

ステレオ・オーディオ、24ビット 96kHz、マルチビット Σ-Δ ADC

AD1871

特長

3.3V対応のデジタル・インターフェースを備えた5.0Vステレオ・オーディオADC

96kHzのサンプル・レートをサポート

16/20/24ビットのワード長をサポート

アイドル・トーンとノイズ・フロアを低減する "完全な微分直線 性再生"機能を備えたマルチビット Σ - Δ 変調器

105dB (typ)のダイナミックレンジ

256/512および768imesf $_{s}$ のマスター・クロックをサポート

柔軟性の高いシリアル・データ・ポート

- ・右詰め、左詰め、I²Sコンパチブル、およびDSPシリアル・ポートの各モードが可能
- ・単一のDSP SPORTからカスケード接続(最大4個のデバイス)が 可能

SPI互換のシリアル・ポートまたはオプションの制御ピンからの デバイス制御

電圧リファレンスを内蔵

28ピンSSOPパッケージ

アプリケーション

業務用オーディオ

ミキシング・コンソール

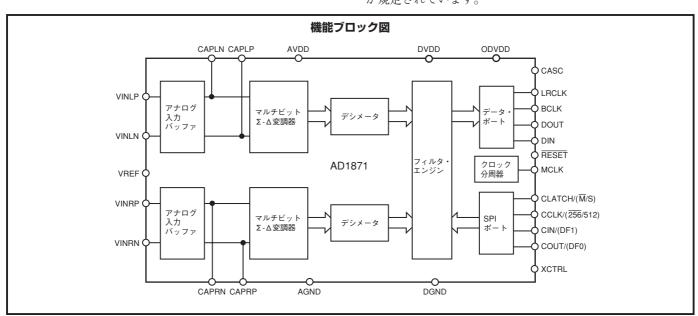
電子楽器

CD-R、MD、DVD-R、DAT、HDDを含むデジタル・オーディ オ・レコーダ

ホーム・シアター・システム

車載用オーディオ・システム

マルチメディア


製品概要

AD1871は、高性能のA/D変換が要求されるデジタル・オーディオ・アプリケーション用に設計されたステレオ・オーディオADCです。プログラマブル・ゲイン・アンプ(PGA)、マルチビット Σ - Δ 変調器、およびデシメーション・フィルタを備えた、2つの24ビット変換チャンネルを特長としています。各チャンネルが105dBのダイナミックレンジを備えているので、AD1871はデジタル・オーディオ・レコーダやミキシング・コンソールなどのアプリケーションに適しています。

AD1871の各入力チャンネル(左と右)は、差動またはシングルエンド(内部のシングルエンド/差動変換によって2つの入力をマルチプレクス)として構成することが可能です。入力PGAは、3dBステップで0dB~12dBのゲイン設定レンジを特長としています。 Σ - Δ 変調器には、標準オーディオ・サンプリング・レート32kHzから96kHzまでのオーディオ帯域幅で最適な性能を実現する独自技術のマルチビット・アーキテクチャが採用されています。デシメーション・フィルタの応答性は、非常に低い通過帯域リップルと優れた阻止帯域減衰を特長としています。

AD1871のオーディオ・データ・インターフェースは、PS、左詰め、右詰め、および他のモードなど一般的なインターフェース・フォーマットをすべてサポートするので、汎用デジタル・シグナル・プロセッサ(DSP)と容易に接続が可能です。AD1871はさらに、サンプル・ワード幅、PGAの設定、インターフェース・モードなどのデバイス・パラメータと機能を適切に制御することが可能なSPI互換のシリアル制御ポートも備えています。

AD1871は5Vの単電源で動作し、オプションとして3.3Vのデジタル・インターフェース能力も備わっています。パッケージは28ピンのSSOPで、-40 \mathbb{C} ~+105 \mathbb{C} 0温度レンジで仕様が規定されています。

アナログ・デバイセズ社が提供する情報は正確で信頼できるものを期していますが、その情報の利用または利用したことにより引き起こされる第3者の特許または権利の侵害に関して、当社はいっさいの責任を負いません。 さらに、アナログ・デバイセズ社の特許または特許の権利の使用を許諾するものでもありません。

*日本語データシートは、REVISIONが古い場合があります。最新の内容については英語版をご参照ください。

REV.0

本 社/東京都港区海岸1-16-1 電話03(5402)8200 〒105-6891 ニューピア竹芝サウスタワービル

目次

特長	$\cdots 1$
機能ブロック図・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
製品の概要・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
仕様・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3
特に注記がない場合のテスト条件・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	• • • • 3
アナログ性能・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
ローパス・デジタル・フィルタ特性・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	4
ハイパス・デジタル・フィルタ特性・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
マスター・クロック(MCLK)およびリセット・タイミング ······	
データ・インターフェース・タイミング・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
制御インターフェース・タイミング・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
デジタルI/O ······	
電源 · · · · · · · · · · · · · · · · · · ·	
温度レンジ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
絶対最大定格・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
オーダ・ガイド・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	9
ピン配置・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
ピン機能説明 ····································	
用語の説明 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
代表的な性能特性図 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
フィルタの応答性・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
デバイスの性能特性図 ····································	
機能説明	
クロック入力方式・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
変調器	
デジタル・デシメーティング・フィルタ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
ハイパス・フィルタ ······	
ADCのコーディング・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
アナログ入力部 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
シリアル・データ・インターフェース ····································	
制御レジスタI・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
制御レジスタII・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
制御レジスタIII ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
ピーク読み出しレジスタ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
外部制御 · · · · · · · · · · · · · · · · · · ·	
Master/Slaveの選択・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
MCLKモードの選択 ······	
シリアル・データ・フォーマットの選択 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
変調器モード ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
インターフェース動作 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
アナログ・インターフェース動作 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
レイアウトに関する留意事項 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
外形サイズ	27

2

AD1871-仕様

特に注記がない場合のテスト条件

マスター・モード、I2Sデータ・フォーマット

アナログ性能

パラメータ	Min	Тур	Max	単位	条件
分解能		24		ビット	
差動入力					PGA/MUXイネーブル時
ダイナミックレンジ					(20Hz~20kHz、-60dB入力)
ウェイトなし	98	103		dB	
Aウェイト	100	105		dB	
信号対ノイズ比		106		dB	
全高調波歪み + ノイズ(THD+N)		-85		dB	入力=-0.5dBFS
		-103		dB	入力=-20dBFS
マルチビット変調器のみの					
ダイナミックレンジ(Aウェイト)		102		dB	変調器出力 @ 5.6448MHz
シングルエンド入力					PGA/MUXイネーブル時
ダイナミックレンジ					(20Hz~20kHz、-60dB入力)
ウェイトなし		103		dB	
Aウェイト		105		dB	
信号対ノイズ比		106		dB	
全高調波歪み + ノイズ(THD+N)		-85		dB	入力=-0.5dBFS
		-103		dB	入力=-20dBFS
差動入力(バイパス)					PGA/MUXディスエーブル時
ダイナミックレンジ					(20Hz~20kHz、-60dB入力)
ウェイトなし		103		dB	
Aウェイト		106		dB	
信号対ノイズ比		106		dB	
全高調波歪み + ノイズ(THD+N)		-86		dB	入力=-0.5dBFS
` ,		-104		dB	入力=-20dBFS
差動入力(f _s = 96kHz)					PGA/MUXイネーブル時、AMC=1
ダイナミックレンジ					(20Hz~20kHz、-60dB入力)
ウェイトなし		103		dB	
Aウェイト		106		dB	
信号対ノイズ比		106		dB	
全高調波歪み + ノイズ(THD+N)		-87		dB	入力=-0.5dBFS
		-104		dB	入力=-20dBFS
アナログ入力					
差動入力レンジ(±フルスケール)	-2.828		+2.828	V	
入力インピーダンス(PGA/MUX)		8		kΩ	差動
入力インピーダンス(バイパス)		40		kΩ	差動
入力インピーダンス(PGA/MUX)		4		kΩ	シングルエンド
$ m V_{REF}$	2.138	2.25	2.363	V	
DC精度					
ゲイン誤差		-10		%	
チャンネル間ゲイン・ミスマッチ	-0.2	-0.01	+0.2	dB	
ゲイン・ドリフト		100		ppm/℃	
クロストーク(EIAJ方式)		-100		dB	

AD1871-仕様

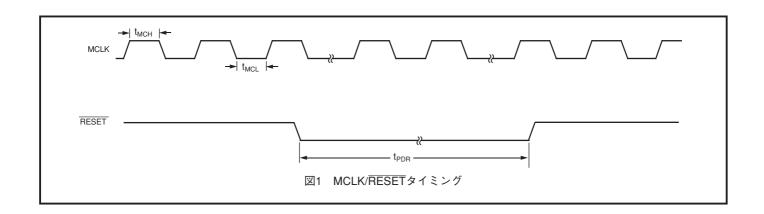
ローパス・デジタル・フィルタ特性(fs = 48kHz)

パラメータ	Min	Тур	Max	単位
デシメーション係数		128		
通過帯域周波数		21.77		kHz
阻止带域周波数		26.23		kHz
通過帯域リップル		± 0.01		dB
阻止带域減衰量		120		dB
群遅延		910		μs

ローパス・デジタル・フィルタ特性(fs = 96kHz)

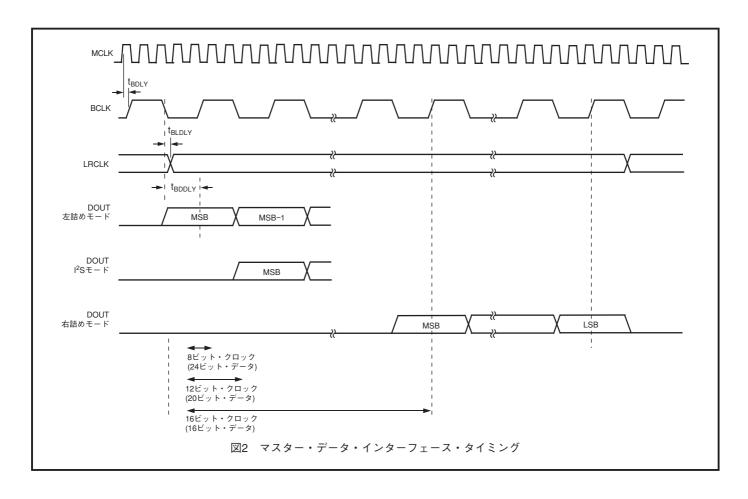
パラメータ	Min	Тур	Max	単位
デシメーション係数		64		
通過帯域周波数		43.54		kHz
阻止带域周波数		52.46		kHz
通過帯域リップル		± 0.01		dB
阻止带域減衰量		120		dB
群遅延		460		μ s

ハイパス・デジタル・フィルタ特性($f_s = 48kHz$)

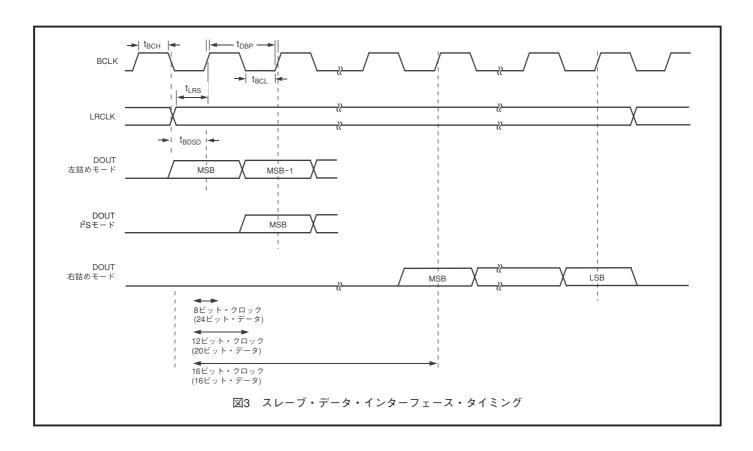

パラメータ	Min	Тур	Max	単位
カットオフ周波数		2		Hz

ハイパス・デジタル・フィルタ特性(fs = 96kHz)

パラメータ	Min	Тур	Max	単位
カットオフ周波数		4		Hz

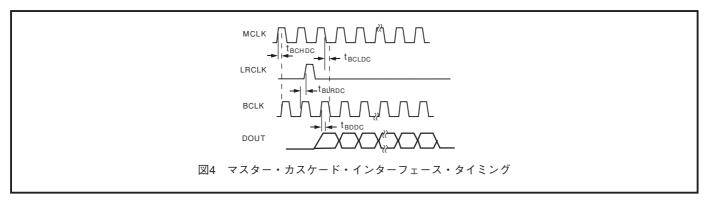

マスター・クロック(MCLK)およびリセット・タイミング

記号	説明	Min	Тур	Max	単位	備考
t_{MCH}	MCLKハイ幅	20			ns	
t_{MCL}	MCLKロー幅	20			ns	
t_{PDR}	RESETロー・パルス幅	20			ns	

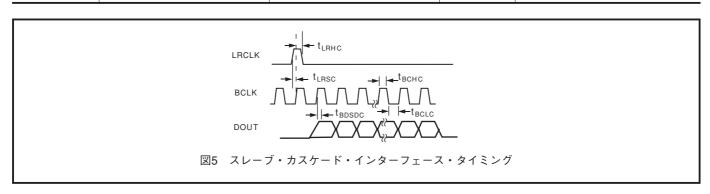

データ・インターフェース・タイミング(スタンドアロン・モードーマスター)

記号	説明	Min	Тур	Max	単位	備考
$t_{ m BDLY}$	BCLK遅延	20			ns	MCLKの立ち上がりから
t_{BLDLY}	LRCLKローまでの遅延	10			ns	BCLKの立ち下がりから
t_{BDDLY}	DOUT遅延	10			ns	BCLKの立ち下がりから

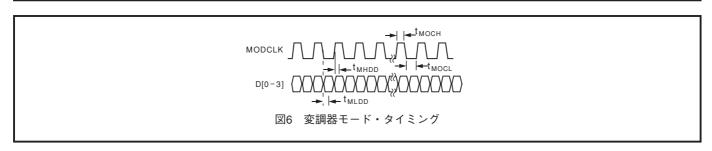
データ・インターフェース・タイミング(スタンドアロン・モードースレーブ)


記号	説明	Min	Тур	Max	単位	備考
$t_{\rm BCH}$	BCLKハイ幅		30		ns	
t_{BCL}	BCLK口一幅		30		ns	
t_{BDSD}	DOUT遅延	20			ns	BCLKの立ち下がりから
t_{LRS}	LRCLKセットアップ	10			ns	BCLKの立ち上がりまで
t_{LRH}	LRCLKホールド	5			ns	BCLKの立ち上がりから

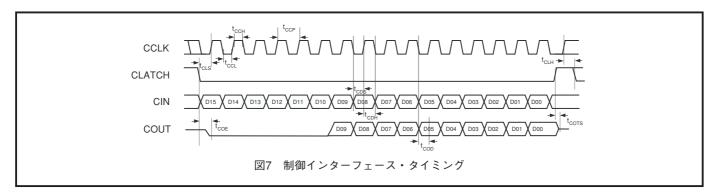
6


データ・インターフェース・タイミング(カスケード・モードーマスター)

記号	説明	Min Typ Max	単位	備考
t_{BCHDC}	BCLKハイ遅延	20	ns	MCLKの立ち上がりから
t_{BCLDC}	BCLKロー遅延	20	ns	MCLKの立ち下がりから
t_{BLRDC}	LRCLK遅延	10	ns	BCLKの立ち上がりから
t_{BDDC}	DOUT遅延	10	ns	BCLKの立ち上がりから
$t_{ m BDIS}$	DINセットアップ	10	ns	BCLKの立ち上がりまで
$t_{ m BDIH}$	DINホールド	10	ns	BCLKの立ち上がりから


データ・インターフェース・タイミング(カスケード・モード-スレーブ)

記号	説明	Min	Тур	Max	単位	備考
t _{BCHC}	BCLKハイ幅		30		ns	
t_{BCLC}	BCLKロー幅		30		ns	
t_{BDSDC}	DOUT遅延	20			ns	BCLKの立ち上がりから
t_{LRSC}	LRCLKセットアップ	10			ns	BCLKの立ち上がりまで
t_{LRHC}	LRCLKホールド	5			ns	BCLKの立ち上がりから
t_{BDIS}	DINセットアップ	10			ns	BCLKの立ち上がりまで
t_{BDIH}	DINホールド	10			ns	BCLKの立ち上がりから


データ・インターフェース・タイミング(変調器モード)

記号	説明	Min	Тур	Max	単位	備考
t_{MOCH}	MODCLKハイ幅		MCLK		ns	
t_{MOCL}	MODCLK口一幅		MCLK		ns	
$t_{ m MHDD}$	MOD DATAハイ遅延		30		ns	MCLKの立ち上がりから
$t_{ m MLDD}$	MOD DATAロー遅延		20		ns	MCLKの立ち下がりから
t_{MMDR}	MODCLK立ち上がり遅延		30		ns	MCLKの立ち下がりからMODCLKの立ち上がりまで
t_{MMDF}	MODCLK立ち下がり遅延		20		ns	MCLKの立ち下がりからMODCLKの立ち下がりまで

制御インターフェース(SPI)タイミング

記号	説明	Min Typ	Max 単位	備考
t_{CCH}	CCLKハイ幅	40	ns	
t_{CCL}	CCLKロー幅	40	ns	
CCP	CCLKサイクル	80	ns	
CDS	CDATAセットアップ時間	10	ns	CCLKの立ち上がりまで
CDH	CDATAホールド時間	10	ns	CCLKの立ち上がりから
CLS	CLATCHセットアップ時間	10	ns	CCLKの立ち上がりまで
CLH	CLATCHホールド時間	10	ns	CCLKの立ち上がりから
COE	COUTイネーブル	15	ns	CLATCHの立ち下がりから
COD	COUT遅延	20	ns	CCLKの立ち下がりから
COTS	COUTスリーステート	25	ns	CLATCHの立ち上がりから

デジタルI/O

パラメータ	Min	Тур	Max	単位
	2.4			V
入力ロー電圧(V _{IL})			0.8	V
入力漏れ電流(I _{IH} @ V _{IH} = 5V)			10	μ A
入力漏れ電流(I _{IL} @ V _{IL} = 0V)			10	μ A
出力ハイ電圧(V_{OH} @ $I_{OH} = -2mA$)	ODVDD-0	.4V		V
出力ロー電圧(V _{OL} @ I _{OL} = +2mA)			0.4	V
入力容量			15	pF

電源

パラメータ	Min	Тур	Max	単位
電源				
電圧、AVDDおよびDVDD	4.5	5	5.5	V
電圧、ODVDD	2.7		5.5	V
アナログ電流		40	45	mA
アナログ電流-パワーダウン(MCLK動作時)		4.0	6.0	μ A
デジタル電流、DVDD		18	22	mA
デジタル電流、ODVDD		0.5	1.0	mA
デジタル電流-パワーダウン(MCLK動作時) DVDD*		0.8	2.0	mA
デジタル電流-パワーダウン(MCLK動作時) ODVDD*		1.0	15.0	μ A
電源変動除去				
アナログ電源ピンの1kHz 300mVp-p信号		-86		dB
アナログ電源ピンの20kHz 300mVp-p信号		-77		dB

^{*} RESETをローに保持。

温度レンジ

パラメータ	Min	Тур	Max	単位
仕様保証温度		25		\mathbb{C}
機能性保証温度	-40		+105	$ \mathbb{C} $
保管温度	-65		+150	$^{\circ}$

8

仕様は予告なく変更されることがあります。

絶対最大定格

	Min	Тур	Max	単位
DGND基準のDVDDおよびDGND基準のODVDD	0		6	V
AGND基準のAVDD	0		6	V
デジタル入力	DGND-0.3		DVDD + 0.3	V
アナログ入力	AGND-0.3		AVDD + 0.3	V
DGND基準のAGND	-0.3		+0.3	V
リファレンス電圧			グラウンドに無制限に短絡	
ハンダ付け温度(10秒間)			300	$^{\circ}$

オーダー・ガイド

モデル	温度レンジ	パッケージの説明	パッケージ・オプション
AD1871YRS AD1871YRS-REEL EVAL-AD1871EB	-40°C ~+105°C -40°C ~+105°C	SSOP SSOP 評価用ボード	RS-28 13インチ・リール(1500個)のRS-28

ピン配置
MCLK 1 CCLK / (256/512) 2

注意_

ESD (静電放電)の影響を受けやすいデバイスです。4000Vもの高圧の静電気が人体やテスト装置に容易に帯電し、検知されることなく放電されることがあります。本製品には当社独自のESD保護回路を備えていますが、高エネルギーの静電放電を受けたデバイスには回復不可能な損傷が発生することがあります。このため、性能低下や機能喪失を回避するために、適切なESD予防措置をとるようお奨めします。

ピン機能の説明

入力	能です。 同です。 りつます。 りつます。 りでは、 りでは、 りでは、 りでは、 りでは、 りでは、 りでは、 りでは、
2 入力 CCLK¹ 制御ボート・ビット・クロック。制御ボート(SPI)インターフェース」です。このピンは、外部制御モード(XCTRLピンがハイのとき)に再設参照。 3 入力/出力 COUT¹-² 制御ボート・データ出力。制御ボート(SPI)インターフェースからの出力です(リードバック動作時)。このピンは、外部制御モード(XCTRとき)、または変調器モード(制御レジスタIIのMMEピットを設定)に再注参照。 4 入力 CIN¹ 制御ボート・データ入力。制御ボート(SPI)インターフェース用のシカです。このピンは、外部制御モード(XCTRLピンがハイのとき)に再注参照。 5 入力 CLATCH¹ 制御ボート・フレーム同期。制御ボート(SPI)インターフェース用の(フレーミング信号)です。このピンは、外部制御モード(XCTRLピングラウンドスカカンスカースカーンスクーフルへのより、外部制御モードの選択に使用します。XCにより、メカカンスカースのより、メカル・グラウンドスクーカルへイクのときには、ハードウェアにを変更することで、複数のデバイス機能(256/512、M/S、DFI、DFOの制御することが可能です。外部制御モード時には、他のすべての機能に設定されます(制御レジスタの説明と「外部制御」を参照してくだき変更することが可能です。外部制御エード時には、他のすべての機能に設定されます(制御レジスタの説明と「外部制御」を参照してくだき変更することが可能です。外部制御モード時には、他のすべての機能に設定されます(制御レジスタの説明と「外部制御」を参照してくだき変更することが可能です。外部制御エード時には、他のすべての機能に設定されます(制御レジスタの説明と「外部制御」を参照してくだきなどのアナログ電源 9 入力 AVDD SVのアナログ電源 10 入力 VINLP 左チャンネルの所と力がMUX/PGAを経由) 11 入力 CAPLP 左チャンネルの外部フィルタ・コンデンサ(変調器の負入力) 13 入力/出力 CAPLP 左チャンネルの外部フィルタ・コンデンサ(変調器の正入力) 14 出力 VREF リファレグ・コンデンサ(変調器の正入力) 15 入力 AGND アナログ・グラウンド 16 入力/出力 AGND アナログ・グラウンド 17 入力/出力 AGND 石チャンネルの外部フィルタ・コンデンサ(同のクロック信号注 シリアル・デイの。 レリアがれま デーの 設定 アル・ボま 一 タと リアとされ デーす。 リアとされ デーす。 リアとされ 一 人 脚 フレーのとき) に フレーのとき)
マす。このピンは、外部制御モード(XCTRLピンがハイのとき)に再設 参照。 制御ボート・データ出力。制御ボート(SPI)インターフェースからの 出力です(リードバック動作時)。このピンは、外部制御モード(XCTR き)、または変調器モード(制御レジスタIIのMMEピットを設定)に再i 注参照。	をされます。脚注 /リアル・デーのルピンがいます。 ひ定されます。 りアル・デーののと ファル・オークの ファル・カークのと ファル・カークのと ファル・カークと ファル・カークと ファル・カークと ファル・カークと ファル・カークと ファル・カークと ファル・カークと ファル・カーク ファル・
3 入力/出力 COUT ¹⁻² 制御ボート・データ出力。制御ボート(SPI)インターフェースからの出力です(リードバック動作時)。このピンは、外部制御モード(XCTR き)、または変調器モード(制御レジスタIIのMMEピットを設定)に再注参照。制御ボート・データ入力。制御ボート(SPI)インターフェース用のシカです。このピンは、外部制御モード(XCTRLピンがハイのとき)に再注参照。 5 入力 CLATCH' 制御ボート・フレーム同期。制御ボート(SPI)インターフェース用の(フレーミング信号)です。このピンは、外部制御モード(XCTRLピンが別です。このピンは、外部制御モード(XCTRLピンが別を含める)に再注参照。 6 入力 DVDD SVのデジタル・コア電源 定きれます。脚注参照。 7 入力 DGND アジタル・グラウンド 外部制御イード(CCLK、CLATCH、CIN、COUTの各ピンを 御されます。XCTRLがイネーブル(ハイ)のときには、ハードウェアにを変更することで、複数のデバイス機能(256/512、M/S、DF1、DF0の制御することが可能です。外部制御上下・時には、他のすべての機能に設定されます(制御レジスタの説明と「外部制御」を参照してくださ 郷されます。外部制御上で時には、他のすべての機能に設定されます(制御レジスタの説明と「外部制御」を参照してくださ 表力 VINLN 左チャンネルの勇入力(MUX/PGAを経由) 9 入力 VINLN 左チャンネルの所入力(MUX/PGAを経由) 11 入力 VINLN 左チャンネルの所入力(MUX/PGAを経由) 12 入力/出力 CAPLN 左チャンネルの外部フィルタ・コンデンサ(変調器の負入力) 13 入力/出力 CAPLP 左チャンネルの外部フィルタ・コンデンサ(変調器の正入力) 14 出力 VREF リファレス電圧出力。VREFピンとAGND (15番ピン)の間に、10 (月) アナログ・グラウンド 15 入力 AGND アナログ・グラウンド 16 入力/出力 CAPRP 右チャンネルの外部フィルタ・コンデンサ(変調器の正入力) 17 入力/出力 石チャンネルの外部フィルタ・コンデンサ(変調器の正入力) 18 入力/出力	レリアル・データ Lピンがハイのと 設定されます。脚 リアル・データ入 没定されます。脚 フレーム同期入力 バハイのとき)に再
	Lピンがハイのと 設定されます。脚 リアル・データ入 設定されます。脚 フレーム同期入力 バハイのとき)に再
出力です(リードバック動作時)。このピンは、外部制御モード(XCTR き)、または変調器モード(制御レジスタIIのMMEピットを設定)に再注参照。	Lピンがハイのと 設定されます。脚 リアル・データ入 設定されます。脚 フレーム同期入力 バハイのとき)に再
4 入力 CIN¹ 割御ボート・データ入力。制御ボート(SPI)インターフェース用のシカです。このピンは、外部制御モード(XCTRLピンがハイのとき)に再注参照。 5 入力 CLATCH¹ 制御ボート・プレーム同期。制御ボート(SPI)インターフェース用のシカです。このピンは、外部制御モード(XCTRLピンがのとき)に再注参照。 6 入力 DVDD SVのデジタル・コア電源 7 入力 DGND デジタル・グラウンド 外部制御イネーブル。AD1871の制御モードの選択に使用します。XCには、SPI互換制御ボート(CCLK、CLATCH、CIN、COUTの各ピンを適されます。XCTRLがイネーブル(ハイ)のときには、ハードウェアにを変更することで、複数のデバイス機能(256/512、M/S、DFI、DFOの制御することが可能です。外部制御上ード時には、他のすべての機能に設定されます(制御レジスタの説明と「外部制御」を参照してくださいできまれます(制御レジスタの説明と「外部制御」を参照してくださいできまれます(制御レジスタの説明と「外部制御」を参照してくださいできまれます(制御レジスタの説明と「外部制御」を参照してくださいできまれます(MUX/PGAを経由) 9 入力 AVDD XDアナログ電源 たチャンネルの氏入力(MUX/PGAを経由) 10 入力 VINLN たチャンネルの外部フィルタ・コンデンサ(変調器の負入力) 13 入力/出力 CAPLN たチャンネルの外部フィルタ・コンデンサ(変調器の正入力) 14 出力 VREF リファレンス電圧出力。VREFビンとAGND (15番ピン)の間に、10μF ンサを並列に接続することを推奨します。(「レイアウトに関する留にください) 15 入力 AGND アナログ・グラウンド 右チャンネルの外部フィルタ・コンデンサ(変調器の正入力) 16 入力/出力 CAPRN 右チャンネルの外部フィルタ・コンデンサ(変調器の正入力) 17 入力/出力 CAPRN 右チャンネルの正入力(MUX/PGAを経由) 18 入力 VINRP	設定されます。脚 リアル・データ入 設定されます。脚 フレーム同期入力 バハイのとき)に再
4 入力 CIN¹ 制御ボート・データ入力。制御ボート(SPI)インターフェース用のシカです。このピンは、外部制御モード(XCTRLピンがハイのとき)に再注参照。 5 入力 CLATCH¹ 制御ボート・フレーム同期。制御ボート(SPI)インターフェース用の(フレーミング信号)です。このピンは、外部制御モード(XCTRLピング 設定されます。脚注参照。 6 入力 DVDD SVのデジタル・コア電源 7 入力 外部制御オート(CCLK、外部制御モードの選択に使用します。XC には、SPI互換制御ボート(CCLK、CLATCH、CIN、COUTの各ピング 御されます。XCTRLがイネーブル(ハイ)のときには、ハードウェアにを変更することが可能です。外部制御モード時には、他のすべての機能に設定されます。制御レジスタの説明と「外部制御」を参照してください。 9 入力 AVDD SVのアナログ電源 10 入力 VINLN 左チャンネルの負入力(MUX/PGAを経由) 11 入力 VINLP 左チャンネルの外部フィルタ・コンデンサ(変調器の負入力) 12 入力/出力 CAPLN 左チャンネルの外部フィルタ・コンデンサ(変調器の正入力) 14 出力 VREF リファレンス電圧出力。VREFピンとAGND (15番ピン)の間に、10 μ F 15 入力 AGND アナログ・グラウンド 16 入力/出力 CAPRN 右チャンネルの外部フィルタ・コンデンサ(変調器の正入力) 17 入力/出力 CAPRN 右チャンネルの外部フィルタ・コンデンサ(変調器の負入力) 18 入力 VINRP 右チャンネルの外部フィルタ・コンデンサ(変調器の重入力)	リアル・データ入 没定されます。脚 フレーム同期入力 バイのとき)に再
	没定されます。脚7レーム同期入力がハイのとき)に再
5 入力 CLATCH' 加御ボート・フレーム同期。制御ボート(SPI)インターフェース用の(フレーミング信号)です。このピンは、外部制御モード(XCTRLピング 設定されます。脚注参照。 6 入力 DVDD SVのデジタル・コア電源 7 入力 DGND デジタル・グラウンド 8 入力 XCTRL 外部制御イネーブル。AD1871の制御モードの選択に使用します。XCには、SPI互換制御ボート(CCLK、CLATCH、CIN、COUTの各ピンを 御されます。XCTRLがイネーブル(ハイ)のときには、ハードウェアに を変更することで、複数のデバイス機能(256/512、M/S、DF1、DF0の制御することが可能です。外部制御モード時には、他のすべての機能に設定されます(制御レジスタの説明と「外部制御」を参照してください 数定されます(制御レジスタの説明と「外部制御」を参照してください 大力 UNLP 左チャンネルの負入力(MUX/PGAを経由) 9 入力 VINLN 左チャンネルの負入力(MUX/PGAを経由) 10 入力 VINLP 左チャンネルの外部フィルタ・コンデンサ(変調器の負入力) 12 入力/出力 CAPLN 左チャンネルの外部フィルタ・コンデンサ(変調器の正入力) 13 入力/出力 CAPLP 左チャンネルの外部フィルタ・コンデンサ(変調器の正入力) 14 出力 VREF リファレス電圧出力。VREFピンとAGND (15番ピン)の間に、10 μ F を並列に接続することを推奨します。(「レイアウトに関する留までください) 15 入力 AGND アナログ・グラウンド 16 入力/出力 CAPRP 右チャンネルの外部フィルタ・コンデンサ(変調器の重入力) 17 入力/出力 CAPRP 右チャンネルの外部フィルタ・コンデンサ(変調器の負入力) 18 入力 VINRP 右チャンネルの正入力(MUX/PGAを経由)	没定されます。脚7レーム同期入力がハイのとき)に再
注参照。	フレーム同期入力 バハイのとき)に再
5 入力 CLATCH¹ 制御ボート・フレーム同期。制御ボート(SPI)インターフェース用の (フレーミング信号)です。このピンは、外部制御モード(XCTRLピング 設定されます。脚注参照。 5Vのデジタル・コア電源 7 入力 DGND デジタル・グラウンド XCTRL 外部制御イネーブル。AD1871の制御モードの選択に使用します。XC には、SPI互換制御ボート(CCLK、CLATCH、CIN、COUTの各ピング 御されます。XCTRLがイネーブル(ハイ)のときには、ハードウェアにを変更することで、複数のデバイス機能(②56/512、M/S、DF1、DF0の制御することが可能です。外部制御モード時には、他のすべての機能に設定されます(制御レジスタの説明と「外部制御」を参照してくださ 5Vのアナログ電源	バイのとき)に再
(フレーミング信号)です。このピンは、外部制御モード(XCTRLビング 設定されます。脚注参照。 5Vのデジタル・コア電源 入力 DGND デジタル・グラウンド XCTRL 外部制御イネーブル。AD1871の制御モードの選択に使用します。XC には、SPI互換制御ポート(CCLK、CLATCH、CIN、COUTの各ピング 御されます。XCTRLがイネーブル(ハイ)のときには、ハードウェアに を変更することで、複数のデバイス機能(256/512、M/S、DF1、DF0の 制御することが可能です。外部制御モード時には、他のすべての機能 に設定されます(制御レジスタの説明と「外部制御」を参照してくださ ソINLN 左チャンネルの負入力(MUX/PGAを経由) 11 入力 VINLP 左チャンネルの重入力(MUX/PGAを経由) 12 入力/出力 CAPLN 左チャンネルの外部フィルタ・コンデンサ(変調器の負入力) 13 入力/出力 CAPLP 左チャンネルの外部フィルタ・コンデンサ(変調器の正入力) 14 出力 VREF リファレンス電圧出力。VREFピンとAGND (15番ピン)の間に、10μ F ンサを並列に接続することを推奨します。(「レイアウトに関する留定 てください) 15 入力 AGND アナログ・グラウンド 16 入力/出力 CAPRP 右チャンネルの外部フィルタ・コンデンサ(変調器の正入力) 17 入力/出力 CAPRN 右チャンネルの外部フィルタ・コンデンサ(変調器の正入力) 18 入力 VINRP 右チャンネルの外部フィルタ・コンデンサ(変調器の負入力)	バイのとき)に再
6 入力 DVDD DGND SVのデジタル・コア電源 デジタル・グラウンド 8 入力 XCTRL 外部制御イネーブル。AD1871の制御モードの選択に使用します。XCには、SPI互換制御ボート(CCLK、CLATCH、CIN、COUTの各ピンを 御されます。XCTRLがイネーブル(ハイ)のときには、ハードウェアに を変更することで、複数のデバイス機能(256/512、M/S、DF1、DF0の制御することが可能です。外部制御目を参照してください。	DIJSP ALT
7 入力 DGND XCTRL デジタル・グラウンド 外部制御イネーブル。AD1871の制御モードの選択に使用します。XCには、SPI互換制御ポート(CCLK、CLATCH、CIN、COUTの各ピンを 御されます。XCTRLがイネーブル(ハイ)のときには、ハードウェアに を変更することで、複数のデバイス機能(②56/512、M/S、DF1、DF0の制御することが可能です。外部制御モード時には、他のすべての機能 に設定されます(制御レジスタの説明と「外部制御」を参照してくださ シンのアナログ電源 大力 VINLN 左チャンネルの負入力(MUX/PGAを経由) たチャンネルの正入力(MUX/PGAを経由) たチャンネルの正入力(MUX/PGAを経由) たチャンネルの外部フィルタ・コンデンサ(変調器の負入力) 左チャンネルの外部フィルタ・コンデンサ(変調器の正入力) リファレンス電圧出力。VREFピンとAGND (15番ピン)の間に、10μ 左・サを並列に接続することを推奨します。(「レイアウトに関する留すてください) 15 入力 AGND アナログ・グラウンド	DIST OF
8入力XCTRL外部制御イネーブル。AD1871の制御モードの選択に使用します。XC には、SPI互換制御ポート(CCLK、CLATCH、CIN、COUTの各ピンを 御されます。XCTRLがイネーブル(ハイ)のときには、ハードウェアに を変更することで、複数のデバイス機能(256/512、M/S、DF1、DF0の制御することが可能です。外部制御モード時には、他のすべての機能 に設定されます(制御レジスタの説明と「外部制御」を参照してください。	TDIJSH ALA
には、SPI互換制御ポート(CCLK、CLATCH、CIN、COUTの各ピンを 御されます。XCTRLがイネーブル(ハイ)のときには、ハードウェアに を変更することで、複数のデバイス機能(256/512、M/S、DF1、DF0の 制御することが可能です。外部制御モード時には、他のすべての機能 に設定されます(制御レジスタの説明と「外部制御」を参照してくださ SVのアナログ電源 VINLN 左チャンネルの負入力(MUX/PGAを経由) 11 入力 VINLP 左チャンネルの正入力(MUX/PGAを経由) 12 入力/出力 CAPLN 左チャンネルの外部フィルタ・コンデンサ(変調器の負入力) 13 入力/出力 CAPLP 左チャンネルの外部フィルタ・コンデンサ(変調器の正入力) 14 出力 VREF リファレンス電圧出力。VREFピンとAGND (15番ピン)の間に、10μF ンサを並列に接続することを推奨します。(「レイアウトに関する留ま てください) 15 入力 AGND アナログ・グラウンド 16 入力/出力 CAPRP 右チャンネルの外部フィルタ・コンデンサ(変調器の正入力) 17 入力/出力 CAPRN 右チャンネルの外部フィルタ・コンデンサ(変調器の直入力) 18 入力 VINRP 右チャンネルの外部フィルタ・コンデンサ(変調器の負入力)	
## されます。XCTRLがイネーブル(ハイ)のときには、ハードウェアにを変更することで、複数のデバイス機能(256/512、M/S、DF1、DF0の制御することが可能です。外部制御モード時には、他のすべての機能に設定されます(制御レジスタの説明と「外部制御」を参照してください。	
を変更することで、複数のデバイス機能(256/512、M/S、DF1、DF0の制御することが可能です。外部制御モード時には、他のすべての機能に設定されます(制御レジスタの説明と「外部制御」を参照してくださいの第2000 を	
制御することが可能です。外部制御モード時には、他のすべての機能に設定されます(制御レジスタの説明と「外部制御」を参照してください。	
Ci 設定されます(制御レジスタの説明と「外部制御」を参照してください。	
9入力AVDD5Vのアナログ電源10入力VINLN左チャンネルの負入力(MUX/PGAを経由)11入力VINLP左チャンネルの正入力(MUX/PGAを経由)12入力/出力CAPLN左チャンネルの外部フィルタ・コンデンサ(変調器の重入力)13入力/出力CAPLP左チャンネルの外部フィルタ・コンデンサ(変調器の正入力)14出力VREFリファレンス電圧出力。VREFピンとAGND (15番ピン)の間に、10μF ンサを並列に接続することを推奨します。(「レイアウトに関する留定でください)15入力AGNDアナログ・グラウンド16入力/出力CAPRP右チャンネルの外部フィルタ・コンデンサ(変調器の正入力)17入力/出力CAPRN右チャンネルの外部フィルタ・コンデンサ(変調器の負入力)18入力VINRP右チャンネルの正入力(MUX/PGAを経由)	
10入力VINLN左チャンネルの負入力(MUX/PGAを経由)11入力VINLP左チャンネルの正入力(MUX/PGAを経由)12入力/出力CAPLN左チャンネルの外部フィルタ・コンデンサ(変調器の負入力)13入力/出力CAPLP左チャンネルの外部フィルタ・コンデンサ(変調器の正入力)14出力VREFリファレンス電圧出力。VREFピンとAGND (15番ピン)の間に、10μF ンサを並列に接続することを推奨します。(「レイアウトに関する留定でください)15入力AGNDアナログ・グラウンド16入力/出力CAPRP右チャンネルの外部フィルタ・コンデンサ(変調器の正入力)17入力/出力CAPRN右チャンネルの外部フィルタ・コンデンサ(変調器の負入力)18入力VINRP右チャンネルの正入力(MUX/PGAを経由)	V -)o
11入力VINLP左チャンネルの正入力(MUX/PGAを経由)12入力/出力CAPLN左チャンネルの外部フィルタ・コンデンサ(変調器の負入力)13入力/出力CAPLP左チャンネルの外部フィルタ・コンデンサ(変調器の正入力)14出力VREFリファレンス電圧出力。VREFピンとAGND (15番ピン)の間に、10μF ンサを並列に接続することを推奨します。(「レイアウトに関する留定でください)15入力AGNDアナログ・グラウンド16入力/出力CAPRP右チャンネルの外部フィルタ・コンデンサ(変調器の正入力)17入力/出力CAPRN右チャンネルの外部フィルタ・コンデンサ(変調器の負入力)18入力VINRP右チャンネルの正入力(MUX/PGAを経由)	
12入力/出力CAPLN左チャンネルの外部フィルタ・コンデンサ(変調器の負入力)13入力/出力左チャンネルの外部フィルタ・コンデンサ(変調器の正入力)14出力VREFリファレンス電圧出力。VREFピンとAGND (15番ピン)の間に、10μF ンサを並列に接続することを推奨します。(「レイアウトに関する留定でください)15入力AGNDアナログ・グラウンド16入力/出力CAPRP右チャンネルの外部フィルタ・コンデンサ(変調器の正入力)17入力/出力CAPRN右チャンネルの外部フィルタ・コンデンサ(変調器の負入力)18入力VINRP右チャンネルの正入力(MUX/PGAを経由)	
13入力/出力 出力CAPLP VREF左チャンネルの外部フィルタ・コンデンサ(変調器の正入力) リファレンス電圧出力。VREFピンとAGND (15番ピン)の間に、10μF ンサを並列に接続することを推奨します。(「レイアウトに関する留定でください)15入力AGNDアナログ・グラウンド16入力/出力CAPRP スカ/出力右チャンネルの外部フィルタ・コンデンサ(変調器の正入力) 右チャンネルの外部フィルタ・コンデンサ(変調器の負入力)17入力VINRP右チャンネルの正入力(MUX/PGAを経由)	
14出力VREFリファレンス電圧出力。VREFピンとAGND (15番ピン)の間に、10μF ンサを並列に接続することを推奨します。(「レイアウトに関する留定でください)15入力AGNDアナログ・グラウンド16入力/出力CAPRP右チャンネルの外部フィルタ・コンデンサ(変調器の正入力)17入力/出力CAPRN右チャンネルの外部フィルタ・コンデンサ(変調器の負入力)18入力VINRP右チャンネルの正入力(MUX/PGAを経由)	
15入力AGNDアナログ・グラウンド16入力/出力CAPRP右チャンネルの外部フィルタ・コンデンサ(変調器の正入力)17入力/出力CAPRN右チャンネルの外部フィルタ・コンデンサ(変調器の負入力)18入力VINRP右チャンネルの正入力(MUX/PGAを経由)	と0.1 "Fのコンデ
15 入力 AGND アナログ・グラウンド 16 入力/出力 CAPRP 右チャンネルの外部フィルタ・コンデンサ(変調器の正入力) 17 入力/出力 CAPRN 右チャンネルの外部フィルタ・コンデンサ(変調器の負入力) 18 入力 VINRP 右チャンネルの正入力(MUX/PGAを経由)	
15 入力 AGND アナログ・グラウンド 16 入力/出力 CAPRP 右チャンネルの外部フィルタ・コンデンサ(変調器の正入力) 17 入力/出力 CAPRN 右チャンネルの外部フィルタ・コンデンサ(変調器の負入力) 18 入力 VINRP 右チャンネルの正入力(MUX/PGAを経由)	
17 入力/出力 CAPRN 右チャンネルの外部フィルタ・コンデンサ(変調器の負入力) 18 入力 VINRP 右チャンネルの正入力(MUX/PGAを経由)	
18 入力 VINRP 右チャンネルの正入力(MUX/PGAを経由)	
19 入力 VINRN 左チャンネルの負入力(MILY/DCAを終中)	
17 //// /ロノキャルシス八川(MUA/FUAを推田)	
20 入力 AGND アナログ・グラウンド	
21 入力 CASC カスケード・イネーブル。このピンは、最大4個までのAD1871デバイ	
リアル・ポートにカスケード接続する設定をイネーブルにします(「	1スケード・モー
ド」を参照してください)。	
22 入力 DGND デジタル・グラウンド	
23 入力 ODVDD デジタル・インターフェース電源。デジタル・インターフェースに	、3.3Vから5.0V
(nominal)までで動作が可能です。	
24 入力 RESET リセット	
25 入力/出力 DIN ² シリアル・データ入力。AD1871をカスケード・モード(CASCピンがノ	
しているときに限り有効なシリアル・データ入力ピンです。このピン) ————————————————————————————————————
(制御レジスタIIのMMEビットを設定)に再設定されます。脚注参照。	は、変調器モード
26 出力 DOUT ² オーディオ・シリアル・データ出力。このピンは、変調器モード()	
MMEビットを設定)に再設定されます。脚注参照。 27 入力/出力 BCLK² オーディオ・シリアル・ビット・クロック。このビット・クロックは	
27	削御レジスタIIの
変調器モード(制御レジスタIIのMMEビットを設定)に再設定されます。	削御レジスタIIの オーディオ・デー
$\chi_{\rm phi}$ $\chi_$	引御レジスタIIの オーディオ・デー : す。このピンは、
	削御レジスタIIの オーディオ・デー です。このピンは、 脚注参照。
は、変調器モード(制御レジスタ Π のMMEビットを設定)に再設定され	引御レジスタIIの オーディオ・デー ます。このピンは、 脚注参照。 リング・レートを

^{1.} 外部制御モード(11ページを参照) 2. 変調器モード(11ページを参照)

外部制御モード時のピン機能の定義変更

ピン番号	入力/出力	記号	説明
2	入力	256/512	クロック・レート選択。 $MCLK$ を256 $ imes$ f $_s$ (ローのとき)または512 $ imes$ f $_s$ (ハイのとき)に選
			択します。
3	入力	DF0	データ・フォーマット選択0。データ・フォーマット選択の下位ビット(DF0)として使用
			されます(「外部制御」を参照)。
4	入力	DF1	データ・フォーマット選択1。データ・フォーマット選択の上位ビット(DF1)として使用
			されます(「外部制御」を参照)。
5	入力	M/S	Master/Slave選択。マスター(ローのとき)またはスレーブ(ハイのとき)のモードを選択し
			ます。

変調器モード時のピン機能の定義変更

ピン番号	入力/出力	記号	説明
3	出力	MODCLK	左右チャンネルの変調器出力の復号化を可能にするクロック出力が、このピンから供給
			されます。これは左/右チャンネル・クロックと同様なものですが、5.6448MHz (nomi-
			nal)で動作し、各動作段階で4ビットの変調器出力ワードをゲートします(「変調器モー
			ド」を参照)。
25	出力	D3	変調器出力ワードのビット3
26	出力	D2	変調器出力ワードのビット2
27	出力	D1	変調器出力ワードのビット1
28	出力	D0	変調器出力ワードのビット0

用語の説明

ダイナミックレンジ

フルスケール入力信号と通過帯域(20Hz~20kHz)で積分された入力ノイズとの比として、dB単位で表します。ダイナミックレンジは一60dBの入力信号を使用して測定し、(S/[THD+N])+60dBに等しい値になります。一60dB入力時にはスプリアス高調波がノイズよりも小さくなるので、ノイズ・レベルによってダイナミックレンジが確立される点に留意してください。ダイナミックレンジは、Aウェイトフィルタを適用する場合と適用しない場合で規定されます。

信号対(全高調波歪み + ノイズ) (S/[THD + N])

基本入力信号の実効(rms)値と通過帯域におけるその他すべてのスペクトル周波数成分のrms和の比です。dB単位で表します。

通過帯域

デジタル・デシメーション・フィルタの減衰による影響を受けない周波数スペクトルの領域です。

通過帯域リップル

通過帯域内において振幅の等しい入力信号周波数からの 振幅応答で見られる、ピーク・ツー・ピークの振幅変動量 です。dB単位で表します。

阴止帯域

デジタル・デシメーション・フィルタにより、阻止帯域減衰で規定されるレベルまで減衰される周波数スペクトルの領域です。

ゲイン誤差

フルスケールに近い入力における、実際の出力と期待出力との比です。%単位で表します。

チャンネル間ゲイン・ミスマッチ

2つの全く同等なフルスケールに近い入力における2つのステレオ・チャンネルの出力比です。dB単位で表します。

ゲイン・ドリフト

温度の変動に伴う、フルスケールに近い入力に対する応答の変動です。百万分率(ppm)/℃単位で表します。

クロストーク(EIAJ方式)

入力がグラウンドに接続されたチャンネルと、入力が1kHzのフルスケール正弦波信号であるもう一方のチャンネルとの応答性の比です。dB単位で表します。

電源変動除去

アナログ入力を印加しない条件下で、電源ピンに 300mVp-p信号が印加されるときに出力に表れる信号成分です。フルスケールのdB単位で表します。

群遅延

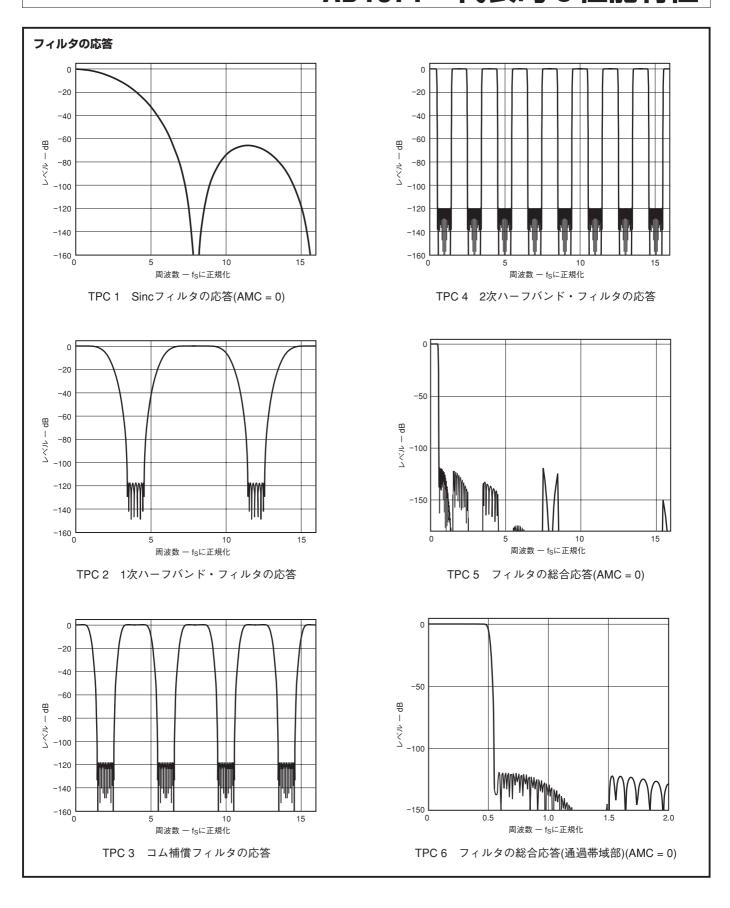
直感的な定義としては、入力信号パルスがコンバータの出力に表れるまでに必要な時間インターバルを指し、ミリ秒(ms)単位で表します。もっと正確に定義すると、所与の周波数においてラジアン周波数を基準にして派生するラジアンフェーズです。

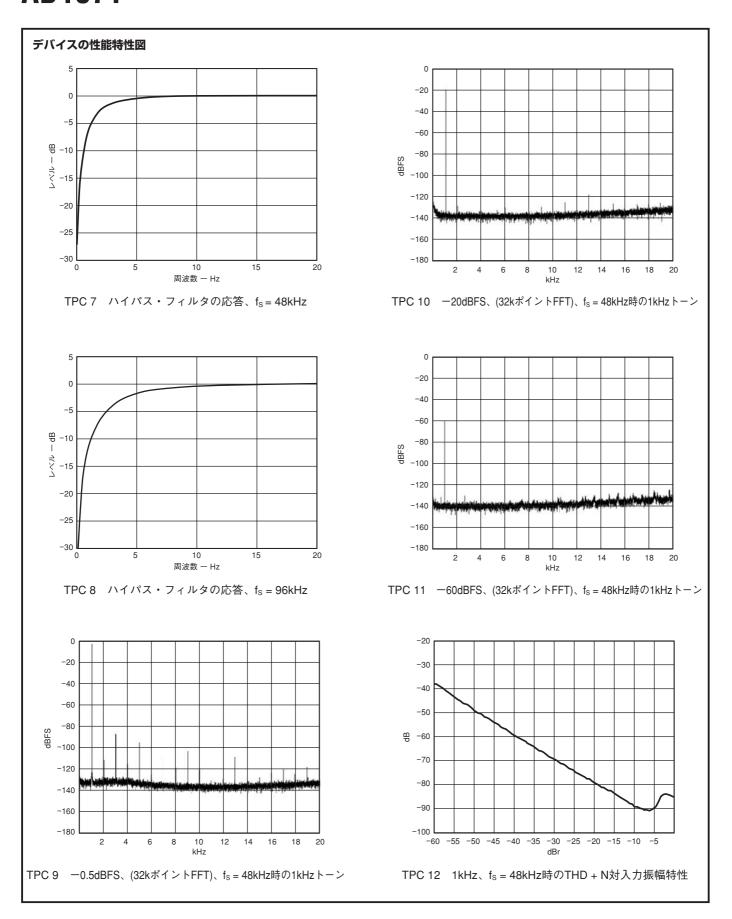
略語の説明

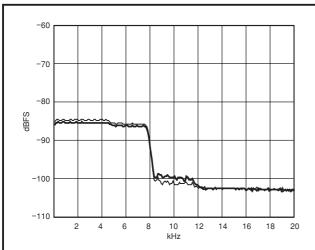
ADC - A/Dコンバータ

DSP - デジタル・シグナル・プロセッサ

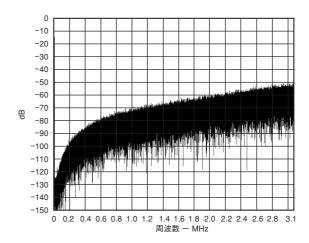
IMCLK - デシメーション・フィルタ部のクロックとして使用される内部マスター・クロック信号です。(周波数は、必ず256 \times f_sにします)

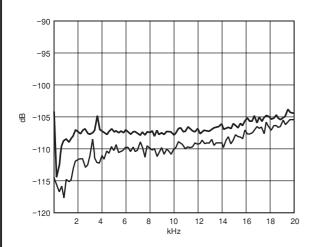

MCLK — AD1871に入力する外部マスター・クロック信号です。周波数は256、512、または768 \times fsが可能です。MCLKを内部で分周して、256 \times fsであるIMCLK周波数を設定することができます。


MODCLK — これは、 Σ - Δ 変調器のサンプル・レートを決定するためのクロックです。理想的には、6.144MHzまたは $128 \times f_s$ のいずれか低い方を超えることがあってはいけません。MODCLKは、2分周または4分周を選択できる分周器によって、IMCLKから生成されます。


MUX - マルチプレクサ

PGA - プログラマブル・ゲイン・アンプ

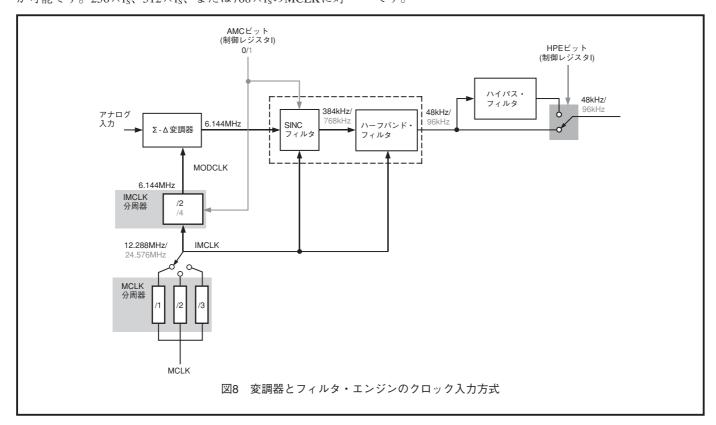

AD1871-代表的な性能特性



TPC 13 -0.5dBFS、 $f_S = 48$ kHz時のTHD + N対入力周波数特性

TPC 15 -0.5dBFS、f_S = 6.144MHz時の変調器出力のFFT

TPC 14. -0.5dBFS、 $f_S = 48$ kHz時のチャンネル・セパレーション対周波数特性

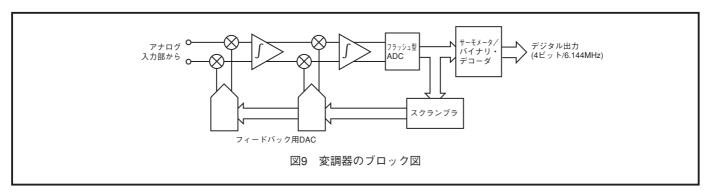

機能説明

クロック入力方式

MCLKピンが、AD1871のマスター・クロック周波数入力端子です。AD1871の正常動作のためのMCLK周波数の公称値は、 $256 \times f_s$ です。ただし、ユーザーのMCLKが $256 \times f_s$ の整数倍($512 \times f_s$ または $768 \times f_s$)である場合には、図8に示すMCLK分周回路ブロックを使用して、MCLK周波数を適切な内部マスター・クロック周波数(IMCLK)に分周することが可能です。 $256 \times f_s$ 、 $512 \times f_s$ 、または $768 \times f_s$ のMCLKに対

応して、分周オプションはパス・スルー(/1)、/2、または/3 から選択できます。MCLK分周器の制御は、制御レジスタ IIIのMCD1-MCD0ビットを使用して実行できます(表XIIIを参照)。

結果として生成される内部MCLK (IMCLK)を使用して、デシメーティングおよびフィルタリング・エンジンを動作させますが、 $256 \times f_s$ の比となるように選択することが必要です。


変調器

AD1871のアナログ Σ - Δ 変調器部は、最高性能を実現するためにアナログ・デバイセズ社が独自に開発した技術を採用した2次マルチビット方式の回路で構成されています。図9に示すように、2個のアナログ積分器ブロックの後段に、マルチビット・サンプルを生成するフラッシュ型ADC部が配置されています。サーモメータによって符号化されるフラッシュ型ADCの出力は、バイナリに復号化されてフィルタ部に出力され、また2個の積分器回路段にフィードバックするためにスクランブルされます。

変調器は、6.144 MHzのサンプリング・レート(48kHzサンプリング時で $128 \times f_s$ 、96kHzサンプリング時で $64 \times f_s$)での動作に最適化されています。変調器クロック制御(制御レジ

スタIのAMCビット)を使用して、変調器クロック(MOD-CLK)をIMCLKの比として選択します。変調器クロックの分周オプションは、48kHz動作時で/2 (デフォルト)、96kHz動作時で/4となっています。12.288MHzのIMCLKでの動作時にデフォルトの分周設定(/2)を選択すると、変調器クロックは6.144MHzになります。24.576MHzのIMCLKでの動作時に、6.144MHzになります(図8を参照)。

上に詳述したものと異なる出力サンプル・レート(44.1kHz または88.2kHzが考えられる)でデバイスを動作させる必要がある場合には、TPC 6に示す正規化された周波数応答プロットからデシメーション・フィルタのカットオフ特性を決定することができます。

デジタル・デシメーティング・フィルタ

AD1871の変調器のデータ・ストリームのフィルタリングとデシメーションは、埋め込み型DSPエンジンで実行されます。フィルタリングの初段は、変調器クロック制御ビットAMC(「変調器」のセクションを参照)によってデシメーションを選択できるsincフィルタ回路です。sinc段でサンプル・レートが16分の1にデシメーション(初期値)されますが、これは128 \times fsのMODCLKレートに相当します。AMCビットをもう1つの設定に変更すると、sinc段のデシメーション値が8に設定されますが、これは64 \times fsのMODCLKレートに相当します。sincデシメータ段の出力は、8 \times fsのレートになります。

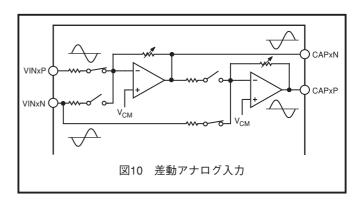
フィルタ・エンジンは、2つのハーフバンドFIRフィルタ部と1つのsinc補償回路段で構成されており、この組み合わせにより、8分の1デシメーション以上が得られます。sincおよびFIRフィルタ部の応答の詳細は、TPC 1~4の特性図を参照してください。TPC 5には、sincおよびFIRフィルタの総合応答を図示しています。

ハイパス・フィルタ

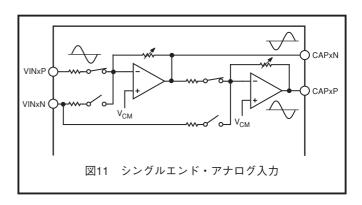
AD1871は、出力データ・ストリームからDC成分を除去する能力を備えたオプションのハイパス・フィルタ部を特長としています。ハイパス・フィルタは、制御レジスタIのビット8 (HPE)を1に設定することでイネーブルにします。ハイパス・フィルタの特性の詳細は、TPC 7とTPC 8を参照してください。

ADCのコーディング

ADCの出力データ・ストリームは、2の補数符号化フォーマットです。ワード幅は16ビット、20ビット、または24ビットから選択できます(表VIと表VIIを参照)。コーディング方式の詳細を表Iに記載しています。


表I. ADCのコーディング

コード	レベル
0111111111	正のフルスケール
0000000000	0 (基準レベル)
1000000001	負のフルスケール


アナログ入力部

アナログ入力部は、差動PGA段で構成されています。シングルエンド入力用に構成して、2つの入力をマルチプレクサ・スイッチで選択できるように設定することも可能です。PGAでは、0dB~12dBのレンジ内で3dBステップで5つのゲイン設定が可能です(表Vを参照)。

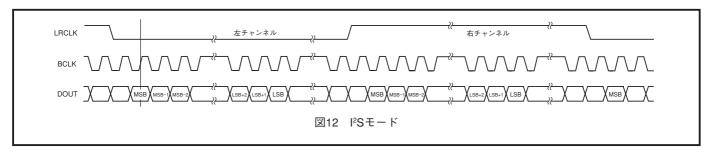
差動モードでは、VINxPとVINxNの入力ピンが反転アンプ・ペアに接続され、その出力はそれぞれCAPxNピンとCAPxPピンに接続されます(図10を参照)。

シングルエンド・モードでは、VINxPまたはVINxNのいずれかを入力として選択できます。入力反転アンプのペアは、シングルエンド/差動変換段として再設定されます。この場合、差動回路部の出力はCAPxPピンとCAPxNピンに接続されます(図11を参照)。

アナログ入力部は、リセット時にデフォルトでイネーブル(パワーON)に設定されます。変調器入力ピン(CAPxPとCAPxN)を直接使用してアナログ入力部をバイパスする必要がある場合は、制御レジスタIIIのMERとMELのビットを設定して、アナログ入力部をパワーダウンしなければなりません。

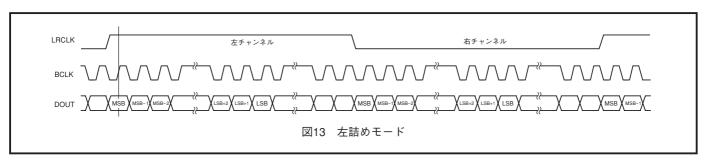
シリアル・データ・インターフェース

AD1871のシリアル・データ・インターフェースは、3本のピン(LRCLK、BCLK、SDATA)で構成されます。LRCLKは左右チャンネル・サンプル用のフレーミング信号で、その周波数はサンプリング周波数(f_s)と同じです。BCLKはAD1871からのデータ・サンプルのクロック動作に使用されるシリアル・クロックで、その周波数は $64 \times f_s$ と同じです(左右の各チャンネルごとに32のBCLKサイクルが与えられます)。SDATAからは、BCLKの立ち下がりエッジと一致した左右チャンネルのサンプル・データが出力されます。


シリアル・データ・インターフェースは、 I^2S 、左詰め (LJ)、右詰め(RJ)に加えて、最新型DSPのシリアル・インターフェースなど、一般的なオーディオ・インターフェースのすべてをサポートします。インターフェース・モードは、制御レジスタIIのビットDF1-DF0のプログラミングによって選択します(表VIとVIIIを参照)。

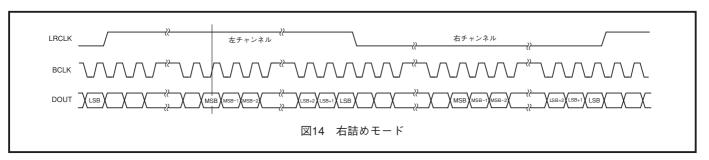
制御レジスタIIのビットWW1-WW0のプログラミングによって、データ・サンプル幅を16ビット、20ビット、または24ビットから選択できます(表VIとVIIを参照)。

I2Sモード


I²Sモードのときには、データはMSBファーストの左詰めになり、LRCLKの遷移に続く2番目のBCLKサイクルでMSBが転送されます。LRCLKがハイからローに遷移すると、左

チャンネルのデータ転送が開始されます。LRCLKがローからハイに遷移すると、右チャンネルのデータ転送が開始されます(図12を参照)。

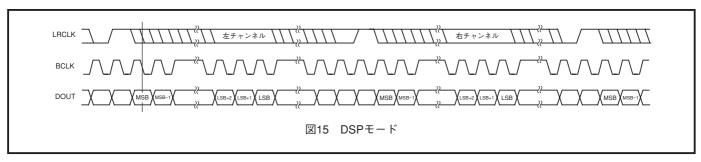
IJモード


LJモードのときには、データはMSBファーストの左詰め になり、LRCLKの遷移に続く最初のBCLKサイクルでMSB が転送されます。LRCLKがハイからローに遷移すると、右 チャンネルのデータ転送が開始されます。LRCLKがローからハイに遷移すると、左チャンネルのデータ転送が開始されます(図13を参照)。

RJモード

RJモードのときには、データはLSBラストの右詰めになり、LRCLKの遷移の直前の最後のBCLKサイクルでLSBが転送されます。LRCLKがハイからローに遷移すると、右チ

ャンネルのデータ転送が開始されます。LRCLKがローからハイに遷移すると、左チャンネルのデータ転送が開始されます(図14を参照)。



DSP=- K

DSPモードのときには、LRCLK信号がフレーム同期信号になり、MSBの前のBCLKサイクル(または先行するLSB-32ビットのBCLKサイクル)中はハイに設定されます。データはMSBファーストの左詰めになり、LRCLKパルスに続くBCLKサイクルでMSBが転送されます(図15を参照)。

I²SおよびLJモードのときには、データは左詰めで、MSB

の転送が保証されるため、AD1871とコントローラの間でデータ・ワード幅が異なっていても、大きな問題は起こりません。ただし、ミスマッチのスケールによっては、性能が多少劣化する場合があります。しかし、RJモードのときには、AD1871とコントローラの間でワード幅が異なっていると、各サンプルのMSBがミスマッチによって失われる可能性があるので、信号性能に大きな悪影響が及ぶことになります。

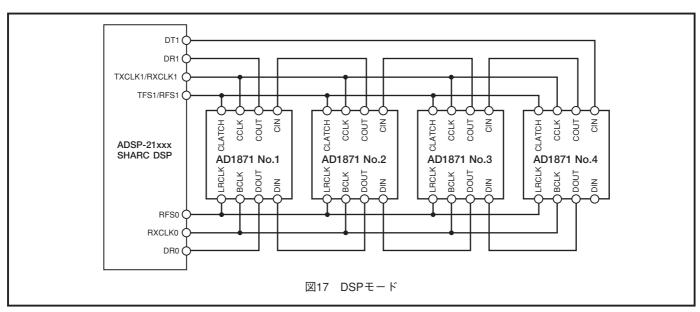
カスケード・モード

AD1871では、1個のDSPのシリアル・ポートに、デイジー・チェーン構成にした最大4個までのデバイスをカスケード接続することが可能です。カスケード・モードのときには、各デバイスは内蔵の64ビット・シフト・レジスタに左右チャンネルの変換結果をロードします。64ビット・シフト・レジスタは、左チャンネル・データ用と右チャンネル・データ用として使用される、各32ビットのサブフレーム2つに分割されます。変換結果はサブフレーム内にMSBファーストで左詰めになり、制御レジスタIIのワード幅設定が適用されます。サブフレーム内の残りのビット、つまり変換ワード幅を越えるビットは、ゼロに設定されます。図16を参照してください。

図17に示すように、最大で4個までのAD1871をデイジー・チェーン接続できます。その際には、各デバイスのCASCピンをロジック・ハイに設定して、すべてのデバイスをカスケード・モードに設定する必要があります。チェーンの最初のデバイス(デバイス4)はDINピンをロジック・ローに設定します。デバイス4のDOUTピンをデバイス3のDINピンに接続し、デバイス3のDOUTピンをデバイス2のDINピンに接続します。デバイス1のDOUTピンをDSPのシリアル・ポートRXデータ・ライン(DR0)に接続するまで、デイジー・チェーン接続を続けます。DSPのRXシリアル・クロック(RXCLK0)をすべてのAD1871のBCLKピンに接続し、さらにDSPのRXフレーム同期(RFS0)ピンをすべてのAD1871のLRCLKピンに接続します。

24ビット	24ビット結果				24ビット結果			
20ビット	20ビット結果				20ビット結果			
16ビット	16ビット結果			16ビット結果				
32ビット	32ビットの左サブフレーム			32ビットの右サブフレーム				
	64ビット・フレーム							

図16 DSPモード


DSPをマスターに設定して、フレーム同期およびシリアル・クロック信号を複数のAD1871に供給するように設定するか、または複数のAD1871のうち1個をマスターとし、DSPと他のすべてのAD1871をスレーブとするように設定することができます。 $\overline{\text{Master}}/\text{Slave}$ の選択に応じて、DSPまたは複数のAD1871のうち1個のいずれかによってフレーム同期パルスが生成されるときに、各サンプリング・サイクルが開始されます。フレーム同期パルスにより、各デバイスの64ビット・データI/Oレジスタに左右チャンネルのADC変換結果がロードされます。結果は続いてDSPにクロック出力され、DSPは次の順番で受信します。つまり、デバイス1の左チャンネル、デバイス1の右チャンネル、デバイス3の左チャンネル、デバイス3の右チャンネル、デバイス4の左チャンネル、デバイス4の右チャンネル、デバイス4の右チャンネル、デバイス4の右チャンネル、デバイス4の右チャンネル、デバイス4の右チャンネル、デバイス4の右チャンネル、デバイス4の右チャンネル、デバイス4の右チャンネル、デバイス4の右チャンネル、デバイス4の右チャンネルの順になります。

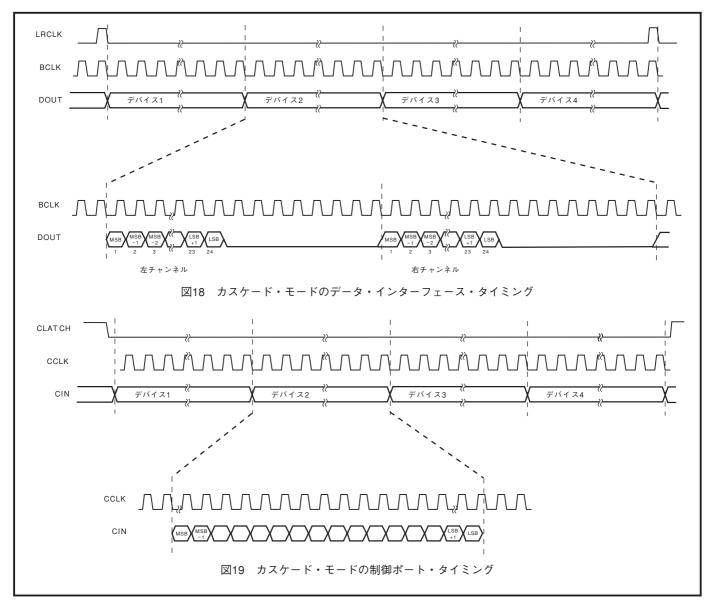

AD1871のワード長とは無関係に32ビットのワード長を受け入れるため、DSPのシリアル・ポートをプログラミング設定することが必要です。各サンプル・インターバルごとに受け入れられるサンプル・ワードの数は、カスケード接続されるAD1871の個数によって決まり、最大4個のデバイスに対して最大8ワードになります。

図17には、個別のDSPシリアル・ポート・インターフェースとカスケード接続されたAD1871の制御ポート(SPI)インターフェースとの接続も図示しています。再び説明しますが、このカスケードはデイジー・チェーンとして構成されているので、4個のデバイスの制御ワードは(例に示す1、2、3、4の接続方法に応じて)順に出力され、共通のCLATCH入力によって各デバイスで同時にラッチされます。このモードでは、制御ホストのSPIポートから各デバイス用に制御ワード(16ビット×デバイスの個数)を送信することが必要です。CLATCH信号は、個別のプログラマブル出力ラインから制御することが可能です。各デバイスごとに個別にCLATCH制御を行って、複数のAD1871の読み出し/書き込み動作を別々に実行することも可能です。

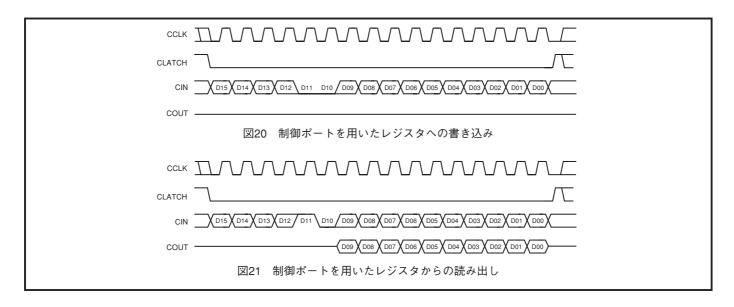
カスケード・モードを使用するときには、インターフェース・モード選択(SPIまたは外部制御による)の状態に関係なく、データ・インターフェースはMSBファーストの左詰にデフォルト設定されます。

カスケード・モードのタイミングの関係を図18に示します。

制御/ステータス・レジスタ

AD1871の動作モードの設定は、SPI互換ポートを通じて3個の10ビット制御レジスタのプログラミングによって行います。表IIIにはAD1871制御ワードのフォーマットの詳細を記載していますが、制御ワードは16ビット幅になっており、4ビットのアドレス・フィールドがビット15~12に、Read/Writeビットがビット11に、予約ビットがビット10に、そして10ビットのレジスタ・データ(制御レジスタの幅に対応)がビット9~0に割り当てられています。3つの制御ワードが、レジスタ・マップのアドレス0000b~0010bを占有します(表IIを参照)。

AD1871は、左右の各チャンネルのピーク読み出しをトラッキングするようにイネーブルすることが可能な2個のリードバック(ステータス)レジスタも特長としています。この6ビット結果は、制御ワードと同様に16ビット・フレームでSPI互換ポートを通してリードバックされます。


SPI互換の制御ポートは、4つの信号(CCLK、CLATCH、CDATA、COUT)を使用するのが特長です。CLATCH信号は、制御ポートとの通信を可能にするためローに設定しなければならないイネーブル・ライン入力です。CCLKは、CDATAピンからシリアル・データをクロック入力し、COUTピンからシリアル・データをクロック出力するために使用するシリアル・クロック信号です。制御ポートのタイミングの詳細を図20および21に示しています。

表||. レジスタのアドレス・マッピング

アドレス	制御レジスタ
0000	制御レジスタI
0001	制御レジスタII
0010	制御レジスタIII
0011	ピーク読み出しレジスタI
0100	ピーク読み出しレジスタⅡ

表III. 制御/ステータス・レジスタのワード・フォーマット

15-12	11	10	9	6	5	4	3	2	1	0
アドレス	R/\overline{W}	予約済み			Í	制御/ステ	ータス・	データ・ヒ	ごット(9-0)

表IV. 制御レジスタI (アドレス0000b、書き込み専用)

15-12	11	10	9	8	7	6	5	4	3	2	1	0
0000	0	0	PRE	HPE	PD	AMC	AGL2	AGL1	AGL0	AGR2	AGR1	AGR0
			9	PRE		ピーク読	み出しイネ	ーブル(0=	ディスエー	ブル(デフォ	ナルト)、1=	イネーブル)
			8	HPE		ハイパス	・フィルタ・	イネーブル	(0 = ディスエ	ニーブル(デフ	フォルト)、1:	= イネーブル)
			7	PD		パワーダ	`ウン制御(1	= パワーダ	`ウン、0=j	通常の動作(デフォルト))
			6	AMC		ADC変調	器クロック	$(1 = 64 \times f_S)$	$0 = 128 \times 10^{-1}$	fs (デフォル	レト))	
			5–3	AGL2-	AGL0	入力ゲイ	ン(左チャン	/ネル、表 \	/を参照)			
			2-0	AGR2-	AGR0	入力ゲイ	ン(右チャン	/ネル、表 \	/を参照)			

制御レジスタ

制御レジスタIには、アナログ・フロントエンドのゲイン制御、変調器クロックの選択、パワーダウン制御、ハイパス・フィルタリング、およびピーク・ホールドのためのビット設定が含まれています。

アナログ・ゲインの制御

AD1871は、ゲインの選択が可能なオプションのアナログ・フロントエンドを内蔵しています。ゲインは各チャンネルごとに3つの制御ビットを使用して選択するので、各チャンネルごとに5つの異なる独立したゲイン設定が可能です。ビット2~0 (AGR2-AGR0)で右チャンネルのアナログ・ゲインを設定し、ビット5~3 (AGL2-AGL0)で左チャンネルのアナログ・ゲインを設定します。表Vには、AGx2-AGx0のビット設定に対応するアナログ・ゲインをまとめています。

表V. アナログ・ゲインの設定

AGx2	AGx1	AGxO	ゲイン(dB)
0	0	0	0(デフォルト)
0	0	1	3
0	1	0	6
0	1	1	9
1	0	0	12
1	0	1	0
1	1	0	0
1	1	1	0

変調器クロック

128× f_s または64× f_s のいずれかの変調器クロックを選択できます。変調器のクロック・レートの選択には、AMCビット(ビット6)を使用します。AMCビットを0 (デフォルト)に設定すると、変調器クロックは128× f_s になります。AMCビットを1に設定すると、変調器クロックは64× f_s になります。ビットの設定は通常、必要なサンプリング周波数が48kHzか96kHzかに依存し、さらに選択したMCLK周波数も考慮に入れて行います。MCLKの選択とサンプリング・レートの詳細は、「機能説明」を参照してください。

パワーダウン

AD1871内部でのアクティブなクロック信号のパワーダウンは、ビット7 (PD)にロジック1を書き込むことによって設定します。パワーダウン・モードに入ると、デジタル回路の動作が停止され、電圧リファレンスを除くアナログ回路部がパワーダウン状態になります。

ハイパス・フィルタ

AD1871にはデジタル・フィルタリング・エンジンが内蔵されているので、ハイパス・フィルタ(HPF)の挿入によって、出力のデジタル波形からDC信号を効果的にブロックできます。ビット8 (HPE)を設定すると、ハイパス・フィルタがイネーブルになります。HPFの詳細は「機能説明」を参照してください。

ピーク読み出しのイネーブル

AD1871には、左右チャンネルの変換結果のピーク読み出し値の保存をイネーブルにすることが可能な2個のリードバック・レジスタが用意されています。ピーク読み出し値の取り込みをイネーブルにするには、ピーク読み出しイネーブル・ビット(PRE)、ビット9をロジック1に設定することが必要です。ロジック0に設定すると、ピーク読み出し値の取り込みがディスエーブルになります。

表VI. 制御レジスタII (アドレスOOO1b)

15-12	11	10	9	8	7	6	5	4	3	2	1	0
0001	0	0			MME	DF1	DF0	WW1	WW0	M/S	MUR	MUL
			9–8 7 6–5 4–3 2		MME DF1-DF0 WW1-WW0		・フォーマッ 畐(表VIIを参 Slave選択(0=	ァト(表VIIIを :照) :マスター・	と参照) モード(デフ	フォルト)、1	=スレーブ	変調器モード ・モード) 1 = イネーブル)

制御レジスタII

制御レジスタIIには、左右チャンネルのミューティングの制御、データ・サンプルのワード幅、データ・インターフェース・フォーマット、および変調器から直接ビットストリームを出力するためのビット設定が含まれています。

ミュート・コントロール

MULおよびMURビット(ビットのおよび1)の設定によって、左と右のデータ・チャンネルをデジタル・ゼロにミュートすることができます。チャンネルをミュートすると、入力信号の振幅に関係なく、その出力データ・ストリームはデジタル・ゼロに維持されます。ビットを1に設定すると該当チャンネルがミュートされ、0に設定すると通常の動作に復帰します。

Master/Slave選択

AD1871はスレーブ・デバイスまたはマスター・デバイスとして動作させることが可能です。スレーブ・モード時には、コントローラはサンプル・レートとシリアル・ビット・レートを決定するLRCLKとBCLKを供給する必要があります。マスター・モードのときには、コントローラに送信する出力としてAD1871がおよび信号をします。AD1871はリセット時に、マスター・モード(\overline{M} /Sビットが0)にデフォルト設定されます。

ワード幅

AD1871では、出力サンプルのワード幅を16ビット、20ビット、または24ビット幅から選択できます。コンパクト・ディスク(CD)との互換性を維持するには16ビットが必要ですが、最新の多くのデジタル・オーディオ・フォーマットに適合するには、24ビットのサンプル分解能が要求されます。ワード幅を選択するには、WWI-WW0の各ビットをプログラミング設定します。各種のワード幅選択に対応する制御レジスタ・ビットの設定に関する詳細を、表VIIに記載しています。

表VII. ワード幅の設定

WW1	wwo	ワード幅(ビット数)
0	0	24 (デフォルト)
0	1	20
1	0	16
1	1	予約済み

データ・フォーマット

PS、左詰め、右詰め、DSPの各モードを含む、一般的なインターフェース・フォーマットの選択により、AD1871のシリアル・データ・インターフェースを設定できます。表VIIIに示すビットDF1-DF0のプログラミング設定によってインターフェース・フォーマット(モード)を選択します。

表VIII. データ・インターフェース・フォーマットの設定*

DF1	DFO	インターフェース・モード
0	0	I ² S (デフォルト)
0	1	右詰め
1	0	DSP
1	1	左詰め

^{*} 各種のインターフェース・モードの詳細は、「機能説明」の「シリアル・データ・インターフェース」を参照してください。

変調器モードのイネーブル

22

AD1871は、アナログ・オーディオ信号をリニアPCMに符号化されたデジタル出力に変換するようにデフォルト設定されています。変調器モードに設定すると、ユーザーはデジタル・デシメーション・フィルタ部をバイパスして、マルチビットΣ-Δ変調器の出力に直接アクセスできます。このモード時には特定のピンの機能定義が変更され(「変調器モード」を参照)、変調器の出力(128×f_sの定格レート)が変調器のデータ・ピン(D[0-3])から供給されます。変調器モードをイネーブルにするには、MMEビットをハイに設定してください。

表IX. 制御レジスタIII (アドレスOO10b)

15-12	11	10	9	8	7	6	5	4	3	2	1	0
0010	0	0			MCD1	MCD0	SEL	SER	MEL	MXL	MER	MXR
		9–8 7–6 5 4 3 2	予約済み MCD1-M SEL SER MEL MXL MER		マスター シングルニ シングルニ Mux/PGA ?	エンド・イネ ディスエーフ 左チャンネ	↑周器(表X ヘーブル、 ヘーブル、 ゛ル、左チ・ 、ル(0 = VI	左チャンネ 右チャンネ ヤンネル(0 : NLP選択(ラ	ル(0 = 差動(= イネーブル [*] フォルト)、	、 (デフォルト (デフォル) 1= VINLN		グルエンド) スエーブル)
		0	MXR								, , ,	

制御レジスタⅢ

制御レジスタIIIには、アナログ入力部(左右両方のチャンネル)を構成するためのビット設定が含まれています。

Muxのイネーブル

Muxイネーブル・レフト(MEL)とMuxイネーブル・ライト (MER)の各ビットを使用して、アナログ・バッファをイネーブルに設定します。ビットを1に設定すると、アナログ入力バッファがパワーダウンし、入力信号をCAPxPとCAPxNの各ピン経由で変調器の入力に直接加えなければなりません(図23を参照)。MELとMERの各ビットを0(リセット後のデフォルト状態)に設定すると、アナログ入力部がイネーブルになります(表Xを参照)。

表X. Muxの制御設定

MEL	MER	入力の設定
0	X	左チャンネルのアナログ・バッファがイネーブル
1	X	左チャンネルのアナログ・バッファがディスエーブル
X	0	右チャンネルのアナログ・バッファがイネーブル
X	1	右チャンネルのアナログ・バッファがディスエーブル

Muxの選択

入力がシングルエンド構成の場合、VINxPまたはVINxNピンから入力を選択するために、Mux選択ビット(左チャンネルがMXL、右チャンネルがMXR)を使用します。MXxを0に設定すると、VINxPピンからの入力が選択されます。MXxを1に設定すると、VINxNピンからの入力が選択されます(表XIを参照)。

表XI. Muxの選択設定*

MXL	MXR	入力の設定
0	X X	VINLPから左チャンネル入力 VINLNから左チャンネル入力
X X	0	VINRPから右チャンネル入力 VINRNから右チャンネル入力

^{*}Muxの選択設定が有効なのは、シングルエンド入力動作をイネーブルにしているとき、すなわち SELとSERを1に設定しているときに限られます。

シングルエンド・モードのイネーブル

VINxPとVINxNでシングルエンド入力を構成するには(入力はMXLとMXRのステートによって選択)、シングルエンド・モード・イネーブル・ビット(左チャンネルがSEL、右チャンネルがSER)を1に設定します。このモードのときには、VINxPまたはVINxN (Mux選択ビットのMXLとMXRを使用して選択)から引き出されるシングルエンド入力が内部で差動信号に変換され、変調器部に送られます(表XIIを参照)。

表XII. 差動/シングルエンド入力の選択

SEL	SER	入力の設定
0	X	左チャンネル入力→差動
1	X	左チャンネル入力→シングルエンド
X	0	右チャンネル入力→差動
X	1	右チャンネル入力→シングルエンド

マスター・クロック分周器

マスター・クロック分周器により、外部MCLK周波数をもっと適切な内部マスター・クロック周波数(IMCLK)に分周することが可能です。IMCLKは256 \times fsにする必要があるので、利用可能なMCLKが256 \times fsではなく、この倍数である場合には、MCDビットの設定によって256 \times fsのIMCLKに変換することができます(表XIIIを参照)。

表XIII. マスター・クロックの分周設定

MCD1	MCDO	MCLKの分周
0	0	IMCLK = MCLK (/1)
0	1	IMCLK = MCLK/2
1	0	IMCLK = MCLK/3
1	1	IMCLK = MCLK (/1)

表XIV. ピーク読み出しレジスタI (アドレスOO11b、読み出し専用)

15-12	11	10	9	8	7	6	5	4	3	2	1	0
0011	1	0					A0P5	A0P4	A0P3	A0P2	A0P1	A0P0
		9–6	予約済み		(常にゼロに設定)							

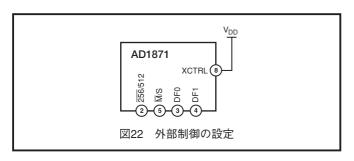
5-0 AOP5-AOPO 左チャンネル・ピーク読み出し(PRE = 1のときのみ有効)

表XV. ピーク読み出しレジスタII (アドレス0100b、読み出し専用)

15-12	11	10	9	8	7	6	5	4	3	2	1	0
0100	1	0					A1P5	A1P4	A1P3	A1P2	A1P1	A1P0
		9–6 5–0	予約済 A1P5-			ロに設定) ンネル・ピ		出し(PRE =	1のときのみ	外有効)		

ピーク読み出しレジスタ

ピーク読み出しレジスタは、イネーブルに設定することで各チャンネルからのADCのピーク読み出しをトラック/ホールドすることが可能な読み出し専用レジスタです。ピーク読み出し機能は、制御レジスタIのPREビットの設定によってイネーブルされます。ピーク読み出し値は、10ビット・リードバック・ワードの6個のLSBに割り当てられます。この結果はバイナリに符号化され、各LSBは-1dBFSと同等で、オール0がフルスケール(0dBFS)、オール1がー63dBFSに相当します(表XVIを参照)。PREビットを設定すると、各チャンネルごとのピーク読み出し値が該当するピーク・レジスタに格納されます。レジスタの値の読出しが完了すると、レジスタ値はゼロに設定され、次の変換によって更新されます


表XVI. ピーク読み出し結果のフォーマット

			<u></u>	ード	;		
AxP	5	4	3	2	1	0	レベル
	0	0	0	0	0	0	0 dBFS
	0	0	0	0	0	1	−1 dBFS
	0	0	0	0	1	0	−2 dBFS
	1	1	1	1	1	0	-62 dBFS
	1	1	1	1	1	1	-63 dBFS

ピーク読み出しレジスタの読み出しサイクルの詳細は、 図21に示しています。

外部制御

AD1871は、一部のデバイス機能を外部ハードウェアで制御するように設定可能です。このデバイス機能には、Master/Slaveモードの選択、MCLKの選択、シリアル・データ・フォーマットの選択が含まれます。外部制御は、図22に示すようにXCTRLピンをハイに設定することによってイネーブルにします。

Master/Slaveの選択

Master/Slaveのハードウェア選択(5番ピン、CLATCH/[\overline{M} /S])は、制御レジスタ \overline{II} の \overline{M} /Sビットの設定と同等です。ローに設定するとデバイスはマスター・モードに入り、LRCLKとBCLKの信号がAD1871から出力されます。

M/Sビットをハイに設定するとデバイスはスレーブ・モードに入り、LRCLKとBCLKの信号がAD1871に入力されます。

MCLKモードの選択

MCLKモードのハードウェア選択(2番ピン、CCLK/[256/512])は、制御レジスタXのCM1-CM0ビットによって決定されるMCLKモードの選択設定の機能の一部です。このハードウェア・ピンをローに設定すると、AD1871は $256 \times f_s$ のMCLKで動作します。ハイに設定すると、AD1871は $512 \times f_s$ のMCLKで動作します。

シリアル・データ・フォーマットの選択

シリアル・データ・フォーマットのハードウェア選択(3番ピンと4番ピン、DF0/COUTおよびDF1/CIN)は、制御レジスタIIのDF1-DF0ビットの設定と同等です。表VIIIを参照してください。

外部制御モードのときには、ハードウェア選択ピンによって選択されたもの($\overline{\text{Master}}$ /Slaveモード選択、MCLK選択、およびシリアル・データ・フォーマット選択)以外のすべての機能は、デフォルト(パワーオン時)の状態に維持されます。

変調器モード

24

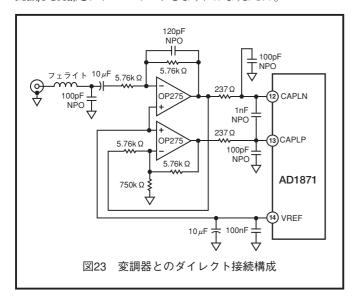
AD1871が変調器モードに入ると(MMEビットを1に設定)、D[0-3]ピンがデータ出力として動作し、COUTピンが高速サンプリング・クロック(定格値128× f_s)のMODCLKになります。MODCLK動作によって、左右チャンネルの変調器から連続的にデータが出力されるようになり、左チャンネルの変調器データはMODCLKがローのときに有効となり、また右チャンネルの変調器データはMODCLKがハイのときに有効となります(図6の「変調器モードのタイミング」を参照)。

変調器モードは、ダイレクト・ストリーム・デジタル (DSD)などのアプリケーションで使用するように設計されています。DSDアプリケーションでは、サンプル・レートを低くするためのデシメーションとフィルタリングが実行されることなく、変調器のデータが録音媒体に直接に保存されます。DSDは $64 \times f_s$ のレートが規定されていますが、AD1871は $128 \times f_s$ で出力動作を行い(そのために、サンプル・レートを $64 \times f_s$ に低減する中間的な再変調器が必要になる)、シングルビットのデータ・ストリームを出力します。

インターフェース動作

アナログ・インターフェース動作

AD1871のアナログ部は、柔軟性と高性能の両方を備えるように設計されています。ユーザーはCAPxPとCAPxNのピンを使用して、ADCのΣ-Δ変調器への直接的な完全差動入力を選択できます。別の方法として、内蔵のPGA部を使用すると、VINxPとVINxNのピンでシングルエンド入力をマルチプレクスするか、またはこのピンを完全差動入力として使用することも可能です。


いずれの入力構成方式を選択する場合でも(直接、またはMux/PGA部使用)、スイッチド・キャパシタ入力部のダイナミックな電荷蓄積用として、コンデンサを変調器入力ピン(CAPxPとCAPxN)に接続することが必要です。入力オーディオ信号はこのコンデンサ上に現れるか、コンデンサを通過して印加されるので、コンデンサの選択が非常に重要です。コンデンサは、高品質の誘電体タイプを推奨します。表面実装バージョンでは積層セラミック、NPOまたは金属被膜、PPSが、スルーホール・バージョンではポリプロピレンが適しています。実際には一般的な推奨事項として、コンデンサが入力オーディオ信号を搬送する場合には、高品質の誘電体が必要です。

変調器のダイレクト入力

図23には、外付けのシングルエンドー差動変換器を経由するシングルエンド信号源をAD1871の変調器入力に接続する回路を示しています。外付けのアンプ/バッファは、スイッチド・キャパシタ負荷である変調器入力のダイナミック特性に適合する、優れたスルーレート特性を備えたものとする必要があります。

250Ωの抵抗(金属被膜)を使用して、外付けのアンプ/バッファの出力を入力コンデンサからデカップリングします。

CAPxPとCAPxNのピンを使用してAD1871を差動入力構成に設定するには、制御レジスタIIIのMELおよびMERビットを1に設定して、Mux/PGA部をディスエーブルにしなければなりません。

PGA入力、シングルエンド

シングルエンドの信号源をAD1871のPGA部に接続する回路を図24に示します。PGA部は、シングルエンド/差動変換用に設定されています。差動出力は250 Ω の直列抵抗を経由して、CAPxxピンに内部接続されます。

AD1871をシングルエンド入力構成に設定するには、制御レジスタを次のように設定することが必要です。

左チャンネル

制御レジスタI = xx0xGGGxxx、ここでGGG =入力ゲイン (表Vを参照)

制御レジスタIII=00xx1x0Sxx、ここでS=SEチャンネル選択

右チャンネル

制御レジスタI = xx0xxxxGGG、ここでGGG = 入力ゲイン (表Vを参照)

制御レジスタIII=00xxx1xx0S、ここでS=SEチャンネル選択

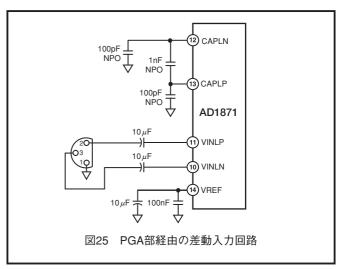
PGA入力、差動

差動の信号源をAD1871のPGA部に接続する回路を図25に示します。PGA部は、差動バッファとして設定されます。バッファされた差動出力は250 Ω の直列抵抗を経由して、CAPxxピンに内部接続されます。

AD1871をMux/PGA経由の差動入力構成に設定するには、制御レジスタを次のように設定することが必要です。

左チャンネル

制御レジスタI = xx0xGGGxxx、ここでGGG =入力ゲイン (表Vを参照)


制御レジスタIII = 00xx0x0xxx

右チャンネル

25

制御レジスタI = xx0xxxxGGG、ここでGGG =入力ゲイン (表Vを参照)

制御レジスタIII = 00xxx0xx0x

レイアウトに関する留意事項

AD1871を仕様の性能レベルで動作させるには、AD1871 と周辺回路のレイアウトに細心の注意を払うことが必要で す。AD1871のアナログ入力は差動なので、アナログ変調器 の電圧はコモン・モード電圧になります。AD1871のコモ ン・モード除去性能は優れているので、この入力上のコモ ン・モード・ノイズが除去されます。AD1871のアナログ電 源とデジタル電源は互いに独立し、別個のピン配置になっ ているので、デバイスのアナログ部とデジタル部間の結合 が最小限に抑えられます。デジタル・フィルタは、変調器 のサンプリング周波数の整数倍の周波数以外の、広帯域の 電源ノイズを除去します。デジタル・フィルタはさらに、 アナログ変調器がノイズ源によって飽和状態にならない限 り、アナログ入力からのノイズも除去します。ただし、 AD1871のADC分解能は高く、しかもAD1871からのノイ ズ・レベルが非常に低いので、グラウンド処理とレイアウ トに関する注意が必要です。

AD1871を実装するプリント回路基板は、アナログ部とデジタル部を分離し、別個にボードの特定部分に配置するように設計してください。AD1871のピン選択は、アナログとデジタルのインターフェースがパッケージの反対側で接続されるように構成されています。これによって、グラウンド・プレーンを容易に分離でき、使用法が簡単になります。最低限のエッチング技法でもベストなシールド効果が得られるので、一般的にグラウンド・プレーンには最適です。図26はAD1871の周辺部でのグラウンド・プレーン分離(アナログ用とデジタル用に分離)の写真で、AD1871評価用ボード(EVAL-AD1871EB)のレイアウトから引き出したものです。

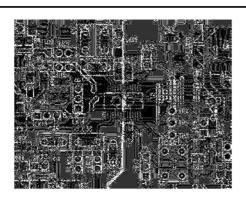


図26 グラウンドのレイアウト

*上の図では、黒色の領域がレイアウトのハンダ面を表しています。図を明瞭にするために、シ ルクスクリーンを白色で表記しています。

デジタルとアナログのグラウンド・プレーンは、1個所のみで接続することが必要です。この接続ポイントがデバイスに近い場合には、図27に示すようにショート(0Ω 抵抗)またはフェライト・ビーズ・インダクタを使用することを推奨します。フェライト用のパッドは、AD1871デバイスの真下のハンダ面に実装されています。

デバイスの下にデジタル信号ラインを走らせると、ダイにノイズが乗る可能性があるので、この方法は回避してください。ノイズの結合を防止するには、アナログ・グラウンド・プレーンをAD1871の下に走らせることが必要です。電源プレーンを使用できない場合には、低インピーダンスの信号経路を確保し、電源ライン上のグリッチの影響を低減するために、AD1871の電源ラインには可能な限り太いパターン配線を使用してください。クロックなどの高速スイッチング信号は、ボードの他の部分に放射ノイズを乗せないようにデジタル・グラウンドでシールドし、またクロッ

ク信号をアナログ入力の近くに走らせないようにしてください。ボードの反対側で向かい合うパターン配線は、互いに直角に交差するように走らせます。これにより、ボードを通過するフィードスルーの影響が低減されます。マイクロストリップ技法が非常に効果的ですが、両面基板に必ず適用できるとは限りません。この手法では、ボードの部品面がグラウンド・プレーン専用となり、信号は反対面に配置されます。

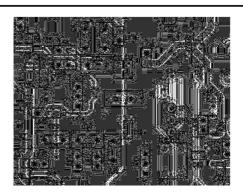


図27 アナログとデジタルのグラウンドの接続

高速デバイスを使用する際には、良好なデカップリングが重要です。 0.1μ Fのセラミック・コンデンサと 10μ Fのタンタル・コンデンサを並列に接続して、すべてのアナログおよびデジタル電源をAGNDおよびDGNDにデカップリングしてください。デカップリング用コンデンサを使用してベストな効果を得るには、図28に示すようにコンデンサをデバイスに可能な限り近接させて配置することが必要です(理想的な場所はデバイスの真上)。AD1871のAVDDとDVDDの両方の駆動に共通の電源電圧が使用されるシステムでは、システムのAVDD電源を使用する方法を推奨します。この電源については、AD1871のAVDDピンとAGND間で推奨のアナログ電源デカップリングを行い、さらにDVDDピンとDGND間で推奨のデジタル電源デカップリング・コンデンサを持つ必要があります。

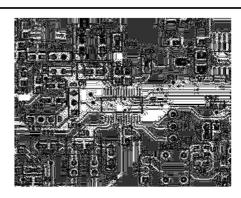


図28 AD1871の電源デカップリング

もう1つの重要な留意事項として、コンデンサ、抵抗、および周辺回路用のオペアンプなどの部品選択が挙げられます。アナログ・オーディオ信号チェーンで使用するコンデンサは、NPO誘電体(セラミックの場合)または金属被膜のタイプとします。図28には、CAPxxピンとの間に接続するコンデンサの配置を示しています。この配置方法では、コンデンサとピン間のトラッキングを可能な限り短く維持し、同時に、CAPxPピンからコンデンサまでのトラック長がCAPxNピンからコンデンサまでのトラック長と等しくなるようにも配慮しています。

サルデオ法 28ピン・シュリンク・スモールアウトライン・パッケージ[SSOP] (RS-28) す法はミリメートルの単位で表記しています。 18ピン 10.50 10.5

