
Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “fm” — 2018/3/26 — 11:43 — page i — #1

Software-Defined Radio 
for Engineers

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “fm” — 2018/3/26 — 11:43 — page ii — #2

For a listing of recent titles in the Artech House
Mobile Communications, turn to the back of this book.

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “fm” — 2018/3/26 — 11:43 — page iii — #3

Software-Defined Radio 
for Engineers

Travis F. Collins
Robin Getz

Di Pu
Alexander M. Wyglinski

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Library of Congress Cataloging-in-Publication Data
A catalog record for this book is available from the U.S. Library of Congress.

British Library Cataloguing in Publication Data
A catalog record for this book is available from the British Library.

ISBN-13: 978-1-63081-457-1

Cover design by John Gomes

© 2018 Travis F. Collins, Robin Getz, Di Pu, Alexander M. Wyglinski

All rights reserved. Printed and bound in the United States of America. No part 
of this book may be reproduced or utilized in any form or by any means, elec-
tronic or mechanical, including photocopying, recording, or by any information 
storage and retrieval system, without permission in writing from the publisher.

All terms mentioned in this book that are known to be trademarks or service 
marks have been appropriately capitalized. Artech House cannot attest to the 
accuracy of this information. Use of a term in this book should not be regarded 
as affecting the validity of any trademark or service mark.

10 9 8 7 6 5 4 3 2 1

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “fm” — 2018/3/26 — 11:43 — page v — #5

Dedication

To my wife Lauren
—Travis Collins

To my wonderful children, Matthew, Lauren, and Isaac, and my patient wife,
Michelle—sorry I have been hiding in the basement working on this book. To
all my fantastic colleagues at Analog Devices: Dave, Michael, Lars-Peter, Andrei,
Mihai, Travis, Wyatt and many more, without whom Pluto SDR and IIO would
not exist.
—Robin Getz

To my lovely son Aidi, my husband Di, and my parents Lingzhen and Xuexun
—Di Pu

To my wife Jen
—Alexander Wyglinski

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “fm” — 2018/3/26 — 11:43 — page vi — #6

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “fm” — 2018/3/26 — 11:43 — page vii — #7

Contents

Preface xiii

CHAPTER 1
Introduction to Software-Defined Radio 1

1.1 Brief History 1
1.2 What is a Software-Defined Radio? 1
1.3 Networking and SDR 7
1.4 RF architectures for SDR 10
1.5 Processing architectures for SDR 13
1.6 Software Environments for SDR 15
1.7 Additional readings 17

References 18

CHAPTER 2
Signals and Systems 19

2.1 Time and Frequency Domains 19
2.1.1 Fourier Transform 20
2.1.2 Periodic Nature of the DFT 21
2.1.3 Fast Fourier Transform 22

2.2 Sampling Theory 23
2.2.1 Uniform Sampling 23
2.2.2 Frequency Domain Representation of Uniform Sampling 25
2.2.3 Nyquist Sampling Theorem 26
2.2.4 Nyquist Zones 29
2.2.5 Sample Rate Conversion 29

2.3 Signal Representation 37
2.3.1 Frequency Conversion 38
2.3.2 Imaginary Signals 40

2.4 Signal Metrics and Visualization 41
2.4.1 SINAD, ENOB, SNR, THD, THD + N, and SFDR 42
2.4.2 Eye Diagram 44

2.5 Receive Techniques for SDR 45
2.5.1 Nyquist Zones 47
2.5.2 Fixed Point Quantization 49

vii

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “fm” — 2018/3/26 — 11:43 — page viii — #8

viii Contents

2.5.3 Design Trade-offs for Number of Bits, Cost, Power,
and So Forth 55

2.5.4 Sigma-Delta Analog-Digital Converters 58
2.6 Digital Signal Processing Techniques for SDR 61

2.6.1 Discrete Convolution 61
2.6.2 Correlation 65
2.6.3 Z-Transform 66
2.6.4 Digital Filtering 69

2.7 Transmit Techniques for SDR 73
2.7.1 Analog Reconstruction Filters 75
2.7.2 DACs 76
2.7.3 Digital Pulse-Shaping Filters 78
2.7.4 Nyquist Pulse-Shaping Theory 79
2.7.5 Two Nyquist Pulses 81

2.8 Chapter Summary 85
References 85

CHAPTER 3
Probability in Communications 87

3.1 Modeling Discrete Random Events in Communication Systems 87
3.1.1 Expectation 89

3.2 Binary Communication Channels and Conditional Probability 92
3.3 Modeling Continuous Random Events in Communication Systems 95

3.3.1 Cumulative Distribution Functions 99
3.4 Time-Varying Randomness in Communication Systems 101

3.4.1 Stationarity 104
3.5 Gaussian Noise Channels 106

3.5.1 Gaussian Processes 108
3.6 Power Spectral Densities and LTI Systems 109
3.7 Narrowband Noise 110
3.8 Application of Random Variables: Indoor Channel Model 113
3.9 Chapter Summary 114
3.10 Additional Readings 114

References 115

CHAPTER 4
Digital Communications Fundamentals 117

4.1 What Is Digital Transmission? 117
4.1.1 Source Encoding 120
4.1.2 Channel Encoding 122

4.2 Digital Modulation 127
4.2.1 Power Efficiency 128
4.2.2 Pulse Amplitude Modulation 129

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “fm” — 2018/3/26 — 11:43 — page ix — #9

Contents ix

4.2.3 Quadrature Amplitude Modulation 131
4.2.4 Phase Shift Keying 133
4.2.5 Power Efficiency Summary 139

4.3 Probability of Bit Error 141
4.3.1 Error Bounding 145

4.4 Signal Space Concept 148
4.5 Gram-Schmidt Orthogonalization 150
4.6 Optimal Detection 154

4.6.1 Signal Vector Framework 155
4.6.2 Decision Rules 158
4.6.3 Maximum Likelihood Detection in an AWGN Channel 159

4.7 Basic Receiver Realizations 160
4.7.1 Matched Filter Realization 161
4.7.2 Correlator Realization 164

4.8 Chapter Summary 166
4.9 Additional Readings 168

References 169

CHAPTER 5
Understanding SDR Hardware 171

5.1 Components of a Communication System 171
5.1.1 Components of an SDR 172
5.1.2 AD9363 Details 173
5.1.3 Zynq Details 176
5.1.4 Linux Industrial Input/Output Details 177
5.1.5 MATLAB as an IIO client 178
5.1.6 Not Just for Learning 180

5.2 Strategies For Development in MATLAB 181
5.2.1 Radio I/O Basics 181
5.2.2 Continuous Transmit 183
5.2.3 Latency and Data Delays 184
5.2.4 Receive Spectrum 185
5.2.5 Automatic Gain Control 186
5.2.6 Common Issues 187

5.3 Example: Loopback with Real Data 187
5.4 Noise Figure 189

References 190

CHAPTER 6
Timing Synchronization 191

6.1 Matched Filtering 191
6.2 Timing Error 195
6.3 Symbol Timing Compensation 198

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “fm” — 2018/3/26 — 11:43 — page x — #10

x Contents

6.3.1 Phase-Locked Loops 200
6.3.2 Feedback Timing Correction 201

6.4 Alternative Error Detectors and System Requirements 208
6.4.1 Gardner 208
6.4.2 Müller and Mueller 208

6.5 Putting the Pieces Together 209
6.6 Chapter Summary 212

References 212

CHAPTER 7
Carrier Synchronization 213

7.1 Carrier Offsets 213
7.2 Frequency Offset Compensation 216

7.2.1 Coarse Frequency Correction 217
7.2.2 Fine Frequency Correction 219
7.2.3 Performance Analysis 224
7.2.4 Error Vector Magnitude Measurements 226

7.3 Phase Ambiguity 228
7.3.1 Code Words 228
7.3.2 Differential Encoding 229
7.3.3 Equalizers 229

7.4 Chapter Summary 229
References 230

CHAPTER 8
Frame Synchronization and Channel Coding 231

8.1 O Frame, Where Art Thou? 231
8.2 Frame Synchronization 232

8.2.1 Signal Detection 235
8.2.2 Alternative Sequences 239

8.3 Putting the Pieces Together 241
8.3.1 Full Recovery with Pluto SDR 242

8.4 Channel Coding 244
8.4.1 Repetition Coding 244
8.4.2 Interleaving 245
8.4.3 Encoding 246
8.4.4 BER Calculator 251

8.5 Chapter Summary 251
References 251

CHAPTER 9
Channel Estimation and Equalization 253

9.1 You Shall Not Multipath! 253

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “fm” — 2018/3/26 — 11:43 — page xi — #11

Contents xi

9.2 Channel Estimation 254
9.3 Equalizers 258

9.3.1 Nonlinear Equalizers 261
9.4 Receiver Realization 263
9.5 Chapter Summary 265

References 266

CHAPTER 10
Orthogonal Frequency Division Multiplexing 267

10.1 Rationale for MCM: Dispersive Channel Environments 267
10.2 General OFDM Model 269

10.2.1 Cyclic Extensions 269
10.3 Common OFDM Waveform Structure 271
10.4 Packet Detection 273
10.5 CFO Estimation 275
10.6 Symbol Timing Estimation 279
10.7 Equalization 280
10.8 Bit and Power Allocation 284
10.9 Putting It All Together 285
10.10 Chapter Summary 286

References 286

CHAPTER 11
Applications for Software-Defined Radio 289

11.1 Cognitive Radio 289
11.1.1 Bumblebee Behavioral Model 292
11.1.2 Reinforcement Learning 294

11.2 Vehicular Networking 295
11.3 Chapter Summary 299

References 299

APPENDIX A
A Longer History of Communications 303

A.1 History Overview 303
A.2 1750–1850: Industrial Revolution 304
A.3 1850–1945: Technological Revolution 305
A.4 1946–1960: Jet Age and Space Age 309
A.5 1970–1979: Information Age 312
A.6 1980–1989: Digital Revolution 313
A.7 1990–1999: Age of the Public Internet (Web 1.0) 316
A.8 Post-2000: Everything comes together 319

References 319

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “fm” — 2018/3/26 — 11:43 — page xii — #12

xii Contents

APPENDIX B
Getting Started with MATLAB and Simulink 327

B.1 MATLAB Introduction 327
B.2 Useful MATLAB Tools 327

B.2.1 Code Analysis and M-Lint Messages 328
B.2.2 Debugger 329
B.2.3 Profiler 329

B.3 System Objects 330
References 332

APPENDIX C
Equalizer Derivations 333

C.1 Linear Equalizers 333
C.2 Zero-Forcing Equalizers 335
C.3 Decision Feedback Equalizers 336

APPENDIX D
Trigonometric Identities 337

About the Authors 339

Index 341

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch01_new” — 2018/3/26 — 11:42 — page 1 — #1

C H A P T E R 1

Introduction to Software-Defined Radio

Various forms of communication have evolved over the millennia. The spoken
word can be transmitted from one person, and heard or received by another. In
modern times town criers hold an annual contest to discover who can shout a
comprehensible message over the greatest distance [1]. However, while the world
record is for loudest crier is 112.8 decibels, it can only be understood at less than
100 meters. The desire to communicate more effectively than shouting, is old as
speech itself.

With modern advances in computing technologies, digital signal processing
and digital communication algorithms, artificial intelligence, radio frequency (RF)
hardware design, networking topologies, and many other elements have evolved
modern communication systems into complex, intelligent, high-performance
platforms that can adapt to operational environments and deliver large amounts
of information in real-time, error-free. The latest step in communication systems
technology is the software-defined radio, or SDR, which adopts the most recent
advances in all fields to yield the ultimate transmitter and receiver.

1.1 Brief History

Given the exciting history associated with advances that directly impact SDR
technology, Figure 1.1 provides a timeline describing several significant milestones
over the past four centuries. This history is dominated by various people
investigating ideas or concepts, publishing the results, then allowing their peers
and colleagues to build on their work. Many turned their work into commercial
products and became famous and rich; some became neither. For an exhaustive list
of major milestones relevant to SDR technology, the interested reader is referred to
Appendix A.

1.2 What is a Software-Defined Radio?

Every professional organization attempts to define a common framework of
terms and definitions to allow easy communication between professionals who
are working on similar areas of research or product development. Wireless
communications and SDR is no different. The Institute of Electrical and Electronic
Engineers (IEEE) P1900.1 Working Group has created the following definitions to

1

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch01_new” — 2018/3/26 — 11:42 — page 2 — #2

2 Introduction to Software-Defined Radio

Fi
g

ur
e

1.
1

Ti
m

el
in

e
of

se
ve

ra
lk

ey
m

ile
st

on
es

in
co

m
m

un
ic

at
io

ns
.

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch01_new” — 2018/3/26 — 11:42 — page 3 — #3

1.2 What is a Software-Defined Radio? 3

ensure that everyone in the field has common terminology [2]:

Radio
1. Technology for wirelessly transmitting or receiving electromagnetic

radiation to facilitate transfer of information.
2. System or device incorporating technology as defined in (1).
3. A general term applied to the use of radio waves.

Radio Node
A radio point of presence incorporating a radio transmitter or receiver.

Software
Modifiable instructions executed by a programmable processing device.

Physical Layer
The layer within the wireless protocol in which processing of RF, IF, or
baseband signals including channel coding occurs. It is the lowest layer of
the ISO 7-layer model as adapted for wireless transmission and reception.

Data Link Layer
The protocol responsible for reliable frame transmission over a wireless
link through the employment of proper error detection and control
procedures and medium access control.

Software Controlled
Software controlled refers to the use of software processing within the
radio system or device to select the parameters of operation.

Software Defined
Software defined refers to the use of software processing within the radio
system or device to implement operating (but not control) functions.

Software Controlled Radio
Radio in which some or all of the physical layer functions are software
controlled.

Software-Defined Radio (SDR)
Radio in which some or all of the physical layer functions are software
defined.

Transmitter
Apparatus producing radio frequency energy for the purpose of radio
communication.

Receiver
A device that accepts a radio signal and delivers information extracted
from it.

Air Interface
The subset of waveform functions designed to establish communication
between two radio terminals. This is the waveform equivalent of the
wireless physical layer and the wireless data link layer.

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch01_new” — 2018/3/26 — 11:42 — page 4 — #4

4 Introduction to Software-Defined Radio

Waveform
1. The set of transformations applied to information to be transmitted

and the corresponding set of transformations to convert received
signals back to their information content.

2. Representation of a signal in space.
3. The representation of transmitted RF signal plus optional additional

radio functions up to and including all network layers.

The combination of digital processing and analog RF has always made
up communication systems. In today’s modern systems signal processing has
progressed to such an extent that a majority of baseband functionality is being
implemented in software. The flexibility of the RF hardware to be re purposed and
reconfigured has led to one radio front-end handling most RF systems. Normally
the RF front-end is software controlled rather than software defined. This modern
combination of flexible RF front-ends and signal processing in software has lead
the birth of software-defined radio.

This can been seen in devices like Analog Devices’s AD7030, shown in
Figure 1.2. The ADF7030 is a low-power, high-performance, integrated radio
transceiver supporting narrow band operation in the 169.4-MHz to 169.6-MHz
ISM band. It supports transmit and receive operation at 2.4 kbps and 4.8 kbps using
2GFSK modulation and transmit operation at 6.4 kbps using 4GFSK modulation.
It includes an on-chip ARM Cortex-M0 processor that performs radio control and
calibration as well as packet management. That and a sensor is all that is needed
for smart metering or active tag asset tracking applications. This is just a side effect
of Moore’s law—system-level integration.

An SDR system is a complex device that performs several complicated tasks
simultaneously in order to enable the seamless transmission and reception of
data. In general, a digital communications system consists of an interdependent
sequence of operations responsible for taking some type of information, whether
it is human speech, music, or video images, and transmits it over-the-air to a
receiver for processing and decoding into a reconstructed version of the original
information signal. If the original information is analog (like audio), it must first be
digitized using techniques such as quantization in order for us to obtain a binary
representation of this information. Once in a binary format, the transmitter digitally

Figure 1.2 ADF7030 block diagram [3].

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch01_new” — 2018/3/26 — 11:42 — page 5 — #5

1.2 What is a Software-Defined Radio? 5

processes this information and converts it into an electromagnetic sinusoidal
waveform that is uniquely defined by its physical characteristics, such as its signal
amplitude, carrier frequency, and phase. At the other end of the communications
link, the receiver is tasked with correctly identifying the physical characteristics
of the intercepted modulated waveform transmitted across a potentially noisy
and distortion-filled channel, and ultimately returning the intercepted signal back
into the correct binary representation. The basic building blocks of a digital
communication system is shown in Figure 1.3.

Figure 1.3 shows that the input to the transmitter and output of the receiver
originate from or are fed into a digital source and digital sink, respectively.
These two blocks represent the source and destination of the digital information
to be communicated between the transmitter and receiver. Once the binary
information is introduced to the transmitter, the first task performed is to remove
all redundant/repeating binary patterns from the information in order to increase
the efficiency of the transmission. This is accomplished using the source encoder
block, which is designed to strip out all redundancy from the information. Note
that at the receiver, the source decoder re-introduces the redundancy in order to
return the binary information back to its original form. Once the redundancy has
been removed from the binary information at the transmitter, a channel encoder
is employed to introduced a controlled amount of redundancy to the information
stream in order to protect it from potential errors introduced during the transmission
process across a noisy channel. A channel decoder is used to remove this controlled
redundancy and return the binary information back to its original form. The
next step at the transmitter is to convert the binary information into unique
electromagnetic waveform properties such as amplitude, carrier frequency, and
phase. This is accomplished using a mapping process called modulation. Similarly,
at the receiver the demodulation process converts the electromagnetic waveform
back into its respective binary representation. Finally, the discrete samples outputted

Figure 1.3 An illustration describing some of the important components that constitute a modern
digital communications system. Note that for a SDR-based implementation, those components
indicated as programmable can be realized in either programmable logic or software.

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch01_new” — 2018/3/26 — 11:42 — page 6 — #6

6 Introduction to Software-Defined Radio

by the modulation block are resampled and converted into a baseband analog
waveform using a digital-to-analog converter (DAC) before being processed by the
radio frequency (RF) front-end of the communication system and upconverted to an
RF carrier frequency. At the receiver, the reverse operation is performed, where the
intercepted analog signal is downconverted by the RFFE to a baseband frequency
before being sampled and processed by an analog-to-digital converter (ADC).

Given the complexity of an SDR platform and its respective components, it
is important to understand the limitations of a specific SDR platform and how
various design decisions may impact the performance of the resulting prototype.
For instance, it is very desirable to have real-time baseband processing for spectrum
sensing and agile transmission operations with high computational throughput
and low latency. However, if the microprocessor being employed by the SDR
platform is not sufficiently powerful enough in order to support the computational
operations of the digital communication system, one needs to reconsider either
the overall transceiver design or the requirements for low latency and high
throughput. Otherwise, the SDR implementation will fail to operate properly,
yielding transmission errors and poor communication performance.

Design considerations to think about when devising digital communication
systems based on an SDR platform include.

• The integration of the physical and network layers via a real-time protocol
implementation on an embedded processor. Note that most communication
systems are divided into logically separated layers in order to more readily
facilitate the design of the communication system (see Section 1.3). However,
it is imperative that each layer is properly designed due to the strong
interdependence between all the layers.

• Ensuring that a sufficiently wide bandwidth radio front-end exists with
agility over multiple subchannels and scalable number of antennas for spatial
processing. Given how many of the advanced communication system designs
involve the use of multiple antennas and wideband transmissions, it is
important to know what the SDR hardware is capable of doing with respect
to these physical attributes.

• Many networks employing digital communication systems possess a
centralize architecture for controlling the operations of the overall network
(e.g., control channel implementation). Knowing the radio network
architecture is important since it will dictate what sort of operations are
essential for one digital transceiver to communicate with another.

• The ability to perform controlled experiments in different environments
(e.g., shadowing and multipath, indoor and outdoor environments) is
important for the sake of demonstrating the reliability of a particular SDR
implementation. In other words, if an experiment involving an SDR prototype
system is conducted twice in a row in the exact same environment and
using the exact same operating parameters, it is expected that the resulting
output and performance should be the same. Consequently, being able to
perform controlled experiments provides the SDR designer with a sanity
check capability.

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch01_new” — 2018/3/26 — 11:42 — page 7 — #7

1.3 Networking and SDR 7

• Reconfigurability and fast prototyping through a software design flow for
algorithm and protocol description.

Instead of using fixed analog processing and fixed circuits, many of
the communication systems in use every day are being implemented using
microelectronic-based flexible IF, digital signal processors, programmable digital
logic, accelerators, and other types of computing engines. To take advantage of
new advances in processing engines, high-level languages such as MATLAB® and
Simulink are being used rather than C or assembly. This transition of computing
technology had the impact of enabling new communication functionalities and
capabilities, such as advanced satellite communications, mobile communications,
data modems, and digital television broadcasts.

1.3 Networking and SDR

With the evolution of digital communication system into highly complex devices,
it became apparent that a divide-and-conquer strategy was needed in order to
make the design and implementation of such systems feasible and manageable.
Consequently, researchers divided a digital communication system into a collection
of complementary layers, with each layer performing a specific function as part of
the overall process of transmitting and receiving information. As a result of this
divide-and-conquer strategy, communication systems rapidly evolved into highly
capable platforms performing a wide range of operations, such as Web surfing and
email to streaming multimedia content. In fact, this strategy of dividing up the
operations of a communication system into layers was so successful that there are
entire research communities that only focus on one of the layers and none of the
others; they take for granted the information coming from the layers above and
below their layer.

In general, there are two models for dividing up a communication system into
layers: the Open System Interconnection (OSI) 7-layer model and the Transmission
Control Protocol (TCP)/Internet Protocol (IP) 5-layer model, as shown in Figure 1.4.
Both models possess approximately the same functionality, but the TCP/IP model
amalgamates the top several layers into a single one. Focusing on the TCP/IP 5-layer
model, this consists of the following layers, from top to bottom:

• Application Layer: Interfaces user with the data from the communication
system. For instance, the application layer would include data originating
from or intended for software running Web browsers, email clients, and
streaming media interfaces. These applications are usually addressed via
designated socket.

• Transport Layer: Responsible for transporting application layer messages
between the client application and server application. This layer ensures
reliable data transmission.

• Network Layer: Responsible for moving network layer packets from one
host to another host. Defines format of datagrams and how end systems and
routers act on datagram, as well as determine routes that datagrams take
between sources and destinations.

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch01_new” — 2018/3/26 — 11:42 — page 8 — #8

8 Introduction to Software-Defined Radio

Figure 1.4 Seven-layer OSI model compared to five-layer TCP/IP model.

• Link Layer: Handles problem of exchanging data between two or more
directly connected devices. Reliability: This includes error detection and error
correction as well as addressing of different communication systems.

• Physical Layer: Sends individual bits from one communication system
directly to another communication system. It also covers the physical
interface between data transmission device and transmission medium.

From the perspective of a radio system and its implementation, much of the
system design will focus on the physical layer (as does this text), but it can’t be
forgotten how the link layer may affect the physical layer. Nevertheless, given
that the baseband processing is all conducted in software, it is possible for the
communications system is to implement the higher layers of the stack in software
as well. Many communication standards have adopted this scheme, where the entire
communication system across all the layers are implemented in software, although
depending on data rate requirements, this can require significant computational
capabilities on the part of the system to achieve real-time operation. All software
implementations enable functional updates without hardware replacement. In
practice, this is normally only done on emerging standards or where data rates
are relatively low. However, imagine applying a software upgrade to a Wi-Fi
router and being able to implement the next standard without having to replace
the hardware. This software upgradeable system would be more complex, and
might cost more than a fixed hardware system, but would consumers be willing
to pay more? History indicates no. For those types of high-volume consumer
applications, many times price point is the most critical item to product success.
Most end consumers do not think about long-term maintenance and total cost of
ownership while looking at the variety of products on Amazon. The trade-offs of
which function or layer is done in fixed hardware versus flexible software is an
engineering decision based on volume, cost, power, complexity, and many other
factors.

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch01_new” — 2018/3/26 — 11:42 — page 9 — #9

1.3 Networking and SDR 9

There has been a growing amount of interest with respect to combining
SDR technology with software-defined networks (SDNs), where the latter focuses
on adapting the higher communication layers to the prevailing operational
environment. This enables things like modification of the routing to be tied to
heuristics provided by the physical layers. Self-healing mesh networks are an
implementation of this.

The link layer will also affect the physical (PHY) layer of a wireless
communication system as shown in Figure 1.5. For example, in 802.11 (Wi-Fi),
the PHY layer (layer 1) is actually broken further down into the Physical
Layer Convergence Protocol (PLCP) and the Physical Medium Dependent (PMD)
sublayer. The PMD sublayer provides transmission and reception of physical layer
data units between two stations via the wireless medium, and passes this to the
PLCP, which interfaces to the upper MAC layers, various management layer entities,
and generic management primitives to maximize data rates.

At the PHY layer the unit denoted in Figure 1.4 is bits; however, across the
wireless and wired links this data will be encoded in more analog-friendly forms
designed for transmission called symbols. The preamble, denoted in Layer 1 in
Figure 1.5 will most likely never be demodulated at the receiver from a symbol form.
Such sequences are only used by the PHY layer to compensate for nonidealities
in a link, and have little to no meaning to the above layers. However, for those
implementing with SDRs these simple sections are the main focus, and the remaining
portions of the frame are arbitrary data.

Figure 1.5 Packet structure effects SDR, PLCP = Physical Layer Convergence Protocol.

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch01_new” — 2018/3/26 — 11:42 — page 10 — #10

10 Introduction to Software-Defined Radio

1.4 RF architectures for SDR

Next-generation communications systems introduce new challenges that require
solutions beyond what can be achieved through individual device optimization.
Integrating more software control and cognitive abilities to the radio demands
a more frequency- and bandwidth-flexible RF design. To achieve this goal static
filters need to be removed and replaced with tunable filters. Similarly, the concept
of a common platform would allow for shorter development times, reduced
manufacturing costs, and provide greater interoperability between systems. The
common platform demands that the RF system be capable of providing full
performance for applications that traditionally had very different architectures.
Finally, future platforms are pushing size and power demands to a new extreme.

Handheld radios are becoming more capable and complex, but simultaneously
requiring improved battery efficiency. Small UAVs lack the power generation of
large aircraft and every milliwatt that the RF system consumes directly translates to
payload battery weight, and thus, reduced flight time. To overcome these challenges
and create the next generation of aerospace and defense solutions, a new radio
architectures are being developed.

Since its inception, the superheterodyne architecture has been the backbone of
radio design. Whether it is a handheld radio, unmanned aerial vehicle (UAV) data
link, or a signal intelligence receiver, the single or dual mixing stage superheterodyne
architecture is the common choice (see Figure 1.6). The benefits of this design are
clear: proper frequency planning can allow for very low spurious emissions, the
channel bandwidth and selectivity can be set by the intermediate frequency (IF)
filters, and the gain distribution across the stages allows for a trade-off between
optimizing the noise figure and linearity.

For over 100 years of use (see the appendix for more information), there have
been significant gains in performance for the superheterodyne across the entire
signal chain. Microwave and RF devices have improved their performance while
decreasing power consumption. ADCs and DACs have increased the sample rate,
linearity, and effective number of bits (ENOB). Processing capability in FPGAs
and DSPs has followed Moore’s law and increased with time, allowing for more
efficient algorithms, digital correction, and further integration. Package technology
has shrunk device pin density while simultaneously improving thermal handling.

However, these device-specific improvements are beginning to reach the point
of diminishing returns. While the RF components have followed a reduced size,
weight, and power (SWaP) trend, high-performance filters remain physically large
and are often custom designs, adding to overall system cost. Additionally, the IF
filters set the analog channel bandwidth of the platform, making it difficult to create
a common platform design that can be reused across a wide range of systems. For
package technology, most manufacturing lines will not go below a 0.65-mm or
0.8-mm ball pitch, meaning there is a limit on how physically small a complex
device with many I/O requirements can become.

An alternative to the superheterodyne architecture, which has reemerged as a
potential solution in recent years, is the zero-IF (ZIF) architecture. A ZIF receiver
(see Figure 1.7) utilizes a single frequency mixing stage with the local oscillator (LO)
set directly to the frequency band of interest, translating the received signal down

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch01_new” — 2018/3/26 — 11:42 — page 11 — #11

1.4 RF architectures for SDR 11

Fi
g

ur
e

1.
6

M
ul

tis
ta

ge
su

p
er

he
te

ro
dy

ne
re

ce
iv

e
an

d
tr

an
sm

it
si

gn
al

ch
ai

ns
[4

].

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch01_new” — 2018/3/26 — 11:42 — page 12 — #12

12 Introduction to Software-Defined Radio

Figure 1.7 Zero IF architecture [4].

to baseband in phase (I) and quadrature (Q) signals. This architecture alleviates the
stringent filtering requirements of the superheterodyne since all analog filtering takes
place at baseband, where filters are much easier to design and less expensive than
custom RF/IF filters. The ADC and DAC are now operating on I/Q data at baseband,
so the sample rate relative to the converted bandwidth can be reduced, saving
significant power. For many design aspects, ZIF transceivers provide significant
SWaP reduction as a result of reduced analog front-end complexity and component
count.

This direct frequency conversion to baseband can introduce the possibility of
carrier leakage and an image frequency component. Due to real-world factors, such
as process variation and temperature deltas in the signal chain, it is impossible
to maintain a perfect 90◦ phase offset between the I and Q signals, resulting
in degraded image rejection. Additionally, imperfect LO isolation in the mixing
stage introduces carrier leakage components. When left uncorrected, the image and
carrier leakage can degrade a receivers sensitivity and create undesirable transmit
spectral emissions.

Historically, the I/Q imbalance has limited the range of applications that were
appropriate for the ZIF architecture. This was due to two reasons: first, a discrete
implementation of the ZIF architecture will suffer from mismatches both in the
monolithic devices and also in the printed circuit board (PCB). In addition to this,
the monolithic devices could pull from different fabrication lots, making exact
matching very difficult due to native process variation. A discrete implementation
will also have the processor physically separated from the RF components, making
a quadrature correction algorithm very difficult to implement across frequency,
temperature, and bandwidth.

Moore’s law, or integration of the ZIF architecture into a monolithic transceiver
device provides the path forward for next-generation systems. By having the analog
and RF signal chain on a single piece of silicon, process variation will be kept to
a minimum. Digital signal processing (DSP) blocks can be incorporated into the
transceiver, removing the boundary between the quadrature calibration algorithm
and the signal chain. This approach provides both unparalleled improvements
in SWaP and can also match the superheterodyne architecture for performance
specifications.

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch01_new” — 2018/3/26 — 11:42 — page 13 — #13

1.5 Processing architectures for SDR 13

Devices like the Pluto SDR shown in Figure 1.8 integrate the full RF, analog,
and digital signal chain onto a single CMOS device, and include digital processing
to run quadrature and carrier leakage correction in real time across all process,
frequency, and temperature variations. Devices like the AD9361 focuses on
medium-performance specifications and very low power, such as UAV data links,
handheld communication systems, and small form factor SDR applications. The
AD9371 is optimized for high-performance specifications and medium power.
Additionally, this device has refined calibration control, as well as an observation
receiver for power amplifier (PA) linearization and a sniffer receiver for white space
detection. This opens up new design potential for a different suite of applications.
Communication platforms using wideband waveforms or occupying noncontiguous
spectrum can now be implemented in a much smaller form factor.

1.5 Processing architectures for SDR

The microelectronic industry has rapidly evolved over the past six decades, resulting
in numerous advances in microprocessor systems that have enabled many of the
applications we take for granted every day. The rate at which this evolution
has progressed over time has been characterized by the well-known Moore’s
Law, which defines the long-term trend of the number of transistors that can be
accommodated on an integrated circuit. In particular, Moore’s law dictates that the
number of transistors per integrated circuit approximately doubles every 2 years,
which subsequently affects the performance of microprocessor systems such as

Figure 1.8 Integrated ZIF architecture used in the Pluto SDR.

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch01_new” — 2018/3/26 — 11:42 — page 14 — #14

14 Introduction to Software-Defined Radio

processing speed and memory. One area that the microelectronics industry has
significantly influenced over the past half century is the digital communication
systems sector, where microprocessor systems have been increasingly employed
in the implementation of digital transceiver, yielding more versatile, powerful, and
portable communication system platforms capable of performing a growing number
of advance operations and functions. With the latest advances in microelectronics
and microprocessor systems, this has given rise to software-defined radio (SDR)
technology, where baseband radio functionality can be entirely implemented in
digital logic and software, as illustrated in Figure 1.3. There are several different
types of microprocessor systems for SDR implementations, including.

• General-purpose microprocessors are often used in SDR implementations
and prototypes due to their high level of flexibility with respect to
reconfigurability, as well as due to their ease of implementation regarding
new designs. On the other hand, general-purpose microprocessors are not
specialized for mathematical computations and they can be potentially power
inefficient.

• Digital signal processors (DSPs) are specialized for performing mathematical
computations, implementation of new digital communication modules can
be performed with relative ease, and the processor is relatively power efficient
(e.g., DSPs are used in cellular telephones). On the other hand, DSPs are not
well suited for computationally intensive processes and can be rather slow.

• Field programmable gate arrays (FPGAs) are efficient for custom digital signal
processing applications because they can implement custom, fully parallel
algorithms. DSP applications use many binary multipliers and accumulators
that can be implemented in dedicated DSP slices, as shown in Figure 1.9.
This includes 25 × 18 twos-complement multiplier, a 48-bit accumulator, a
power-saving preadder, single-instruction, multiple data (SIMD) arithmetic
unit, which includes a dual 24-bit or quad 12-bit add/subtract/accumulate.
Tools like MathWorks HDL Coder are making creating new modules and
targeting FPGAs easier, as it can generate portable, synthesizable Verilog
and VHDL code from MATLAB functions, Simulink models, and Stateflow

Figure 1.9 Basic DSP48E1 slice functionality [5].

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch01_new” — 2018/3/26 — 11:42 — page 15 — #15

1.6 Software Environments for SDR 15

charts, and is well suited for taking signal processing algorithms from concept
to production.

• Graphics processing units (GPUs) are extremely powerful computationally.
These processors have been driven to very high levels of performance and
low price points by the need for real-time computer graphics in mass market
gaming. Over the past 10 years, they have evolved into a general-purpose
programmable architecture and supporting ecosystem that makes it possible
to use them for a wide range of nongraphics applications [6]. GPU-accelerated
libraries provided by manufactures like Nvidea, provide highly optimized
functions that perform 2x to 10x faster than CPU-only alternatives. GPU-
accelerated libraries for linear algebra, signal processing, and image and video
processing lay the foundation for future software-defined radio applications
to run on these types of architectures [7].

• Advanced RISC Machines (ARMs) have received significant attention in
recent years fo their low cost, small size, low power consumption, and
computational capabilities. Such processors combined with a capable RFFE
make them suitable platforms for mobile communications and computing.
Additions of new SIMD instructions for the Arm Cortex-A series and Cortex-
R52 processors, known an NEON [8] are accelerate signal processing
algorithms and functions to speed up software-defined radio applications.

It is an exciting time for algorithm developers; there are many new and advanced
methods of implementing signal processing applications on hardware. The difficulty
is to ensure that no matter which hardware is chosen to run algorithms on, the
hardware and development methodology will be supported in 5 years.

1.6 Software Environments for SDR

As described in Section 1.2, at their most fundamental level, most commercially
available SDR platforms convert live RF signals to samples at digital baseband, and
use a software-defined mechanism for modulation and demodulation techniques to
transfer real-world data. Referring back to Figure 1.3, the boundary between the
analog and digital worlds for a communication system is located at the analog-to-
digital converter (ADC) and the digital-to-analog converter (DAC), where signal
information is translated between a continuous signal and a discrete set of signal
sample values. Typically, the radio can be configured to select center frequency,
sampling rate, bandwidth, and other parameters to transmit and receive signals
of interest. This leaves the modulation and demodulation techniques, which are
developed using a two-step development process.

1. Develop, tune, and optimize the modulation and demodulation algorithms
for a specific sample rate, bandwidth, and environment. This is normally
done on a host PC, where debugging and visualization is much easier. At
this phase of development, the modulation and demodulation of the RFFEs
are performed on a host, providing great flexibility to experiment and test
algorithm ideas.

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch01_new” — 2018/3/26 — 11:42 — page 16 — #16

16 Introduction to Software-Defined Radio

2. Take the above algorithm, which may be implemented in a high-level
language in floating point, and code it in a production worthy environment,
making production trade-offs of a product’s size, weight, power and cost
(SWaP-C) in mind. These platforms become truly software-defined when
the onboard hardware and embedded processor are programmed to perform
application-specific digital communications and signal processing functions.

While this text focuses exclusively on the first algorithmic step of the SDR
development process, the second production step cannot be excluded when looking
at a development flow. Unless your goal is to publish a paper and never actually
have a path for a working prototype, a complete development process must be kept
in mind.

The first step requires a convenient mechanism to capture data for signal
analysis and development of algorithms that process those signals. This makes
it vitally important to have efficient and reliable PC-based software to develop
and test the data transmission and digital signal processing functions in a wireless
communications system.

One software environment that meets this requirement is MATLAB from
MathWorks. MATLAB is a technical computing environment and programming
language, allowing ease of use development and excellent visualization mechanisms.
An additional product, Communications Systems Toolbox, adds physical layer
algorithms, channel models, reference models, and connectivity to SDR hardware
to transmit and receive live signals. MATLAB is cross platform (Windows, Linux,
MAC) offering support for many of the popular commercial radio front-ends. Using
MATLAB enables an incremental and iterative development workflow for SDR
consisting of:

• Algorithm development and design validation with link-level simulations;
• Algorithm validation with live signals using connection to commercially

available SDR hardware.

MathWorks also offers Simulink, which is an environment for real-world
system simulation and automatic code generation for hardware and software
implementation. It allows the radio developer to continue to the second stage
of production development. These capabilities of Simulink provide a path to
production:

• Development and validation of a hardware-accurate model;
• Implementation of a prototype on SDR hardware using automatic HDL and

C code generation;
• Verification of the prototype versus the validated model;
• Deployment of the implementation to production SDR hardware.

Although Simulink will largely be ignored in this text, being able to have a single
environment from concept to production is very powerful and should not be
overlooked for those who are trying to make a real production radio.

Another SDR software architecture is the popular open-source GNU Radio
software [9], which is a free software (as in freedom) development toolkit that
provides signal processing blocks to implement software-defined radios and signal

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch01_new” — 2018/3/26 — 11:42 — page 17 — #17

1.7 Additional readings 17

processing systems. It can be used with external RF hardware to create software-
defined radios, or without hardware in a simulation-like environment. It is widely
used in hobbyist, academic, and commercial environments to support both wireless
communications research and real-world radio systems.

In GNU Radio, a variety of C++ libraries modeling different digital
communications and digital signal processing algorithms are integrated together
using Python and SWIG (a software development tool that connects programs
written in C and C++ with a variety of high-level programming languages including
Python). These libraries are produced by the open-source community and freely
shared with everyone.

The authors have used a variety of tools including MATLAB, Simulink, and
GNU Radio in research, product development, and teaching undergraduate and
graduate classes. Each tool has its advantages and disadvantages and can be used at
different places of the research or development cycle. It was believed by the authors
that all the various software environments can be used correctly or incorrectly
to teach wireless physical layer fundamentals, although the prerequisites for each
tool is different. For those who choose the GNU Radio path, the requirements to
have a working knowledge of Linux, Python, C++, and SWIG is very high. While
this is very common for a computer science student, it is not for most students
in communications, and asking someone to learn the tool at the same time as
the communications theory can prove difficult. One can use preexisting blocks
in GNU Radio and bypass the requirements of understanding Python and C++,
but then some opportunities to demonstrate and experiment with fundamental
communications theory are lost, as the student just uses a block that someone
else wrote, with little understanding of what it is doing. The same can be said for
Simulink; it is also a very powerful tool, with many preexisting blocks for timing
recovery and carrier synchronization. However, using these blocks does not allow
many students to understand what is happening inside the blocks, and therefore the
students have difficulty in understanding how to tune the blocks for their situation.

This is why MATLAB was chosen for this book. It is a cross-platform
environment, allowing students to use what they are familiar with, and all the
blocks presented are MATLAB scripts, with nothing to hide. If a student wants to
better understand something, the entire algorithm is defined in the MATLAB code,
with nothing to obfuscate the communications theory.

1.7 Additional readings

Although this chapter gave a brief introduction to the expanding area of SDR
technology, there are several books available in the open literature that can
provide a more detailed viewpoint of this topic. For instance, the book by Reed
extensively covers many of the issues associated with the software architecture of
an SDR platform [10], while many of the design considerations and approaches
used to construct SDR hardware prototype and their RFFE are covered in the
book by Kensington [11]. Another excellent reference regarding the hardware
implementation of SDR systems is by Grayver [12]. Furthermore, understanding
the importance of the analog-digital divide and how SDR systems bridge that

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch01_new” — 2018/3/26 — 11:42 — page 18 — #18

18 Introduction to Software-Defined Radio

divide is the subject of the paper by Machado and Wyglinski [13]. Finally, an
excellent series of papers covering the latest advances in SDR technology and
providing some perspective on its evolution from 20 years ago are presented in
IEEE Communications Magazine [14, 15].

References

[1] American Guild Of Town Criers Website, 1997 http://www.americantowncriers.com/.
[2] IEEE Project 1900.1 - Standard Definitions and Concepts for Dynamic Spectrum Access:

Terminology Relating to Emerging Wireless Networks, System Functionality, and Spectrum
Management https://standards.ieee.org/develop/project/1900.1.html.

[3] Analog Devices ADF7030 http://www.analog.com/ADF7030
[4] Hall, B., and W. Taylor, X- and Ku-Band Small Form Factor Radio Design http://www.

analog.com/en/technical-articles/x-and-ku-band-small-form-factor-radio-design.html.
[5] Xilinx Inc. www.xilinx.com 7 Series DSP48E1 User Guide, UG479 (v1.9) September

27, 2016 https://www.xilinx.com/support/documentation/user_guides/ug479_7Series_
DSP48E1.pdf

[6] McCool, M., “Signal Processing and General-Purpose Computing on GPUs,” IEEE Signal
Processing Magazine, Vol. 24, No. 3, May 2007, http://ieeexplore.ieee.org/document/
4205095/.

[7] Nivdea GPU-accelerated Libraries for Computing https://developer.nvidia.com/
gpu-accelerated-libraries.

[8] ARM NEON https://developer.arm.com/technologies/neon.
[9] GNU Radio. Welcome to GNU Radio!. http://gnuradio.org/.

[10] Reed, J. H., Software Radio: A Modern Approach to Radio Engineering, Upper Saddle
River, NJ: Prentice Hall PTR, 2002.

[11] Kensington, P., RF and Baseband Techniques for Software Defined Radio, Norwood, MA:
Artech House, 2005.

[12] Grayver, E., Implementing Software Defined Radio, New York: Springer-Verlag, 2012.
[13] Machado, R. G. and A. M. Wyglinski, “Software-Defined Radio: Bridging the Analog to

Digital Divide,” Proceedings of the IEEE, Vol. 103, No. 3, March 2015, pp. 409–423.
[14] Mitola, J., P. Marshall, K. C. Chen, M. Mueck, and Z. Zvonar, “Software Defined

Radio - 20 Years Later: Part 1 [guest editorial], IEEE Communications Magazine,
Vol. 53, No. 9, September 2015, pp. 22–23, http://ieeexplore.ieee.org/document/
7263341/?section=abstract.

[15] Mitola, J., P. Marshall, K. C. Chen, M. Mueck, and Z. Zvonar, “Software Defined Radio -
20 Years Later: Part 2 [guest editorial], IEEE Communications Magazine, Vol. 54, No. 1,
January 2016, p. 58, http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7378426.

Analog Devices perpetual eBook license – Artech House copyrighted material. 


	Software-Defined Radio
for Engineers
	Contents
	Preface
	CHAPTER 1 Introduction to Software-Defined Radio
	1.1 Brief History
	1.2 What is a Software-Defined Radio?
	1.3 Networking and SDR
	1.4 RF architectures for SDR
	1.5 Processing architectures for SDR
	1.6 Software Environments for SDR
	1.7 Additional readings
	References





