
Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “fm” — 2018/3/26 — 11:43 — page i — #1

Software-Defined Radio 
for Engineers

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “fm” — 2018/3/26 — 11:43 — page ii — #2

For a listing of recent titles in the Artech House
Mobile Communications, turn to the back of this book.

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “fm” — 2018/3/26 — 11:43 — page iii — #3

Software-Defined Radio 
for Engineers

Travis F. Collins
Robin Getz

Di Pu
Alexander M. Wyglinski

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Library of Congress Cataloging-in-Publication Data
A catalog record for this book is available from the U.S. Library of Congress.

British Library Cataloguing in Publication Data
A catalog record for this book is available from the British Library.

ISBN-13: 978-1-63081-457-1

Cover design by John Gomes

© 2018 Travis F. Collins, Robin Getz, Di Pu, Alexander M. Wyglinski

All rights reserved. Printed and bound in the United States of America. No part 
of this book may be reproduced or utilized in any form or by any means, elec-
tronic or mechanical, including photocopying, recording, or by any information 
storage and retrieval system, without permission in writing from the publisher.

All terms mentioned in this book that are known to be trademarks or service 
marks have been appropriately capitalized. Artech House cannot attest to the 
accuracy of this information. Use of a term in this book should not be regarded 
as affecting the validity of any trademark or service mark.

10 9 8 7 6 5 4 3 2 1

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “fm” — 2018/3/26 — 11:43 — page v — #5

Dedication

To my wife Lauren
—Travis Collins

To my wonderful children, Matthew, Lauren, and Isaac, and my patient wife,
Michelle—sorry I have been hiding in the basement working on this book. To
all my fantastic colleagues at Analog Devices: Dave, Michael, Lars-Peter, Andrei,
Mihai, Travis, Wyatt and many more, without whom Pluto SDR and IIO would
not exist.
—Robin Getz

To my lovely son Aidi, my husband Di, and my parents Lingzhen and Xuexun
—Di Pu

To my wife Jen
—Alexander Wyglinski

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “fm” — 2018/3/26 — 11:43 — page vi — #6

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “fm” — 2018/3/26 — 11:43 — page vii — #7

Contents

Preface xiii

CHAPTER 1
Introduction to Software-Defined Radio 1

1.1 Brief History 1
1.2 What is a Software-Defined Radio? 1
1.3 Networking and SDR 7
1.4 RF architectures for SDR 10
1.5 Processing architectures for SDR 13
1.6 Software Environments for SDR 15
1.7 Additional readings 17

References 18

CHAPTER 2
Signals and Systems 19

2.1 Time and Frequency Domains 19
2.1.1 Fourier Transform 20
2.1.2 Periodic Nature of the DFT 21
2.1.3 Fast Fourier Transform 22

2.2 Sampling Theory 23
2.2.1 Uniform Sampling 23
2.2.2 Frequency Domain Representation of Uniform Sampling 25
2.2.3 Nyquist Sampling Theorem 26
2.2.4 Nyquist Zones 29
2.2.5 Sample Rate Conversion 29

2.3 Signal Representation 37
2.3.1 Frequency Conversion 38
2.3.2 Imaginary Signals 40

2.4 Signal Metrics and Visualization 41
2.4.1 SINAD, ENOB, SNR, THD, THD + N, and SFDR 42
2.4.2 Eye Diagram 44

2.5 Receive Techniques for SDR 45
2.5.1 Nyquist Zones 47
2.5.2 Fixed Point Quantization 49

vii

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “fm” — 2018/3/26 — 11:43 — page viii — #8

viii Contents

2.5.3 Design Trade-offs for Number of Bits, Cost, Power,
and So Forth 55

2.5.4 Sigma-Delta Analog-Digital Converters 58
2.6 Digital Signal Processing Techniques for SDR 61

2.6.1 Discrete Convolution 61
2.6.2 Correlation 65
2.6.3 Z-Transform 66
2.6.4 Digital Filtering 69

2.7 Transmit Techniques for SDR 73
2.7.1 Analog Reconstruction Filters 75
2.7.2 DACs 76
2.7.3 Digital Pulse-Shaping Filters 78
2.7.4 Nyquist Pulse-Shaping Theory 79
2.7.5 Two Nyquist Pulses 81

2.8 Chapter Summary 85
References 85

CHAPTER 3
Probability in Communications 87

3.1 Modeling Discrete Random Events in Communication Systems 87
3.1.1 Expectation 89

3.2 Binary Communication Channels and Conditional Probability 92
3.3 Modeling Continuous Random Events in Communication Systems 95

3.3.1 Cumulative Distribution Functions 99
3.4 Time-Varying Randomness in Communication Systems 101

3.4.1 Stationarity 104
3.5 Gaussian Noise Channels 106

3.5.1 Gaussian Processes 108
3.6 Power Spectral Densities and LTI Systems 109
3.7 Narrowband Noise 110
3.8 Application of Random Variables: Indoor Channel Model 113
3.9 Chapter Summary 114
3.10 Additional Readings 114

References 115

CHAPTER 4
Digital Communications Fundamentals 117

4.1 What Is Digital Transmission? 117
4.1.1 Source Encoding 120
4.1.2 Channel Encoding 122

4.2 Digital Modulation 127
4.2.1 Power Efficiency 128
4.2.2 Pulse Amplitude Modulation 129

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “fm” — 2018/3/26 — 11:43 — page ix — #9

Contents ix

4.2.3 Quadrature Amplitude Modulation 131
4.2.4 Phase Shift Keying 133
4.2.5 Power Efficiency Summary 139

4.3 Probability of Bit Error 141
4.3.1 Error Bounding 145

4.4 Signal Space Concept 148
4.5 Gram-Schmidt Orthogonalization 150
4.6 Optimal Detection 154

4.6.1 Signal Vector Framework 155
4.6.2 Decision Rules 158
4.6.3 Maximum Likelihood Detection in an AWGN Channel 159

4.7 Basic Receiver Realizations 160
4.7.1 Matched Filter Realization 161
4.7.2 Correlator Realization 164

4.8 Chapter Summary 166
4.9 Additional Readings 168

References 169

CHAPTER 5
Understanding SDR Hardware 171

5.1 Components of a Communication System 171
5.1.1 Components of an SDR 172
5.1.2 AD9363 Details 173
5.1.3 Zynq Details 176
5.1.4 Linux Industrial Input/Output Details 177
5.1.5 MATLAB as an IIO client 178
5.1.6 Not Just for Learning 180

5.2 Strategies For Development in MATLAB 181
5.2.1 Radio I/O Basics 181
5.2.2 Continuous Transmit 183
5.2.3 Latency and Data Delays 184
5.2.4 Receive Spectrum 185
5.2.5 Automatic Gain Control 186
5.2.6 Common Issues 187

5.3 Example: Loopback with Real Data 187
5.4 Noise Figure 189

References 190

CHAPTER 6
Timing Synchronization 191

6.1 Matched Filtering 191
6.2 Timing Error 195
6.3 Symbol Timing Compensation 198

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “fm” — 2018/3/26 — 11:43 — page x — #10

x Contents

6.3.1 Phase-Locked Loops 200
6.3.2 Feedback Timing Correction 201

6.4 Alternative Error Detectors and System Requirements 208
6.4.1 Gardner 208
6.4.2 Müller and Mueller 208

6.5 Putting the Pieces Together 209
6.6 Chapter Summary 212

References 212

CHAPTER 7
Carrier Synchronization 213

7.1 Carrier Offsets 213
7.2 Frequency Offset Compensation 216

7.2.1 Coarse Frequency Correction 217
7.2.2 Fine Frequency Correction 219
7.2.3 Performance Analysis 224
7.2.4 Error Vector Magnitude Measurements 226

7.3 Phase Ambiguity 228
7.3.1 Code Words 228
7.3.2 Differential Encoding 229
7.3.3 Equalizers 229

7.4 Chapter Summary 229
References 230

CHAPTER 8
Frame Synchronization and Channel Coding 231

8.1 O Frame, Where Art Thou? 231
8.2 Frame Synchronization 232

8.2.1 Signal Detection 235
8.2.2 Alternative Sequences 239

8.3 Putting the Pieces Together 241
8.3.1 Full Recovery with Pluto SDR 242

8.4 Channel Coding 244
8.4.1 Repetition Coding 244
8.4.2 Interleaving 245
8.4.3 Encoding 246
8.4.4 BER Calculator 251

8.5 Chapter Summary 251
References 251

CHAPTER 9
Channel Estimation and Equalization 253

9.1 You Shall Not Multipath! 253

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “fm” — 2018/3/26 — 11:43 — page xi — #11

Contents xi

9.2 Channel Estimation 254
9.3 Equalizers 258

9.3.1 Nonlinear Equalizers 261
9.4 Receiver Realization 263
9.5 Chapter Summary 265

References 266

CHAPTER 10
Orthogonal Frequency Division Multiplexing 267

10.1 Rationale for MCM: Dispersive Channel Environments 267
10.2 General OFDM Model 269

10.2.1 Cyclic Extensions 269
10.3 Common OFDM Waveform Structure 271
10.4 Packet Detection 273
10.5 CFO Estimation 275
10.6 Symbol Timing Estimation 279
10.7 Equalization 280
10.8 Bit and Power Allocation 284
10.9 Putting It All Together 285
10.10 Chapter Summary 286

References 286

CHAPTER 11
Applications for Software-Defined Radio 289

11.1 Cognitive Radio 289
11.1.1 Bumblebee Behavioral Model 292
11.1.2 Reinforcement Learning 294

11.2 Vehicular Networking 295
11.3 Chapter Summary 299

References 299

APPENDIX A
A Longer History of Communications 303

A.1 History Overview 303
A.2 1750–1850: Industrial Revolution 304
A.3 1850–1945: Technological Revolution 305
A.4 1946–1960: Jet Age and Space Age 309
A.5 1970–1979: Information Age 312
A.6 1980–1989: Digital Revolution 313
A.7 1990–1999: Age of the Public Internet (Web 1.0) 316
A.8 Post-2000: Everything comes together 319

References 319

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “fm” — 2018/3/26 — 11:43 — page xii — #12

xii Contents

APPENDIX B
Getting Started with MATLAB and Simulink 327

B.1 MATLAB Introduction 327
B.2 Useful MATLAB Tools 327

B.2.1 Code Analysis and M-Lint Messages 328
B.2.2 Debugger 329
B.2.3 Profiler 329

B.3 System Objects 330
References 332

APPENDIX C
Equalizer Derivations 333

C.1 Linear Equalizers 333
C.2 Zero-Forcing Equalizers 335
C.3 Decision Feedback Equalizers 336

APPENDIX D
Trigonometric Identities 337

About the Authors 339

Index 341

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch07_new” — 2018/3/26 — 11:43 — page 213 — #1

C H A P T E R 7

Carrier Synchronization

This chapter will introduce the concept of carrier frequency offset between
transmitting and receiving nodes. Specifically, a simplified error model will be
discussed along with two recovery methods that can operate jointly or independently
based on their implementation. Carrier recovery complements timing recovery,
which was implemented in the previous Chapter 6, and is necessary for maintaining
wireless links between radios with independent oscillators.

Throughout this chapter we will assume that timing mismatches between the
transmitting and receiving radios have already been corrected. However, this is
not a requirement in all cases, specifically in the initial implementation provided
here, but will become a necessary condition for optimal performance of the final
implementation provided. For the sake of simplicity we will also ignore timing
effects in our simulations except when discussing Pluto SDR itself, since obviously
timing correction cannot be overlooked in that case. With regard to our full receiver
diagram outline in Figure 7.1, we are now considering the carrier recovery and CFO
blocks.

7.1 Carrier Offsets

The receiving and transmitting nodes are generally two distinct and spatially
separate units. Therefore, relative frequency offsets will exist between their LOs due
to natural effects such as impurities, electrical noise, and temperature differences,
among others. Since these differences can also be relatively dynamic the LOs
will drift with respect to one another. These offsets can contain random phase
noise, frequency offset, frequency drift, and initial phase mismatches. However,
for simplicity we will only model this offset as a fixed value. This is a reasonable
assumption at the time scale of RF communications.

When considering commercial oscillators, the frequency offset is provided in
parts per million (PPM), which we can translate into a maximum carrier offset
for a given frequency. In the case of the Pluto SDR the internal LO is rated at 25
PPM [1] (2 PPM when calibrated) and we can use (7.1) to relate maximum carrier
offset �f to our operating carrier frequency fc.

fo,max = fc × PPM
106 (7.1)

The determination of fo,max is important because it provides our carrier recovery
design criteria. There is no point wasting resources on a capability to correct for
a frequencies beyond our operational range. However, scanning techniques can be
used in such cases but are beyond the scope of this book.

213

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch07_new” — 2018/3/26 — 11:43 — page 214 — #2

214 Carrier Synchronization

Figure 7.1 Receiver block diagram.

Mathematically we can model a corrupted source signal at baseband s(k) with
a carrier frequency offset of fo (or ωo) as

r(k) = s(k)ej(2π fokT+θ) + n(k) = s(k)ej(ωokT+θ) + n(k). (7.2)

where n(k) is a zero-mean Gaussian random process, T is the symbol period, θ is
the carrier phase, and ωo the angular frequency.

In the literature, carrier recovery is sometimes defined as carrier phase recovery
or carrier frequency recovery. These generally all have the same goal of providing
a stable constellation at the output of the synchronizer. However, it is important
to understand the relation of frequency and phase, which will make these naming
conventions clear. An angular frequency ω, or equivalently in frequency 2πf , is
purely a measure of a changing phase θ over time:

ω = dθ

dt
= 2π f . (7.3)

Hence, recovering the phase of the signal is essentially recovering that signal’s
frequency. Through this relation is the common method for estimating frequency of
a signal since it cannot be measured directly unlike phase. We can demonstrate this
technique with a simple MATLAB script shown in Code 7.1. There we generate a
simple continuous wave (CW) tone at a given frequency, measure the instantaneous
phase of the signal, and then take the difference of those measurements as our
frequency estimate. The instantaneous phase θ of any complex signal x(k) can be
measured as

θ = tan−1
(

Im(x(k))

Re(x(k))

)
, (7.4)

where Re and Im capture the real and imaginary components of the signal
respectively. In Code 7.1 we also provide a complex sinusoid generation through
a Hilbert transform with the function hilbert from our real signal. Hilbert
transforms are very useful for generating analytic or complex representations of
real signals. If you wish to learn more about Hilbert transforms, Oppenheim [2] is
a suggested reading based in signal processing theory.

In Figure 7.2 we provide the outputs from Code 7.1. In Figure 7.2(a) it first can
be observed that the Hilbert transform’s output is equal to the CW tone generated
from our sine (imag) and cosine (real) signal. In Figure 7.2(b) we can clearly see
that the estimation technique based on phase difference correctly estimates the
frequency of the signal in question. In this script we also utilized the function
unwrap to prevent our phase estimates from becoming bounded between ±π . This
estimation is a straightforward application of the relation from (7.3). Alternatively,
it can be useful to examine a frequency offset, but usually only large offsets, in the
frequency domain itself. This is useful since time domain signals alone, especially
when containing modulated data and noise, can be difficult to interpret for such
an offset. In Figure 7.3, PSDs of an original and offset signal are shown, which

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch07_new” — 2018/3/26 — 11:43 — page 215 — #3

7.1 Carrier Offsets 215

Code 7.1 freqEstimate.m

1 % Sinusoid parameters

2 fs = 1e3; fc = 30; N = 1e3;

3 t = 0:1/fs:(N-1)/fs;

4 % Create CW Tone

5 r = cos(2*pi*fc*t); i = sin(2*pi*fc*t);

6 % Alternatively we can use a hilbert transform from our real signal

7 y = hilbert(r);

8 % Estimate frequency from phase

9 phaseEstHib = unwrap(angle(y))*fs/(2*pi); freqEstHib = diff(phaseEstHib);

10 phaseEstCW = unwrap(atan2(i,r))*fs/(2*pi); freqEstCW = diff(phaseEstCW);

11 tDiff = t(1:end-1);

Q

From the MATLAB Code 7.1 examine the frequency range of
this estimation technique with respect to the sampling rate fs
and the frequency of the tone fc. (Ignore the output of the
Hilbert transform for this exercise.) What is roughly the maximum
frequency that can be correctly estimated and what happens when
the frequency offset exceeds this point?

Figure 7.2 Outputs of MATLAB scripts for a simple frequency estimation technique compared with
the true offset. (a) CW tones generated from sine/cosine and Hilbert transform, and (b) frequency
estimates of CW tones.

clearly demonstrates this perspective. Here the signal maintains a 10-kHz offset
with respect to the original signal, which is well within the 25-PPM specification of
communicating Pluto SDR above 200 MHz.

Moving complex signals in frequency is a simple application of (7.2), which
was how Figure 7.3(b) was generated. The example MATLAB script in Code 7.2

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch07_new” — 2018/3/26 — 11:43 — page 216 — #4

216 Carrier Synchronization

demonstrated how to shift a complex signal using an exponential function.
Alternatively, sinusoids can be used directly if desired. In the script provided it
is important to upsample or oversample the signal first, as performed by the SRRC
filter in Code 7.2. This makes the frequency shift obvious since the main signal
energy is limited to a fraction of the bandwidth.

Code 7.2 freqShiftFFT.m

1 % General system details
2 fs = 1e6; samplesPerSymbol = 1; frameSize = 2ˆ8;
3 modulationOrder = 2; filterOversample = 4; filterSymbolSpan = 8;
4 % Impairments
5 frequencyOffsetHz = 1e5;
6 % Generate symbols
7 data = randi([0 samplesPerSymbol], frameSize, 1);
8 mod = comm.BPSKModulator(); modulatedData = mod(data);
9 % Add TX Filter

10 TxFlt = comm.RaisedCosineTransmitFilter(’OutputSamplesPerSymbol’,...
11 filterOversample, ’FilterSpanInSymbols’, filterSymbolSpan);
12 filteredData = TxFlt(modulatedData);
13 % Shift signal in frequency
14 t = 0:1/fs:(frameSize*filterOversample-1)/fs;
15 freqShift = exp(1i.*2*pi*frequencyOffsetHz*t.’);
16 offsetData = filteredData.*freqShift;

7.2 Frequency Offset Compensation

There are many different ways to design a wireless receiver, using many different
recovery techniques and arrangement of algorithms. In this section we will consider

Figure 7.3 Comparison of frequency domain signals with and without frequency offsets. (a) PSD
of BPSK signal without frequency offset, and (b) PSD of BPSK signal with 10-kHz offset.

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch07_new” — 2018/3/26 — 11:43 — page 217 — #5

7.2 Frequency Offset Compensation 217

Q
Change filterOversample in Code 7.2 above and observe the
spectrum. Explain what you observe. Next with the original script
increase the frequency offset in units of 0.1Fs, where Fs is the
sample rate, from 0.1Fs to 1.0Fs. Explain the observed effect.

frequency offset first and then proceed to manage the remaining synchronization
tasks. As discussed in Section 10.3, the oscillator of Pluto SDR is rated at 25
PPM. Transmitting signals in an unlicensed band, such as 2.4 GHz, can produce
a maximum offset of 120 kHz between the radios. Since this is quite a large
range we will develop a two-stage frequency compensation technique separated
into coarse and fine frequency correction. This design is favorable, since it can
reduce convergence or locking time for estimation of the relative carrier.

7.2.1 Coarse Frequency Correction
There are two primary categories of coarse frequency correction in the literature:
data-aided (DA) and blind correction. DA techniques utilize correlation type
structures that use knowledge of the received signal, usually in the form of a
preamble, to estimate the carrier offset fo. Although DA methods can provide
accurate estimates, their performance is generally limited by the length of the
preambles [3], and as the preamble length is increased this decreases system
throughput.

Alternatively, blind or nondata-aided (NDA) methods can operate over the
entire duration of the signal. Therefore, it can be argued in a realistic system NDA
can outperform DA algorithms. These coarse techniques are typically implemented
in an open-loop methodology, for ease of use. Here we will both outline and
implement a NDA FFT-based technique for coarse compensation. The concept
applied here is straightforward, and based on our initial inspection provided in
Figure 7.3, we can provide a rough estimate on the symbols offsets. However,
directly taking the peak from the FFT will not be very accurate, especially if the
signal is not symmetrical in frequency. To compensate for this fact, we will remove
the modulation components of the signal itself by raising the signal to its modulation
order M. From our model in (7.2), ignoring noise, we can observe the following:

rM(k) = sM(k)ej(2π fokT+θ)M. (7.5)

This will shift the offset to M times its original location and make s(t) purely real
or purely complex. Therefore, the sM(t) term can be ignored and only the remaining
exponential or tone will remain. To estimate the position of this tone we will take
the FFT of rM(t) and relate the bin with the most energy to the location of this tone.
Figure 7.4 is an example frequency plot of rM(t) for a BPSK signal generated from
the MATLAB Code 7.2 offset by 10 kHz. The peak is clearly visible at twice this
frequency as expected. Formally this frequency estimation can be written in a single
equation as [4]

f̂o = 1
2 T K

arg
∣∣K−1∑
k=0

rM(k)e−j2πkT/K∣∣ (7.6)

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch07_new” — 2018/3/26 — 11:43 — page 218 — #6

218 Carrier Synchronization

Figure 7.4 Comparison of frequency domain signals with and without frequency offsets. (a) PSD
of squared BPSK signal without frequency offset, and (b) PSD of squared BPSK signal with 10-kHz
offset.

where K is the FFT length. The estimation in (7.6) is defined as coarse since the
resulting f̂o can only be one of K values produced by the FFT. However, we can
extend this accuracy by interpolating across a fixed set of FFT bins over multiple
estimates if desired. The frequency resolution of each FFT bin for the signal is simply

fr = 1
M T K

. (7.7)

Therefore, we can increase the performance of our estimator by increasing the
FFT size or by decreasing the sample rate of the system. However, do not reduce
the sample below the bandwidth of your signal of interest.

Q

What is the limitation of this method? (What happens when the
M becomes larger?) Finally, add AWGN to the receive signal at
different SNR value and examine when the peak become difficult
to determine. Provide a plot of peak estimated MSE versus SNR
for this analysis.

Implementing this method in MATLAB is straightforward and for efficiency
K should alway be the base two number for efficiency of the FFT. In Code 7.3
we produce an estimate for each K samples of data, and compensate for the
arrangement of frequencies from the fft function. When using this technique we
should also consider other aspects of the system or impacts this operation can have.
From the perspective of downstream algorithms, they will observe a frequency

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch07_new” — 2018/3/26 — 11:43 — page 219 — #7

7.2 Frequency Offset Compensation 219

Code 7.3 fftFreqEst.m

1 %% Estimation of error
2 fftOrder = 2ˆ10; k = 1;
3 frequencyRange = linspace(-sampleRateHz/2,sampleRateHz/2,fftOrder);
4 % Precalculate constants
5 offsetEstimates = zeros(floor(length(noisyData)/fftOrder),1);
6 indexToHz = sampleRateHz/(modulationOrder*fftOrder);
7 for est=1:length(offsetEstimates)
8 % Increment indexes
9 timeIndex = (k:k+fftOrder-1).’;

10 k = k + fftOrder;
11 % Remove modulation effects
12 sigNoMod = offsetData(timeIndex).ˆmodulationOrder;
13 % Take FFT and ABS
14 freqHist = abs(fft(sigNoMod));
15 % Determine most likely offset
16 [˜,maxInd] = max(freqHist);
17 offsetInd = maxInd - 1;
18 if maxInd>=fftOrder/2 % Compensate for spectrum shift
19 offsetInd = offsetInd - fftOrder;
20 end
21 % Convert to Hz from normalized frequency index
22 offsetEstimates(est) = offsetInd * indexToHz;
23 end

correction every K samples. Ideally f̂o remains constant, but this is unlikely if
the offset is close to an FFT bin boundary. Resulting is frequency jumps in the
signal ±fr from previous signals. Unfortunately these abrupt changes can disrupt
feedback algorithm downstream, which are ill-equipped to deal to sudden shift in
frequency or phase of the signal they are estimating/correcting. To combat this we
have two main strategies. First, the estimates can be averaged over time with a filter,
smoothing out the changes over time. The second option would be to only apply
this correction at the start of a frame. Since the offset should be relatively stationary
across a reasonably sized frame, a single measurement should be accurate over that
duration of time. This correction is also considered coarse since it can only be
accurate to within fr, which only enforces this type of correction interval.

With that said a weakness of this FFT-based technique is that it requires
a significant amount of data for a reasonable estimate. This technique will
also produce unpure tones when oversampled at the transmitter with transmit
filters. However, other techniques such as from Luise [5] are designed for burst-
type applications where less data relative to the FFT method above is required.
Unfortunately, the Luise method is a biased estimator unlike the FFT method.

7.2.2 Fine Frequency Correction
After coarse frequency correction (CFC) there will still be offset based on the
configured resolution chosen fr. Fine frequency correction (FFC), also called carrier
phase correction, should produce a stable constellation for eventual demodulation.
Essentially this will drive the remaining frequency offset of the received signal to
zero. We can describe this correction as producing a stable constellation due to how
fine frequency offset effects are typically examined with a constellation diagram. If a

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch07_new” — 2018/3/26 — 11:43 — page 220 — #8

220 Carrier Synchronization

Q

Using loopback with Pluto SDR and Code 7.3, measure the
frequency estimate’s mean squared error as a function of the
difference between the center frequencies (fo,max) of the transmitter
and receiver. Use BSPK signal here and examine f� from 0 − 100
kHz at 1-MHz baseband sampling rate.
Repeat this, but fix the transmitter to a gain of −30 and take
estimates with the receiver in manual gain mode at 10, 30, and 50.

discrete digitally modulated signal exhibits frequency offset, this will cause rotation
over time as examined in a constellation diagram. In Figure 7.5 we demonstrate
this effect where each number relates a sample’s relative occurrence in time, which
provides this perspective of rotation. The signal itself is BPSK, causing it to jump
across the origin with different source symbols. If a positive frequency offset is
applied the rotation will be counterclockwise and clockwise with a negative offset.
The rate of the rotation is equal to the frequency offset, which is where our notion
of ω (angular frequency) comes from, as previously defined in (7.3).

This offset can also be observed with Pluto SDR in a similar way. In Figure 7.6
we transmitted a BPSK signal in loopback with 1-kHz difference between transmit
and receive LOs. We observe a similar rotation as in Figure 7.5 in Figure 7.6(b). In
order to correctly visualize this effect we needed to perform timing correction, which
was borrowed from Chapter 6. Without timing correction the signal is difficult
to interpret from the constellation plot as observed in Figure 7.6(a). Since timing
correction was performed in this case before the frequency was corrected, this
required use of the Gardner technique as detailed in Section 6.4.1. Unlike CFC,

Figure 7.5 Rotating constellation of BPSK source signal with frequency offset.

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch07_new” — 2018/3/26 — 11:43 — page 221 — #9

7.2 Frequency Offset Compensation 221

Figure 7.6 BPSK signal transmit through Pluto SDR in loopback with 1-kHz offset at 1 MHz. (a)
BPSK signal before timing correction, and (b) BPSK signal after timing correction.

which uses a feedforward technique, for FFC we will utilize a feedback or closed-
loop method based PLL theory as examined in Chapter 4. The structure of this
algorithm is provided in Figure 6.11 derived from [6, Chapter 7], which relates
back our original outline in Figure 6.11.

This all-digital PLL-based algorithm works by first measuring the phase offset
of a received sample in the phase error detector (PED), which we call the error
signal e(n). The PED is designed based on the structure of the desired receive
constellation/symbols. Next, the loop filter helps govern the dynamics of the overall
PLL. The loop filter can determine operational frequency (sometimes called pull-
in range), lock time, and responsiveness of the PLL, as well as smoothing out the
error signal. Finally, we have the direct digital synthesizer (DDS), whose name is
a remnant of analog PLL designs with voltage-controlled oscillators (VCOs). The
DDS is responsible for generation of the correction signal for the input, which
again will be fed back into the system. In the case of the FFC design, this PLL
should eventually produce an output signal with desired offset equal to zero.

Starting with the PED, the goal of this block is simply to measure the phase or
radial offset of the input complex data from a desired reference constellation. By
reference and by extension e(n), we are actually referring to the distance from the
constellation bases. In the case of QAM, PSK, and PAM these will always be the
real and imaginary axes. However, you may need to extend this perspective with
regard to FSK or other modulation schemes. The primary reasoning behind this
idea is that it will remove the scaling aspect in a specific dimension, and instead
consider the ratio of energy or amplitude in a specific basis. To better understand
this concept let us consider QPSK, which has the following PED equation:

e(n) = sign(Re(y(n))) × Im(y(n)) − sign(Im(y(n))) × Re(y(n)). (7.8)

In (7.8) e(n) is essentially measuring the difference between the real and
imaginary portions of y(n), and will only be zero when Re(y(n)) = Im(y(n)). You
will notice that this will force the output constellation only to a specific orientation,

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch07_new” — 2018/3/26 — 11:43 — page 222 — #10

222 Carrier Synchronization

but not a specific norm value. However, if y(n) requires a different orientation this
can be accomplished after passing through the synchronizer with a simple multiply
with the desired phase shift of φPOST as

ySHIFT(n) = y(n)ej∗φPOST . (7.9)

Note that ySHIFT(n) should not be fed into the PED.
In the case of other modulation schemes the PED error estimation will change

based on the desired signal arrangement. BPSK or PAM for example will have the
following error estimation:

e(n) = sign(Re(y(n))) × Im(y(n)). (7.10)

This PED error function again has the same goal of providing the error signal
only for the orientation of y(n). For (7.10) e(n) will only be zero when y(n) is purely
real.

The reasoning behind (7.8) and (7.10) is straightforward. On the other hand,
the loop filter in all PLL designs is the most challenging aspect, but it provides the
most control over the adaptation of the system. Again here we will use a PI filter
as our loop filter, which was detailed in Section 6.3.1. The last piece to this FFC
synchronizer is the DDS, which is just an integrator. Since the loop filter produces
a control signal, which is equivalent to the frequency of the input signal, it becomes
necessary to extract the phase of this signal instead. The transfer functions used for
the integrator here are

D(s) = G3
1
s

→ D(z) = G3
z−1

1 − z−1 . (7.11)

Note that we have added an additional delay of a single sample in the discrete
domain, and since we are producing a correction signal G3 = −1. Again this
integrator can be implemented with a biquad filter.

In this arrangement of the PLL shown in Figure 7.7, the system should produce
an output y(n), which has minimal phase and frequency offsets. Going around the
loop again in Figure 7.7, the PED will first produce an error equal to the phase
offset associated with the observed corrected1 symbol y(n), then the loop filter will
relate this observed error and weight it against all previous errors. Finally, the DDS
will convert the weighted error/control signal f (n) to a phase φ(n), which we use
to correct the next input sample x(n + 1). In the case of frequency offsets, φ will
continuously change since is it a phase value, not a frequency value. However, if
the input signal is too dynamic or the gains of the filters are not set appropriately,
the PLL will not be able to keep up with the changing phase (frequency) of x.

For the calculation of the gain values (G1, G2) of the loop filter, utilize the
following equations based on a preferred damping factor ζ and loop bandwidth
BLoop:

θ = BLoop

M(ζ + 0.25/ζ )
� = 1 + 2ζθ + θ2 (7.12)

1. We define this as a corrected symbol since it has passed through the rotator and we will not apply additional
phase shifts to this sample. This is also the output of the PLL.

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch07_new” — 2018/3/26 — 11:43 — page 223 — #11

7.2 Frequency Offset Compensation 223

Figure 7.7 FFC structure based on PLL design for feedback corrections.

G1 = 4ζθ/�

M K
G2 = (4/M)θ2/�

M K
(7.13)

where M is the number of sample per symbol and K is the detector gain. For
QPSK and rectangular QAM K = 2, but for PAM and PSK K = 1. Note that
BLoop is a normalized frequency. If you are interested in how these are derived,
consult [6, Appendix C] for a full detailed analysis. For the selection of ζ refer back
to Section 6.3.1, which has the same definition here. The selection of BLoop should
be related to the maximum estimated normalized frequency locking range �f ,lock
range desired:

�f ,pull ∼ 2π
√

2ζBLoop. (7.14)

Note that this value is an estimate based off a linearized model of the PLL.
Therefore inconsistencies may exist in the simulated versions. However, this PLL
design should perform well even under strong noise conditions when configured
correctly. Unlike the CFC correction this FFC will generally not have the same
operational range. In your designs, it may be useful to start with a damping factor
of ζ = 1 and a loop bandwidth of BLoop = 0.01. From experience, using an
overdamped system here is preferable since it directly increases the pull-in range.
However, it will take the loop longer to converge.

Q
Starting from Code 7.4 implement a carrier recovery algorithm
for BPSK. Tune this implementation for a normalized frequency
offset of 0.001 and 0.004. Evaluate these implementations over a
range of SNR for the MSE of their frequency estimates.

We now have all the necessary pieces to implement the FFC synchronizer,
for which we provide a full reference implementation in Code 7.4. However, it
is important to discuss some of the design considerations. First, we have stated
the output of the FFC synchronizer can have a target of a specific orientation of
the output constellation, which is solely determined by the PED. However, the
synchronizer may not always be able to achieve this target constellation orientation,
meaning the constellation may appear slightly rotated or appear at multiples of
the expected position. This will result from signals with larger carrier offsets
than the FFC was configured to handle or most notably when the system is
configured in an underdamped way. Alternatively, if the received signal has poor

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch07_new” — 2018/3/26 — 11:43 — page 224 — #12

224 Carrier Synchronization

SNR this will also degrade the effective pull-in-range of the synchronize of cause a
nondesirable lock position. This is illustrated in Code 7.4, where two different ζ

configurations are used. The system is also driven close to the estimated maximum
offset for the configuration. In general these estimates will be conservative and
will require empirical testing for a specific modulation scheme, SNR, and loop
filter configuration. However, in this case if we examine the converged signals in
Figure 7.8 we notice an interesting set of outcomes. In Figure 7.8(b) the constellation
actually converges to a false minimum. This is a result of the dynamics of the PLL,
which is in an underdamped state. Forcing the system to be more rigid will provide
the correct result as in Figure 7.8(a). However, if ζ is too large the synchronize will
not converge or can take a very long time to do so.

Q

Introduce timing offset into the model for Code 7.4. For the
recovery process take your implementation from Chapter 4 for
timing recovery and place this into the system. Evaluate these
implementations over a range of SNR for the MSE of their
frequency estimates.

When implementing and testing your own system it can be useful to actually
measure the frequency estimation of the synchronizer itself. Since we know that the
output of the DDS φ is the instantaneous phase correction needed for the next
symbol, we can simply apply (7.3) with similar computations as in Code 7.1.
From the angular frequency estimates we can translate this to a more tangible
frequency estimate in hertz as in (7.3). From inspecting the derivative of Phase
(φ) for Code 7.4 we can examine the convergence of the estimate for an offset of
20 Hz with fs = 1000 Hz. In Figure 7.9 we plot fest where there is an obvious
convergence around the correct value. However, since the signal contains noise and
there is inherent noise to the PLL, the estimate will not be static. This is useful in
a real system since the offsets between transmitter and receiver LOs will always be
dynamic with respect to one another.

7.2.3 Performance Analysis
To evaluate the synchronization performance a number of variables can be
considered. These include but are not limited to lock time, effective pull-in range,
and converged error vector magnitude (EVM). These metrics should be balanced
in a way that meets the needs for a specific design since they will clash with one
another. For example, it can be simple to design a system with a fast lock time,
but it will probably have limited pull-in range. This is a direct relation to (7.14)
and a secondary measurement from [6, Appendix C], which defines the normalized
frequency lock delay:

t�,Max ∼ 32ζ 2

BLoop
. (7.15)

We can demonstrate this trade-off between ζ and BLoop if we focus on the error
signal directly from the PED. Modifying the code from 7.4 by fixing the normalized
carrier offset to 0.01, ζ = 1.3, and selecting two different values for BLoop we

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch07_new” — 2018/3/26 — 11:43 — page 225 — #13

7.2 Frequency Offset Compensation 225

Figure 7.8 Converged QPSK signals after carrier recovery with different damping factors, both
(a) overdamped (ζ = 1.3), and (b) underdamped (ζ = 0.9).

Figure 7.9 Estimations over time and eventual convergence of implemented FFC for 20-Hz offset.

Q

Based off your existing simulation solutions that recover signals
with both timing and carrier offset, introduce Pluto SDR
as the channel mechanism. It may be useful to start with
Code 6.1 and 7.4. Evaluate your implementation in loopback with
increasing frequency difference between transmit and receive LOs.

can observe e(n) in Figure 7.10. In both configurations of BLoop the normalized
offset is less than �f ,pull. In the case for BLoop = 0.24, the system converges to a
solution within a few tens of samples, while the BLoop = 0.03 case is an order of
magnitude slower. However, the variance of the converged error signal σ 2

e is three
times smaller for the case when BLoop = 0.03. This error will appear as phase noise
on y(n), which will affect the demodulation correctness of the signal.

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch07_new” — 2018/3/26 — 11:43 — page 226 — #14

226 Carrier Synchronization

Figure 7.10 Error signal from QPSK PED for different loop bandwidth for time. (a) BLoop = 0.24
with σ 2

e = 0.0103 after convergence, and (b) BLoop = 0.03 with σ 2
e = 0.0031 after convergence.

7.2.4 Error Vector Magnitude Measurements
Evaluating the EVM for y(n) will provide a measure of this phase noise in the
recovered signal. EVM is a very useful measurement to understand the algorithmic
performance in the system. EVM measures the residual error of the constellation
with respect to a reference position. To calculate EVM in percent RMS we can use
the following equation:

EVMRMS = 100 ×
√√√√N−1∑

k=0

econst(k)

N−1∑
k=0

(Re(ȳ(k))2 + Im(ȳ(k))2), (7.16)

where

econst(k) = (Re(y(k)) − Re(ȳ(k)))2 + (Im(y(k)) − Im(ȳ(k)))2 (7.17)

and ȳ(k) is the reference symbol for y(k). EVM is a measure on the dispersiveness
of the received signal. Therefore, the lower the EVM values the better. In some
situations it can be useful to calculate EVM in decibels, which can be converted

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch07_new” — 2018/3/26 — 11:43 — page 227 — #15

7.2 Frequency Offset Compensation 227

Code 7.4 badlock.m

1 %% General system details

2 sampleRateHz = 1e6; samplesPerSymbol = 1; frameSize = 2ˆ10;

3 numFrames = 10; nSamples = numFrames*frameSize;

4 DampingFactors = [0.9,1.3]; NormalizedLoopBandwidth = 0.09;

5 %% Generate symbols

6 order = 4; data = pskmod(randi([0 order-1], nSamples, 1),order,0); % QPSK

7 %% Configure LF and PI

8 LoopFilter = dsp.IIRFilter(’Structure’, ’Direct form II transposed’, ...

9 ’Numerator’, [1 0], ’Denominator’, [1 -1]);

10 Integrator = dsp.IIRFilter(’Structure’, ’Direct form II transposed’, ...

11 ’Numerator’, [0 1], ’Denominator’, [1 -1]);

12 for DampingFactor = DampingFactors

13 %% Calculate range estimates

14 NormalizedPullInRange = min(1, 2*pi*sqrt(2)*DampingFactor*...

15 NormalizedLoopBandwidth);

16 MaxFrequencyLockDelay = (4*NormalizedPullInRangeˆ2)/...

17 (NormalizedLoopBandwidth)ˆ3;

18 MaxPhaseLockDelay = 1.3/(NormalizedLoopBandwidth);

19 %% Impairments

20 frequencyOffsetHz = sampleRateHz*(NormalizedPullInRange);

21 snr = 25; noisyData = awgn(data,snr);% Add noise

22 % Add frequency offset to baseband signal

23 freqShift=exp(1i.*2*pi*frequencyOffsetHz./sampleRateHz*(1:nSamples)).’;

24 offsetData = noisyData.*freqShift;

25 %% Calculate coefficients for FFC

26 PhaseRecoveryLoopBandwidth = NormalizedLoopBandwidth*samplesPerSymbol;

27 PhaseRecoveryGain = samplesPerSymbol;

28 PhaseErrorDetectorGain = log2(order); DigitalSynthesizerGain = -1;

29 theta = PhaseRecoveryLoopBandwidth/...

30 ((DampingFactor + 0.25/DampingFactor)*samplesPerSymbol);

31 delta = 1 + 2*DampingFactor*theta + theta*theta;

32 % G1

33 ProportionalGain = (4*DampingFactor*theta/delta)/...

34 (PhaseErrorDetectorGain*PhaseRecoveryGain);

35 % G3

36 IntegratorGain = (4/samplesPerSymbol*theta*theta/delta)/...

37 (PhaseErrorDetectorGain*PhaseRecoveryGain);

38 %% Correct carrier offset

39 output = zeros(size(offsetData));

40 Phase = 0; previousSample = complex(0);

41 LoopFilter.release();Integrator.release();

42 for k = 1:length(offsetData)-1

43 % Complex phase shift

44 output(k) = offsetData(k+1)*exp(1i*Phase);

45 % PED

46 phErr = sign(real(previousSample)).*imag(previousSample)...

47 - sign(imag(previousSample)).*real(previousSample);

48 % Loop Filter

49 loopFiltOut = step(LoopFilter,phErr*IntegratorGain);

50 % Direct Digital Synthesizer

51 DDSOut = step(Integrator,phErr*ProportionalGain + loopFiltOut);

52 Phase = DigitalSynthesizerGain * DDSOut;

53 previousSample = output(k);

54 end

55 scatterplot(output(end-1024:end-10));title(’’);

56 end

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch07_new” — 2018/3/26 — 11:43 — page 228 — #16

228 Carrier Synchronization

from (7.16) as

EVMdB = 20 log10

(EVMRMS

100

)
. (7.18)

Calculating EVM in decibels is very common in OFDM standards due to high-order
constellations that can be transmitting, which require a significant EVM margin
to recover. For convience, the Communications System Toolbox include a system
object called comm.EVM to provide these calculations for us.

Q
Starting with Code 7.4, evaluate the EVM of converged signals
with regard to ζ and BLoop. Select values of ζ in underdamped,
overdamped, and critically damped configurations.

7.3 Phase Ambiguity

The last topic to consider for carrier synchronization is phase ambiguity. Phase
ambiguity arises from the fact that the FFC synchronizer outlined here is blind to
the true orientation of the transmitted signal. For a given symmetrical modulation
scheme there can be a number of convergent orientations, which can be related
to the modulation order. For example, PAM will have two possible orientations,
QPSK and rectangular QAM will have four, while MPSK with have M possible
orientations. However, there are a number of solutions to compensate for this
problem, which includes code words, use of an equalizer with training data, and
differential encoding. There are different use cases for each implementation.

7.3.1 Code Words
The use of code words is a common practice for resolution of phase ambiguity,
which relies on a known sequence in the received data. This is typically just the
preamble itself, which will exist in each frame and is known at the receiver. This
strategy can be used before or after demodulation if desired. If performed post
demodulation, the output bits must be remapped onto their true positions. This
process is best explained through an example. Consider the source words w and
associated QPSK symbols s:

w = [1, 0, 3] s = [(−1, 1i) (1, 1i) (−1, −1i)]. (7.19)

The possible received symbols would be

s1 = [(−1, 1i) (1, 1i) (−1, −1i)]
s2 = [(−1, −1i) (−1, 1i) (1, −1i)]
s3 = [(1, −1i) (−1, −1i) (1, 1i)]
s4 = [(1, 1i) (1, −1i) (−1, 1i)].

(7.20)

Demodulating each code word symbol and comparing with the expected result
would provide the necessary mapping to correctly demodulate the remaining data
symbols. For an implementation it would be useful to demodulate all the preamble

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch07_new” — 2018/3/26 — 11:43 — page 229 — #17

7.4 Chapter Summary 229

symbols and take the most common orientation mapping, since relying on a single
symbol can be error-prone.

Alternatively, the phase offset θp from the correct orientation can be measured
directly where p is the received preamble symbols, pr is the reference or true
preamble symbols, and the correction required is simply

θp = tan−1
(∑

n

Im(p(n)∗ × pr(n))

Re(p(n)∗ × pr(n))

)
, (7.21)

assuming p(n) has a desirable orientation. Then the remaining signal y would be
corrected as

yc = y e−jθp . (7.22)

7.3.2 Differential Encoding
The second option to deal with phase ambiquity is to differentially encode the source
bits themselves. The goal here is to make the true data dependent on the difference
between successive bits, not on the received bits themselves. To encode the source
data we apply the following at the transmitter:

bt(n) = bt(n − 1) ⊕ b(n), (7.23)

where bt are the transmitted encoded bits, b are the uncoded bits, and ⊕ is a modulo
two addition. To decode the signal we basically perform (7.23) in reverse as

b(n) = bt(n) ⊕ bt(n − 1). (7.24)

Usually in this scheme the first bit is ignored since it is only based on itself, not
the difference between two consecutive bits. Engineers may point to this as wasteful,
but this reduces any complex mathematics associated with measuring offsets with
symbols and only requires bit-level operations. This can also reduces the bit error
rate of a received signal due to propagation of bit errors.

7.3.3 Equalizers
The third popular option is to rely on an equalizer to correct this ambiguity for the
system. Using training data the equalizer can learn and correct for this phase shift,
which in essence is just a complex multiplication. Equalizers will be discussed in
detail in Chapter 9. However, this is a small task for an equalizer implementation
if channel correct or synchronization are not performed by the equalizer as well.

7.4 Chapter Summary

In this chapter we have discussed and provided a model of carrier offset and how
it relates to receiver operations. From this model we have provided two schemes
for compensating for carrier offset including coarse and fine recovery algorithms.
However, other implementations do exist that can jointly perform timing and carrier
recovery [6] if desired. We have examined how these algorithms can be used at the
system level, as well as how individual performance can be evaluated. These include
characterization of their parameterization as well as metric on the recovered data.

Analog Devices perpetual eBook license – Artech House copyrighted material. 



Wyglinski: “ch07_new” — 2018/3/26 — 11:43 — page 230 — #18

230 Carrier Synchronization

In summary, carrier offset compensation is a necessary synchronization technique
when transmitting data between two disjoint nodes with independent LOs.

References

[1] Analog Devices, Inc., ADALM-PLUTO SDR Active Learning Module,
http://www.analog.com/media/en/news-marketing-collateral/product-highlight/ADALM-
PLUTO-Product-Highlight.pdf.

[2] Oppenheim, A.V., and R.W. Schafer, Discrete-Time Signal Processing, Prentice Hall, 1989.
[3] Morelli, M., and U. Mengali, “Feedforward Frequency Estimation for PSK: A Tutorial

Review,” European Transactions on Telecommunications, Vol. 9, No. 2, 1998,
pp. 103–116.

[4] Wang, Y., K. Shi, and E. Serpedin,“Non-Data-Aided Feedforward Carrier Frequency
Offset Estimators for QAM Constellations: A Nonlinear Least-Squares Approach,”
EURASIP Journal on Advances in Signal Processing, (2004) 2004: 856139,
https://doi.org/10.1155/S1110865704403175.

[5] Luise, M. and R. Reggiannini, “Carrier Frequency Recovery in All-Digital Modems for
Burst-Mode Transmissions,” IEEE Transactions on Communications, Vol. 43, No. 2,
1995, pp. 1169–1178.

[6] Rice, M., Digital Communications: A Discrete-Time Approach, Third Edition,
Pearson/Prentice Hall, 2009.

Analog Devices perpetual eBook license – Artech House copyrighted material. 


	Software-Defined Radio
for Engineers
	Contents
	CHAPTER 7
Carrier Synchronization
	7.1 Carrier Offsets
	7.2 Frequency Offset Compensation
	7.2.1 Coarse Frequency Correction
	7.2.2 Fine Frequency Correction
	7.2.3 Performance Analysis
	7.2.4 Error Vector Magnitude Measurements

	7.3 Phase Ambiguity
	7.3.1 Code Words
	7.3.2 Differential Encoding
	7.3.3 Equalizers

	7.4 Chapter Summary
	References





