkerboard

VTX39 CHKR_ALT[7:0]

After CHKR_ALT lines, the pattern switches to
output color B before color A. Set equal to
CHKR_RPT_A and CHKR_RPT_B for a square
checkerboard pattern.

Pairing with GMSL1 Deserializers
Overview
The MAX9295D is GMSL1 backwards compatible and may be paired with GMSL1 deserializers. Unlike GMSL2, the
GMSL1 link does not automatically establish, and the forward video channel requires an external video pixel clock
at the serializer input to be established.

The following procedure is used to establish a GMSL1 link:

• Build the reverse control channel (the CLINK).
• Program the serializer and image sensor through the reverse channel.
• Program the deserializer following the steps described in the Configuration section.
• Enable image sensor streaming and forward channel.

When using the GMSL1 mode, use only GMSL1 deserializers equipped with high immunity mode (HIM). HIM
provides robust control channel electromagnetic compatibility (EMC) tolerance, which reduces the effects of bit
errors and the potential to corrupt reverse channel communication. Devices operating without HIM can fail bulk
current injection (BCI) tests and should not be used in applications requiring power-over-coax (PoC).

Other GMSL1 legacy mode deserializers without HIM support (example, MAX9272) can be used, but require
additional design considerations. Building the CLINK without HIM enabled requires more configuration and is
sensitive to hardware setup if PoC is used. This is not supported for new designs but may be supported for legacy
systems.

A robust reverse communication channel is important when pairing the GMSL2 CSI-2 deserializer with GMSL1
devices. Enable packet-based control channel mode by setting the deserializer PKTCC_EN bits high for each link.
If there is no I2C main on the remote side of the link, set NO_REM_MST high to reduce unnecessary timeouts on
the communication channels.

Pairing with a High Immunity Mode Capable GMSL1 Deserializer
A GMSL1 deserializer with HIM mode enabled upon power-up (example, MAX96706) is recommended for GMSL1
camera applications with the MAX9295D. This is achieved by adding a pull-up resistor at the HIM pin of the
deserializer. Refer to the MAX96706 data sheet for additional details.

There are two methods to build the CLINK. Power up the GMSL2 CSI-2 serializer with GMSL1 HIM mode enabled
by setting the CFG pins or enable HIM mode with register write HIGHIMM (bit 7 in register 0x044D).

If a MAX96706 is powered up without HIM enabled, the communication link, CLINK, must be built under non-HIM
mode. After the CLINK is built, HIM mode can then be enabled through register writes.

The procedure is listed in Figure 24 and Table 29. Note that in systems with multiple GMSL1 serializers, before
HIM mode is established on both sides, it is recommended to individually enable and program each link to avoid
potential I2C command race conditions. This can be done by only having one serializer active at a time.

https://www.analog.com/en/products/max96705a.html

Programming Examples
This example demonstrates how to set up the communication channel for a GMSL 1 link. Note that this requires
an I2C interface capable of writing 8-bit or 16-bit register addresses.

Turn on HIM on MAX96706 Link A
0x48,0x0B06,0xEF
Turn on local I2C acknowledge as link is not established yet
0x48,0x0B0D,0x80
Enable CLINK in MAX9295D that is connected on Link A
0x80,0x04,0x43
Delay 5ms
Turn off local I2C acknowledge
0x48,0x0B0D,0x00

This example shows how to set up a complete GMSL1 link and the required registers for the serializer. This
example assumes that the deserializer is in HIM mode at power-up.

Enable GMSL 1
0x48,0x0006,0x40
Set deserializer link A: HIM Mode Enable
0x48,0x0B06,0xEF
Turn on local I2C acknowledge as link is not established yet
0x48,0x0B0D,0x80
At this point users should have access to the serializer I2C communication. If
using the GMSL GUI users need to hit identify devices under options tab.

Turn on CLINK link and turn video link off.
0x80,0x04,0x43

Serializer Enable double and HVEN
0x80,0x07,0x84
Deserializer Enable double and HVEN
0x48,0x0B07,0x84
Deserializer Disable Remote master
0x48,0x0B05,0x79
Deserializer Enable SHIFT_VID_HVD
0x48,0x0BA7,0x45
Disable I2C_LOC_ACK: This should be disabled once the forward channel is
established.
0x48,0x0B0D,0x00
Deserializer, Set datatype to YUV422. This can be changed depending on the data
type used.
0x48,0x0B96,0x1B
Deserializer, DE_EN = 0; This is dependent on the camera used.
0x98,0x0B0F,0x01

Configuration Flowchart and Detailed Steps

GMSL1 Mode Turn on HIM Mode

Turn on local I2C
ACK. Enable

reverse channel
setting

Turn off HIM ModeTurn off HIM Mode

Enable CLINK
Disable forward
control channel

*Note 2

Enable packet-
based control

channel (optional)

Enable serial link
Continue with serial link device setup
and configuration, and program image

sensor(s)

Deserializer
Settings

Serializer Settings

Other Settings

No, CLINK
is not up

Yes, CLINK
is up

*Note 1: If read check
operation is not available
or serializer power-up
status is unknown,
continue the steps by
building CLINK under
legacy mode.

*Note 2: Disable/enable
forward control under
CLINK to avoid
unexpected I2C traffic.

Read back serializer
device ID (optional)

*Note 1

Manually override
reverse channel

settings

Turn on HIM ModeTurn on HIM Mode
Manually override
reverse channel

settings to default

Enable forward
control channel

*Note 2

Disable local I2C
ACK and reverse
channel setting

Enable CLINK

Read back
serializer device ID

(optional)

No, HIM is not
available on device

Yes, HIM is
available on device

Figure 24. Building the CLINK on HIM-Capable GMSL1 Deserializer

Table 29. Configuration Steps for Pairing HIM-Capable GMSL1 Deserializers
STEP DEVICE SLAVE ID REGISTER(S) VALUE DESCRIPTION
0 DES 0x48 0x0006 0x40 Enable Link A GMSL1 mode.
Delay 5 ms
1 DES 0x48 0x0313 0x00 Turn off CSI output

2 DES 0x48 0x0B06 0xEF
Turn on HIM mode on Link A
*Skip this step if the serializer is not in
HIM mode.

Note

If Ser is powered up with HIM by
default, CLINK is established with one
more write on Ser (0x04 = 0x43).
Proceed to step 17. Otherwise
continue.

3 DES 0x48 0x0B0D 0x81

Enable reverse channel configuration
on Link A.
Turn on local I2C acknowledge on Link
A.

4 SER 0x80 0x44D 0x00 Turn off HIM on Ser.
Delay 10 ms
5 DES 0x48 0x0B06 0x6F Turn off HIM mode on Link A.

6 DES 0x48 0x14C5 0xAA Manually override reverse channel
pulse length for Link A.

7 Des 0x48 0x14C4 0x80 Manually override reverse channel
rise/fall time for Link A.

8 Des 0x48 0x1495 0xC8 Manually override reverse channel Tx
amplitude for Link A.

9 SER 0x80 0x0404 0x43 Enable control link only. Disable serial
link.

Delay 5 ms Control link should be built up
successfully.

10 DES 0x48 0x0B04 0x02 Disable forward control channel
transmitter for Link A.

11 SER 0x80 0x44D 0x80 Enable HIM mode on Ser (that is,
remote side).

Delay 5 ms
12 DES 0x48 0x0B06 0xEF Turn on HIM mode on Link A.

CLINK should be established with HIM enabled.

13 DES 0x48 0x14C5 0x40 Manually override reverse channel
pulse length to default value for Link A.

14 DES 0x48 0x14C4 0x40
Manually override reverse channel
rise/fall time to default value for Link
A.

15 DES 0x48 0x1495 0x69 Manually override reverse channel Tx
amplitude to default value for Link A.

16 DES 0x48 0x0B04 0x03 Enable forward control channel
transmitter for Link A.

17 DES 0x48 0x0B0D 0x00 Disable local I2C acknowledge.
Disable reverse channel setting.

Optional DES 0x48 0x0B08 0x25 Enable packet-based control channel
mode for Link A.

Delay 10 ms

Continue programming the deserializer configuration.

Continue programming the serializer configuration and camera.

Delay 10 ms
19 SER 0x80 0x0404 0x83 Enable serial link.
(If HIBW) SER 0x80 0x0407 0bX1XXXXXX Enable HIBW mode
Delay 10 ms
(If HIBW) DES 0x48 0x0B07 0bXXXX1XXX Enable HIBW mode
Delay 10 ms
(If HIBW and
PKTCC) DES 0x48 0x0B19 Read Clear out CC CRC errors due to HIBW

switch
Last DES 0x48 0x0313 0x02 Enable CSI output.

GPIO Forwarding with GPI-GPO and CNTL Pins
In the GMSL1 mode, GPIO forwarding is done using GPI-GPO for the reverse direction and CNTL pins in the forward
direction.

Reverse Direction with GPI-GPO
GPI is located at MFP1 and is enabled by default. Disable GPI through register 0xB08. Do not use GPI-GPO
forwarding when FSYNC is enabled.

GPI-GPO takes priority on the control channel. I2C communication is paused through clock stretching, while UART
communication gets overwritten and requires the microcontroller to retransmit.

Forward Direction with CNTL
GPIO tunneling in the forward direction is done through the CNTL outputs. The number of available CNTL signals
depends on channel settings of the GMSL1 link and is detailed in Table 30. Note that while most CNTL outputs of
the MAX96714 correspond with the same input on the GMSL1 part, CNTL4 corresponds with the GMSL1 audio bit.

Table 30. CNTL Availability and Bandwidth

MODE CNTL0 CNTL1 CNTL2 CNTL3 CNTL4
BWS = 0, HIBW = 0 None None None None Full
BWS = 1 None Full Full None Full

BWS = 0 HIBW = 1 Blank* Blank* Blank* Blank* None

*In this mode, CNTL pins only change during the blanking period and are intended for slow signals only. Set the
triggering modes in the serializer.

Note: CNTL operation requires an active video link, and certain register settings to work. The following bits must
be set: DBL = 0, HVEN = 0, SEREN = 1, CLINKEN = 0, and PCLK is applied.

The CNTL signals can be reordered to change the output that sent a CNTL signal. By default, the signals are assigned
in a straight through manner, that is, the CNTL0 signal outputs from CNTL0, CNTL1 outputs from CNTL1, etc., to
change the output order, and change the CNTL OUT ORD bits. Example, when CNTL_OUT_ORD = 0b001, CNTL3
outputs from the CNTL4 pin, CNTL2 outputs from the CNTL3 pin, etc.

MAX9295D SERIALIZER

CNTL_IN_ORD = 000GMSL LINK

CNTL4
CNTL3
CNTL2
CNTL1
CNTL0

CNTL_IN_EN = 10000

CNTL4
CNTL3
CNTL2
CNTL1
CNTL0

4, 3, 2, 1, 0 4

Figure 4. Default CNTL Order, CNTL4 Enabled

MAX9295D SERIALIZER

CNTL_IN_ORD = 111GMSL LINK

CNTL4
CNTL3
CNTL2
CNTL1
CNTL0

CNTL4
CNTL3
CNTL2
CNTL1
CNTL0

CNTL_IN_EN=01000

CNTL4
CNTL3
CNTL2
CNTL1
CNTL0

3, 4, 0, 1, 2, 3

Figure 5. Outputting CNTL4 Signal from CNTL3 Pin

GMSL1 Delay Compensation
By default, the GMSL1 control channel (and thus GPI-GPO) is not a packet-based channel and does not need delay
compensation.

If packet-based control channel is used, set GPI_COMP_EN = 1 (in the GMSL1 block) to turn on packet-based GPI-
GPO delay compensation.

The CNTL pins are sent on the video path (not the control channel), and do not require delay compensation.

GMSL1 GPI-GPO and CNTL-Related Register Bits
Table 31. Serializer Video PRBS Generator and Checker Registers

REGISTER BITS DEFAULT VALUE DESCRIPTION DECODE

0xB06 4 0b0

GPI skew compensation
enable (when using
packet-based control
channel).

0b0: GPI Skew compensation not enabled
0b1: GPI Skew compensation

0xBD1 7:5 0b000

Internal CNTL_OUT
order to pins CNTL4 to
CNTL0. By default, CNTL
pins are assigned as
shown in the pin
description table.

0b000 4, 3, 2, 1, 0 (Default)
0b001 3, 2, 1, 0, 4
0b010 2, 1, 0, 4, 3
0b011 1, 0, 4, 3, 2
0b100 0, 1, 2, 3, 4
0b101 1, 2, 3, 4, 0
0b110 2, 3, 4, 0, 1
0b111 3, 4, 0, 1, 2

4:0 0b00000 CNTL output enable for
CNTL[4:0]

0b0XXXX: Disable CNTL4
0b1XXXX: Enable CNTL4
0bX0XXX: Disable CNTL3
0bX1XXX: Enable CNTL3
0bXX0XX: Disable CNTL2
0bXX1XX: Enable CNTL2
0bXXX0X: Disable CNTL1
0bXXX1X: Enable CNTL1
0bXXXX0: Disable CNTL0
0bXXXX1: Enable CNTL0

Complete Use Case Programming Examples

The following use case examples demonstrate how many of the features described throughout this document
can be used together to program a SerDes system. These examples may need to be manipulated or completely
changed for more specific use cases. The basic flow of programming and important steps is annotated to give a
broad picture of the requirements users can expect to get a system working with the MAX96724 deserializer and
MAX9295D serializer.

The format of the programming examples throughout this section follow the format allowable by the GMSL GUI
for .cpp files, so that users may copy them for use immediately.

Table 32 Explanation of GUI Programming for .cpp files

Number of I2C
transactions

Device
Address

High Register
Address

Low Register
Address

Register
value Description

0x04 0x80 0x03 0x83 0x00 //Description

Use Case Example
This example has the following characteristics:

• Two image sensors connected to one MAX9295D and MAX96724 each.
• I2C address of serializer is 0x80.
• I2C address of deserializer is 0x4E.
• Link rate = 6 Gbps
• The serializer receives YUV8 from both sensors and assigns two video pipes and two VCs.
• The deserializer receives and outputs the data on Port A, 1.5 Gbps/lane.

Use Case Example Script

//**************
Setup details:
SensorA (0x20) ---> MIPI PHY A 4-lane of MAX9295D -------- GMSL2 6G Coax --------> MAX96724 Link A ---> VC0
aggregated at MIPI PHY A 1.5Gbps/lane @ 4-lane
SensorB (0x30) ---> MIPI PHY B 2-lane of MAX9295D -------- GMSL2 6G Coax --------> MAX96724 Link A ---> VC1
aggregated at MIPI PHY A 1.5Gbps/lane @ 4-lane

// ************* Serializer MAX9295D ********************
// Enable ERROR and Lock output
0x04,0x80,0x00,0x05,0xC0,
// Make sure that the SER is in 2x4 mode

0x04,0x80,0x03,0x30,0x06,
// Set 4 lane for PHY A and 2 lane for PHY B
0x04,0x80,0x03,0x31,0x13,
// Route RAW16 to VIDEO_X from PHY A SensorA
0x04,0x80,0x03,0x14,0x6E,
// Route EMB8 to VIDEO_Y from PHY A SensorA
0x04,0x80,0x03,0x16,0x4E,
// Route RAW12 to VIDEO_Z from PHY B SensorB
0x04,0x80,0x03,0x18,0x6C,
// Route EMB8 to VIDEO_U from PHY B SensorB
0x04,0x80,0x03,0x1A,0x4E,
// Enable pipe X/Y for SenorA and Z/U for SensorB and stream all
0x04,0x80,0x03,0x08,0x7C,
0x04,0x80,0x03,0x11,0xC3,
0x04,0x80,0x00,0x02,0xF3,

// Efficiency updates for all pipes
0x04,0x80,0x01,0x02,0x0E,
0x04,0x80,0x01,0x0A,0x0E,
0x04,0x80,0x01,0x12,0x0E,
0x04,0x80,0x01,0x1A,0x0E,

// ************* Deserializer MAX96724 *******************
// Efficiency updates for pipes 0-3
0x04,0x4E,0x01,0x00,0x23,
0x04,0x4E,0x01,0x12,0x23,
0x04,0x4E,0x01,0x24,0x23,
0x04,0x4E,0x01,0x36,0x23,

// Enable only one link
0x04,0x4E,0x00,0x06,0xF1,
// Video Pipe Selection
0x04,0x4E,0x00,0xF0,0x20, // Pipe Z from link A to pipe 1; Pipe X from link A to pipe 0
0x04,0x4E,0x00,0xF1,0x31,
0x04,0x4E,0x00,0xF4,0x0F, // Turn on pipe 0/1

// MIPI PHY Setting
// Set Des in 2x4 mode
0x04,0x4E,0x08,0xA0,0x04,
// Set Lane Mapping for 4-lane port A
0x04,0x4E,0x08,0xA3,0xE4,
0x04,0x4E,0x08,0xA4,0xE4,
// C-PHY timing setting
//0x04,0x4E,0x08,0xAD,0x1F,
//0x04,0x4E,0x08,0xAE,0x5C,
// Set 4 lane D-PHY
0x04,0x4E,0x09,0x0A,0xC0,
0x04,0x4E,0x09,0x4A,0xC0,

0x04,0x4E,0x09,0x8A,0xC0,
0x04,0x4E,0x09,0xCA,0xC0,
// Turn on MIPI PHYs
0x04,0x4E,0x08,0xA2,0xF0,
// Set Data rate to be 1500Mbps
0x04,0x4E,0x04,0x15,0x2F,
0x04,0x4E,0x04,0x18,0x2F,
0x04,0x4E,0x04,0x1B,0x2F,
0x04,0x4E,0x04,0x1E,0x2F,

// Disable VS output on pipe 2 and 3
0x04,0x4E,0x04,0x36,0x0C,

// SensorA video pipeline 0
0x04,0x4E,0x09,0x0B,0x07,
0x04,0x4E,0x09,0x2D,0x15, // CSI2 controller 1
0x04,0x4E,0x09,0x0D,0x2E,
0x04,0x4E,0x09,0x0E,0x2E,
0x04,0x4E,0x09,0x0F,0x00,
0x04,0x4E,0x09,0x10,0x00,
0x04,0x4E,0x09,0x11,0x01,
0x04,0x4E,0x09,0x12,0x01,

// SensorB video pipeline 1
0x04,0x4E,0x09,0x4B,0x07,
0x04,0x4E,0x09,0x6D,0x15, // CSI2 controller 1
0x04,0x4E,0x09,0x4D,0x2C,
0x04,0x4E,0x09,0x4E,0x6C,
0x04,0x4E,0x09,0x4F,0x00,
0x04,0x4E,0x09,0x50,0x40,
0x04,0x4E,0x09,0x51,0x01,
0x04,0x4E,0x09,0x4E,0x41,

// EMB8, video pipeline 2
0x04,0x4E,0x09,0x8B,0x01,
0x04,0x4E,0x09,0xAD,0x01, // CSI2 controller 1
0x04,0x4E,0x09,0x8D,0x12,
0x04,0x4E,0x09,0x8E,0x12,
//0x04,0x4E,0x09,0x8F,0x00,
//0x04,0x4E,0x09,0x90,0x00,
//0x04,0x4E,0x09,0x91,0x01,
//0x04,0x4E,0x09,0x92,0x01,

// EMB8, video pipeline 3
0x04,0x4E,0x09,0xCB,0x01,
0x04,0x4E,0x09,0xED,0x01, // CSI2 controller 1
0x04,0x4E,0x09,0xCD,0x12,
0x04,0x4E,0x09,0xCE,0x4E,

//0x04,0x4E,0x09,0xCF,0x00,
//0x04,0x4E,0x09,0xD0,0x40,
//0x04,0x4E,0x09,0xD1,0x01,
//0x04,0x4E,0x09,0xD2,0x41,

// Disable CSI_OUTPUT
0x04,0x4E,0x04,0x0B,0x00,
0x00,0xFF,

// ************* Image Sensor Setup *******************
//Insert Image Sensor Config Script

// Enable CSI_OUTPUT
0x04,0x4E,0x04,0x0B,0x02,
// One shot link reset
0x04,0x4E,0x00,0x18,0x0F,
0x00,0x0F,
0x04,0x80,0x00,0x10,0x21,

Appendix

Figures
FIGURE 1. MAX9295D TWO-CAMERA APPLICATION EXAMPLE .. 3
FIGURE 2. INPUTS, PHY, AND CONTROLLER DIAGRAM (MIPI PORT B ONLY) ... 7
FIGURE 3. D-PHY LANE SWAP EXAMPLE (MIPI PORT B ONLY) ... 8
FIGURE 4. COMPLEX CONFIGURATION EXAMPLE ... 14
FIGURE 5. I2C INTERFACED CAMERA-MODULE SYSTEM WITH DEFAULT ADDRESS SETTINGS .. 21
FIGURE 6. CAMERA-MODULE SYSTEM WITH TRANSLATED ADDRESS SETTINGS .. 24
FIGURE 7. SPI ARCHITECTURE ... 30
FIGURE 8. SPI CLOCK AND DATA AT FINAL OUTPUT (AT EXTERNAL SPI TARGET), NO VIDEO ON GMSL LINK ... 33
FIGURE 9. SPI CLOCK AND DATA AT FINAL OUTPUT (AT EXTERNAL SPI TARGET), 92% VIDEO ON GMSL LINK ... 33
FIGURE 10. SPI TRANSMISSION EXAMPLE ... 35
FIGURE 11. FRAME ALIGNMENT (WITHOUT FRAME SYNC) ... 36
FIGURE 12. FRAME ALIGNMENT (FRAME SYNC ENABLED) .. 37
FIGURE 13. FRAME SYNC APPLICATION DIAGRAM ... 38
FIGURE 14. POWER MANAGER STATE DIAGRAM .. 40
FIGURE 15. BANDWIDTH CALCULATIONS WITHOUT DOUBLING .. 45
FIGURE 16. BANDWIDTH CALCULATIONS WITH DOUBLING .. 45
FIGURE 17. ERRB REPORTING FLOW ... 46
FIGURE 18. GPIO FORWARDING EXAMPLE WITH A TRANSITION FROM MFP3 TO MFP0 ... 48
FIGURE 19. GPIO FORWARDING TIMING DIAGRAM .. 49
FIGURE 20. GPIO BROADCASTING ... 50
FIGURE 21. GPIO FORWARDING PROGRAMMING EXAMPLE ... 53
FIGURE 22. GMSL GUI VIDEO TIMING AND PATTERN GENERATOR ... 57
FIGURE 23. VPG PATTERN OPTIONS, GRADIENT (TOP), AND CHECKERBOARD (BOTTOM) .. 58
FIGURE 24. BUILDING THE CLINK ON HIM-CAPABLE GMSL1 DESERIALIZER ... 62
FIGURE 25. DEFAULT CNTL ORDER, CNTL4 ENABLED .. 65
FIGURE 26. OUTPUTTING CNTL4 SIGNAL FROM CNTL3 PIN .. 65

Tables
TABLE 1. MAX9295D START-UP SEQUENCE .. 6
TABLE 2. BASIC SETTINGS ... 6
TABLE 3. LINK INITIALIZATION REGISTERS .. 7
TABLE 4. MIPI PHY SETTINGS REGISTERS ... 9
TABLE 5. VIDEO PIPE AND FILTERING REGISTERS ... 12
TABLE 6. HEARTBEAT DISABLE REGISTER ... 13
TABLE 7. SOFTWARE OVERRIDE REGISTERS .. 15
TABLE 8. DOUBLE MODE REGISTERS .. 16
TABLE 9. ZERO PADDING REGISTERS ... 17
TABLE 10. MFPS FOR I2C .. 19
TABLE 11. MAX9295D I2C REGISTERS .. 20
TABLE 12. I2C BROADCASTING (QUAD) EXAMPLE (SERIALIZER) ... 25
TABLE 13. I2C BROADCASTING (QUAD) EXAMPLE (IMAGE SENSOR) ... 25
TABLE 14. MFPS FOR UART .. 27
TABLE 15. MAX9295D UART REGISTERS ... 28

https://analog-my.sharepoint.com/personal/shane_chang_analog_com/Documents/Documents/HS89%20Public%20Intro/MAX9295D%20UG%20Round3.docx#_Toc156055161

TABLE 16. IMPORTANT SPI REGISTER SETTINGS ... 31
TABLE 17. VIDEO DETAILS FOR THE EXAMPLE ... 34
TABLE 18. POWER MANAGER AND SLEEP MODE AVAILABILITY FOR MAX9295D FAMILY .. 39
TABLE 19. MAXIMUM VIDEO PAYLOADS ... 44
TABLE 20. ERROR FLAGS TABLE FOR MAX9295D .. 46
TABLE 21. MFP CAPABILITIES ... 49
TABLE 22. DELAY VALUES WITH AND WITHOUT COMPENSATION .. 51
TABLE 23. COMPENSATION DELAY REGISTERS .. 51
TABLE 24. GPIO REGISTERS ... 52
TABLE 25. GPIO PROGRAMMING EXAMPLE .. 53
TABLE 26. TYPICAL RISE/FALL TIMES FOR GMSL2 DEVICES .. 54
TABLE 27. CMU4 REGISTER ... 55
TABLE 28. VPG CONFIGURATION REGISTERS FOR MAX9295D .. 58
TABLE 29. CONFIGURATION STEPS FOR PAIRING HIM-CAPABLE GMSL1 DESERIALIZERS.. 63
TABLE 30. CNTL AVAILABILITY AND BANDWIDTH ... 64
TABLE 31. SERIALIZER VIDEO PRBS GENERATOR AND CHECKER REGISTERS .. 66
TABLE 32 EXPLANATION OF GUI PROGRAMMING FOR .CPP FILES ... 67

Revision History

Revision Number Revision Date Description/Changes Pages Changed
0 01/24 Initial Release -

GMSL and GMSL2 are trademarks of Analog Devices, Inc., all rights reserved.

	Table of Contents
	MAX9295D Serializer
	Device Overview
	Application Use Case

	Start-up and Programming Sequence
	Overview

	Configuration
	Overview
	Link Initialization
	Link Initialization Registers
	Link Lock Check
	MIPI PHY Settings
	MIPI Lane Swap
	Lane Swap Example
	Lane Swap Programming Example
	MIPI Deskew
	MIPI PHY Settings Registers
	Video Pipes and Datatype/Virtual Channel Filtering
	Stream IDs
	Video Pipe and DT/VC Filtering Registers
	Video Pipe Filtering Programming Example
	Limit Heartbeat Mode
	Complete Configuration Examples

	Software Override
	Overview
	Software Override Registers
	Input BPP Manipulation
	Double Mode
	Zero Padding
	Double Mode and Zero Padding Example

	I2C Control Channels
	Overview
	Main I2C Control Channel
	I2C Pass-Through Channel
	Port Access and Routing
	I2C Registers
	Control Channel Programming Example
	I2C BroadcastingOverview
	I2C Broadcasting Technique
	I2C Broadcasting GMSL2 Use Case Example
	I2C Broadcasting Programming Examples

	UART Control Channels
	Overview
	Main UART Control Channel
	Base Mode
	Bypass Mode
	Pass-Through UART Channel
	Port Access and Routing
	Enabling UART Bypass Mode Through Register Setting (Soft-Bypass)
	Enabling UART Bypass Mode Through Pin Setting (Hard-Bypass)
	Enabling the UART Pass-Through Channels
	Enable Pass-Through UART Channel 1

	Serial Peripheral Interface (SPI)
	Overview
	CFG Pin Setup
	SPI Setup Registers in MAX9295D
	SPI Example Using GMSL GUI and Evaluation Boards
	SPI With and Without Video Running
	Data Integrity and Avoiding Buffer Overflow

	Frame Synchronization (FSYNC)
	Overview
	Configuration
	Programming Examples
	External FSYNC (GMSL2)
	Use Case Example

	Power Manager and Sleep Mode
	Overview
	Device Power Operation
	Power Supplies
	Power Manager States
	Reset (Power Down/Sleep)
	BOOT
	RUN
	SAVED
	Sleep Mode
	Sleep and Wakeup Sequences
	Sleep Mode Limitations
	Not All Registers are Saved in Retention Memory

	Bandwidth Efficiency Optimization
	Overview
	Calculating Bandwidth
	Bandwidth Optimization Example

	Error Flags
	Overview

	General-Purpose Input and Output (GPIO)
	Overview
	Operation
	MFP Capabilities: GPIO vs. GPI vs. GPO vs. ODO
	GPIO Pull-Up and Pull-Down Resistor Setup
	GPIO Output Driver Setup
	Configuring GPIO Forwarding
	GPIO Broadcasting
	Delay Compensation
	Toggling GPIO Manually with Registers
	GPIO Registers
	GPIO Programming Example
	MFP Slew Rate
	MFP Slew Rate Operation
	MFP Slew Rate Programming and Configuration
	MFP Slew Rate Example

	Video Pattern Generator (VPG)
	Overview
	Video Pattern Generator Operation
	VPG Configuration

	Pairing with GMSL1 Deserializers
	Overview
	Pairing with a High Immunity Mode Capable GMSL1 Deserializer
	Programming Examples

	Configuration Flowchart and Detailed Steps
	GPIO Forwarding with GPI-GPO and CNTL Pins
	Reverse Direction with GPI-GPO
	Forward Direction with CNTL
	GMSL1 Delay Compensation
	GMSL1 GPI-GPO and CNTL-Related Register Bits

	Complete Use Case Programming Examples
	Use Case Example
	Use Case Example Script

	Appendix
	Figures
	Tables
	Revision History

