

正誤表

この製品のデータシートに間違いがありましたので、お詫びして訂正いたします。 この正誤表は、2019年4月3日現在、アナログ・デバイセズ株式会社で確認した誤りを記 したものです。 なお、英語のデータシート改版時に、これらの誤りが訂正される場合があります。

正誤表作成年月日: 2019年4月3日

製品名:ADMV1013

対象となるデータシートのリビジョン(**Rev**): Rev.0 訂正箇所:1ページ

左の段、特長の欄2行目

【誤】

「広帯域 RF 入力周波数範囲: 24GHz~44GHz」

【正】

「広帯域 RF 出力周波数範囲:24GHz~44GHz」

アナログ・デバイセズ株式会社

本	
ニューピア竹芝サウスタワービ	レ 10F
電話 03(5402)8200	
大 阪営業所/〒532-0003 大阪府大阪市淀川区宮原 3-5-36	
新大阪トラストタワー 10F	
電話 06(6350)6868	
名古屋営業所/〒451-6038 愛知県名古屋市西区牛島 6-1	
名古屋ルーセントタワー 40F	
電話 052(569)6300	

-タシート

24GHz~44GHz、広帯域 マイクロ波アップコンバータ ADMV1013

特長

広帯域 RF 入力周波数範囲: 24GHz~44GHz 2 つのアップコンバージョン・モード ベースバンド I/Qから RF へのダイレクト・ コンバージョン 実 IF からの単測波アップコンバージョン LO 入力周波数範囲: 5.4GHz~10.25GHz 最大 41GHz の LO 4 逓倍器 50Ω のシングルエンド RF 出力および IF 入力に整合 100Ω に整合したバランス LO 入力または 50Ω シングルエンド LO 入力のどちらかを選択可能 100Ω のバランス・ベースバンド入力 サイドバンド抑圧特性と搬送波フィードスルーの最適化 トランシーバー電力制御用の可変減衰器 4 線式 SPI インターフェースを介してプログラム可能 40 端子ランド・グリッド・アレイ・パッケージ (LGA)

アプリケーション

ポイント to ポイント・マイクロ波無線 レーダー、電子戦システム 計測器、ATE(自動試験装置)

概要

ADMV1013 は、広帯域のマイクロ波アップコンバータです。ポ イント to ポイント・マイクロ波無線設計に最適化され、24GHz ~44GHzの無線周波数(RF)範囲で動作します。

このアップコンバータには 2 つの周波数変換モードがあり、ベ ースバンド同相直交 (I/Q) 入力信号から RF へのダイレクト・ コンバージョンと、複素中間周波数 (IF) 入力からの単測波 (SSB) アップコンバージョンが可能です。ベースバンド I/Q 入 カパスはディスエーブルにすることが可能で、0.8GHz~6.0GHz の任意の変調複素 IF 信号を IF パスに挿入して、不要な側波帯を 通常 26dBc 以上抑えながら 24GHz~44GHz にアップコンバート することができます。シリアル・ポート・インターフェース (SPI)によって直交位相およびミキサーのゲート電圧の調整が 可能となり、最適な側波帯抑圧特性と局部発振器(LO)のヌル 化が実現します。更に、SPIインターフェースを使用することで、 出力エンベロープ・ディテクタをパワー・ダウンして消費電力 を削減することができます。

ADMV1013 アップコンバータは、40 端子ランド・グリッド・ア レイ・パッケージ(LGA) に収容されており、-40℃~+85℃の ケース温度範囲で動作します。

アナログ・デバイセズ社は、提供する情報が正確で信頼できるものであることを期していますが、その情報の利用に関して、あるいは利用によって 生じる第三者の特許やその他の権利の侵害に関して一切の責任を負いません。また、アナログ・デバイセズ社の特許または特許の権利の使用を明示 的または暗示的に許諾するものでもありません。仕様は、予告なく変更される場合があります。本紙記載の商標および登録商標は、それぞれの所有 者の財産です。※日本語版資料は REVISION が古い場合があります。最新の内容については、英語版をご参照ください。

Rev. 0

©2019 Analog Devices, Inc. All rights reserved.

	本 社/〒105-6891 東京都港区海岸 1-16-1 ニューピア竹芝サウスタワービル 10F 電話 03(5402)8200
式会社	大 阪営業所/〒532-0003 大阪府大阪市淀川区宮原 3-5-36 新大阪トラストタワー 10F 電話 06(6350)6868
	名古屋営業所/〒451-6038 愛知県名古屋市西区牛島町 6-1 名古屋ルーセントタワー 38F 電話 052 (569) 6300

ADMV1013

目次

特長1
アプリケーション1
機能ブロック図1
概要1
改訂履歴2
仕様
シリアル・ポート・レジスタのタイミング
絶対最大定格
熱抵抗6
ESDに関する注意6
ピン配置およびピン機能の説明7
代表的な性能特性9
I/Qモード9
IF モード14
エンベロープ・ディテクタの性能19
リターン損失21
M×Nスプリアス性能24
動作原理
スタートアップ・シーケンス
ベースバンド直交変調(I/Q モード)
単側波帯アップコンバージョン(IF モード)
LO入力パス25

側波帯抑圧特性の最適化	25
搬送波フィードスルーのヌル化	26
エンベロープ・ディテクタ	26
パワー・ダウンとリセット	26
シリアル・ポート・インターフェース(SPI)	26
アプリケーション情報	28
低周波数からのベースバンド直交変調	28
様々なクワッド・フィルタ設定での性能	28
VVA の温度補償	28
差動 LO 入力とシングルエンド LO 入力との 性能比較	29
固定入力周波数時の RF 周波数特性	30
I/Q モードにおけるコモンモード電圧での性能	31
VCTRL1と VCTRL2の個別処理	31
推奨されるランド・パターン	33
評価用ボードの情報	33
レジスタの一覧	34
レジスタの詳細	35
外形寸法	39
オーダー・ガイド	39

改訂履歴

12/2018—Revision 0: Initial Version

仕様

特に指定のない限り、IF および I/Q 振幅 = -20dBm、VCC_DRV = VCC2_DRV = VCC_AMP2 = VCC_ENV = VCC_AMP1 = VCC_BG2 = VCC_MIXER = VCC_BG = VCC_QUAD = 3.3V、DVDD = VCC_VVA = 1.8V、T_A = 25°C、レジスタ 0x0A を 0xE700 に設定。

IFモードでの測定は、90°ハイブリッド、レジスタ 0x03 のビット7=1、IF 入力周波数(f_F) = 3.5GHz で実行。

特に指定のない限り、I/Qモードでの測定は、Iチャンネルと Qチャンネルの性能を複合、コモンモード電圧 (V_{CM}) =0V、レジスタ 0x03 のビット 7=0、レジスタ 0x05 のビット [6:0] = 0x051 で実行。I/Qベースバンド周波数 (f_{BB}) = 100MHz。

VCTRL1 = VCTRL2。V_{CTRL}は VCTRL1 ピンと VCTRL2 ピンの減衰電圧。特に指定のない限り、V_{CTRL} = 1800mV。

表 1.					
Parameter	Test Conditions/Comments	Min	Тур	Max	Unit
FREQUENCY RANGES					
RF Input		24		44	GHz
LO Input		5.4		10.25	GHz
LO Quadrupler		21.6		41	GHz
IF Output		0.8		6.0	GHz
Baseband (BB) I/Q Output		DC		6.0	GHz
LO AMPLITUDE RANGE		-6	0	+6	dBm
I/Q MODULATOR PERFORMANCE					
Conversion Gain	At maximum gain				
24 GHz to 40 GHz	$f_{BB} \leq 3.5 \text{ GHz}$	18	23		dB
	$6 \text{ GHz} > f_{BB} > 3.5 \text{ GHz}$		21		
40 GHz to 44 GHz			19		dB
Voltage Variable Attenuator (VVA) Control Range			35		dB
Single-Sideband (SSB) Noise Figure	At maximum gain				
24 GHz to 40 GHz	, C		18		dB
40 GHz to 44 GHz			19		dB
Output Third-Order Intercept (IP3)	At maximum gain				
24 GHz to 40 GHz	-	20	23		dBm
40 GHz to 44 GHz			22		dBm
Output 1 dB Compression Point (P1dB)	At maximum gain				
24 GHz to 40 GHz	, C	10	13		dBm
40 GHz to 44 GHz			12		dBm
Sideband Rejection (SBR)	24 GHz to 44 GHz, at maximum gain				
Uncalibrated			32		dBc
IF SINGLE-SIDEBAND UPCONVERSION PERFORMANCE					
Conversion Gain	At maximum gain				
24 GHz to 40 GHz	$f_{\rm IF} \leq 3.5~GHz$	13	18		dB
	$6 \text{ GHz} > f_{IF} > 3.5 \text{ GHz}$		12		
40 GHz to 44 GHz			14		dB
VVA Control Range			35		dB
SSB Noise Figure	At maximum gain				
24 GHz to 40 GHz			25		dB
40 GHz to 44 GHz			28		dB
Output IP3	At maximum gain				
24 GHz to 40 GHz		20	23		dBm
40 GHz to 44 GHz			22		dBm
Output P1dB	At maximum gain				
24 GHz to 40 GHz		10	13		dBm
40 GHz to 44 GHz			12		dBm
SBR	24 GHz to 44 GHz, at maximum gain				
Uncalibrated			26		dBc
Calibrated	Calibrated using LOAMP_PH_ADJ_Q_FINE and LOAMP_PH_ADJ_I_FINE bits		36		dBc

ADMV1013

Parameter	Test Conditions/Comments	Min	Тур	Max	Unit
ENVELOPE DETECTOR PERFORMANCE					
Output Level	For optimum performance				
Minimum			-45		dBm
Maximum			-20		dBm
Envelope Bandwidth	Measured with two tones with total power				
	output (P_{OUT}) at RF = 10 dBm				
3 dB	RF frequency $(f_{RF}) = 28 \text{ GHz}$		350		MHz
10 dB	$f_{RF} = 28 \text{ GHz}$		1		GHz
RETURN LOSS					
RF Output	50 Ω single-ended		-8		dB
LO Input	100Ω differential		-12		dB
IF Input	50Ω single-ended		-12		dB
BB Input	100Ω differential		-10		dB
BB I/Q Input Impedance			100		Ω
LEAKAGE	At maximum gain		0.0		
Fundamental LO to RF			-80		dBm
$4 \times LO$ to RF	XX 111 . 1		10		ID
5.4 GHz to 6.8 GHz LO	Uncalibrated		-12		dBm
6.8 GHz to 10.25 GHz LO			-20		dBm
5.4 GHz to 10.25 GHz LO	Calibrated using MXER_OFF_ADJ_1_N, MXER_OFF_ADJ_I_P_MXER_OFF		-45		dBm
	ADJ_Q_N, MXER_OFF_ADJ_Q_P bits at				
	$V_{\text{CTRL}} = 1800 \text{ mV}, \overline{\text{IF}} \text{ mode}$				
$5 \times LO$ to RF			-55		dBm
Fundamental LO to IF			-70		dBm
Fundamental LO to I/Q			-75		dBm
LOGIC INPUTS					
Input Voltage Range					
High, V _{INH}		DVDD - 0.4		1.8	V
Low, V _{INL}		0		0.4	V
Input Current, I _{INH} /I _{INL}			100		μA
Input Capacitance, C _{IN}			3		pF
LOGIC OUTPUTS					
Output Voltage Range					
High, V _{OH}		DVDD - 0.4		1.8	V
Low, V _{OL}		0		0.4	V.
Output High Current, I _{OH}				500	μA
POWER INTERFACE					
VCC_DRV, VCC2_DRV, VCC_AMP2, VCC_ENV,		3.15	3.3	3.45	V
VCC OUAD					
3.3 V Supply Current	$V_{CTRL} = 1.8 \text{ V}$, no IF and I/Q or LO input		550		mA
NURD MCC MM	signal	1.7	1.0	1.0	
DVDD, VCC_VVA		1.7	1.8	1.9	V.
1.8 V Supply Current	$V_{CTRL} = 1.8 V$, no IF and I/Q or LO input signal		3		mA
Total Power Consumption			1.9		W
Power-Down			77	136	mW

シリアル・ポート・レジスタのタイミング

表 2.

Parameter	Description	Min	Тур	Max	Unit
t _{SDI, SETUP}	Data to clock setup time	10			ns
t _{SDI, HOLD}	Data to clock hold time	10			ns
t _{SCLK, HIGH}	Clock high duration	40 to 60			%
t _{SCLK, LOW}	Clock low duration	40 to 60			%
$t_{SCLK}, \overline{sen/sen2}_{setup}$	Clock to $\overline{\text{SEN}}/\overline{\text{SEN2}}$ setup time	30			ns
t _{SCLK, DOT}	Clock to data out transition time			10	ns
t _{SCLK, DOV}	Clock to data out valid time			10	ns
$t_{SCLK, \overline{SEN}/\overline{SEN2}_{INACTIVE}}$	Clock to SEN/SEN2 inactive	20			ns
t _{SEN/SEN2_INACTIVE}	Inactive SEN/SEN2 (between two operations)	80			ns

タイミング図

絶対最大定格

±っ

衣 3.	
Parameter	Rating
Supply Voltage	
VCC_DRV, VCC2_DRV, VCC_AMP2,	4.3 V
VCC_ENV, VCC_AMP1, VCC_BG2,	
VCC_BG, VCC_MIXER	
DVDD, VCC_VVA	2.3 V
IF Input Power	5 dBm
I/Q Input Power	5 dBm
LO Input Power	9 dBm
Maximum Junction Temperature	125°C
Maximum Power Dissipation ¹	2.9 W
Lifetime at Maximum Junction Temperature (T _J)	1×10^{6} hours
Operating Case Temperature Range	-40°C to +85°C
Storage Temperature Range	-55°C to +125°C
Lead Temperature (Soldering 60 sec)	260°C
Moisture Sensitivity Level (MSL) Rating ²	MSL3
Electrostatic Discharge (ESD) Sensitivity	
Human Body Model (HBM)	1250 V
Field Induced Charged Device Model (FICDM)	750 V

¹最大消費電力は、(T_J-85°C)/θ_{JC TOP}から計算した理論値です。 ² IPC/JEDEC J-STD-20 MSL の分類に基づいています。

上記の絶対最大定格を超えるストレスを加えると、デバイスに 恒久的な損傷を与えることがあります。この規定はストレス定 格のみを指定するものであり、この仕様の動作のセクションに 記載する規定値以上でのデバイス動作を定めたものではありま せん。デバイスを長時間にわたり絶対最大定格状態に置くと、 デバイスの信頼性に影響を与えることがあります。

熱抵抗

熱性能は、プリント回路基板(PCB)の設計と動作環境に直接 関連しています。PCB の熱設計には細心の注意を払う必要があ ります。

θ_{JA}は、1立方フィートの密閉容器内で測定された、自然体流で のジャンクションと周辺の間の熱抵抗です。θ_{IC}は、ジャンクシ ョンとケースの間の熱抵抗です。

表 4. 熱抵抗

Package Type ¹	$\theta_{JA}{}^2$	$\theta_{JC_{TOP}}^{3}$	$\theta_{JB}{}^4$	$\Psi_{JT}{}^5$	$\Psi_{JB}{}^6$	Unit
CC-40-5	28	13.8	11.1	6.4	13.8	°C/W

¹特に指定のない限り、表4に仕様規定されている熱抵抗値は、JEDEC 仕様に基づいて計算されており、JESD51-12に準拠して使用します。

²θ_{JA}は、自然対流(JEDEC 環境)でのジャンクションから周辺への熱抵 抗です。

³ θ_{JC_TOP}は、ジャンクションからケース(上面)への JEDEC 熱抵抗で す。

⁴θ_{JB}は、ジャンクションからボードへの JEDEC 熱抵抗です。

⁵Ψ_{II}は、ジャンクションから上面への JEDEC 熱特性評価パラメータで す。

⁶Ψ_{JB}は、ジャンクションからボードへの JEDEC 熱特性評価パラメータ です。

ESD に関する注意

ESD(静電放電)の影響を受けやすいデバイスです。

電荷を帯びたデバイスや回路ボードは、検知されない まま放電することがあります。本製品は当社独自の特 許技術であるESD保護回路を内蔵してはいますが、デ バイスが高エネルギーの静電放電を被った場合、損傷 を生じる可能性があります。したがって、性能劣化や 機能低下を防止するため、ESD に対する適切な予防措 置を講じることをお勧めします。

ADMV1013

ピン配置およびピン機能の説明

図 3. ピン配置

表 5. ピン機能の説明

ピン番号	記号	説明
1	RST	SPIリセット。通常動作ではこのピンをロジック・ハイに接続します。SPIロジックは1.8Vです。
2	DVDD	1.8V SPI デジタル電源。
3	SCLK	SPIクロック・デジタル入力。
4	SDI	SPIシリアル・データ入力。
5	SDO	SPIシリアル・データ出力。
6	BG_RBIAS2	電圧ゲイン・アンプ(VGA)チップのバンド・ギャップ回路用外付け高精度抵抗。このピンの近くに 1.1kΩの高精度抵抗を配置し、グラウンドにシャントします。
7	VCC_DRV	RF ドライバ用 3.3V 電源。このピンの近くに 100pF、0.01μF、10μF のコンデンサを配置します。
8, 10, 27, 36, 39	GND	グラウンド。
9	RF	RF 出力。このピンは内部で GND に DC カップリングされ、50Ω のシングルエンドに整合されています。
11	VCC2_DRV	RF プレドライバ用 3.3V 電源。このピンの近くに 100pF、0.01μF、10μF のコンデンサを配置します。
12, 13, 31	NIC	内部では未接続。このピンは内部接続されていません。
14	VCC_VVA	VVA 制御回路用 1.8V 電源。このピンの近くに 100pF、0.01μF、10μF のコンデンサを配置します。
15	VCTRL1	RF 電圧可変減衰器 1(VVA1)用制御電圧。このピンに 1kΩの直列抵抗を接続します。
16	VCTRL2	RF 電圧可変減衰器 2(VVA2)用制御電圧。このピンに 1kΩの直列抵抗を接続します。
17	VCC_AMP2	RF アンプ 2(AMP2)用の 3.3V 電源。このピンの近くに 100pF、0.01µF、10µF のコンデンサを配置します。
18	SEN2	VGA チップ用 SPI シリアル・イネーブル。このピンをピン 40(SEN)に接続します。
19	VCC_ENV	エンベロープ・ディテクタ用 3.3V 電源。このピンの近くに 100pF、0.01µF、10µF のコンデンサを配置します。
20	VCC_AMP1	RFアンプ1(AMP1)用の 3.3V 電源。このピンの近くに 100pF、0.01µF、10µF のコンデンサを配置します。
21	VENV N	負側差動エンベロープ・ディテクタ出力。
22	VENV_P	正側差動エンベロープ・ディテクタ出力。
23	VCC_BG2	VGA チップのバンド・ギャップ回路用 3.3V 電源。このピンの近くに 100pF、0.01μF、10μF のコンデンサ を配置します。
24, 30	IF_Q, IF_I	IF シングルエンド複素入力。これらのピンは内部で AC カップリングされています。IF モードの場合、ピン 25 (Q_P) 、ピン 26 (Q_N) 、ピン 28 (I_P) 、ピン 29 (I_N) はフロート状態にしておく必要があります。
25, 26	Q_P, Q_N	差動ベースバンドQ入力。これらのピンはDCカップリングされています。IFモードの場合、これらのピンは接続しません。
28, 29	I_P, I_N	差動ベースバンドI入力。これらのピンは DC カップリングされています。IF モードの場合、これらのピンは接続しません。

ADMV1013

ピン番号	記号	説明
32	VCC_MIXER	ミキサー用 3.3V 電源。このピンの近くに 100pF、0.01µF、10µF のコンデンサを配置します。
33	VCC_BG	ミキサー・チップのバンド・ギャップ回路用 3.3V 電源。このピンの近くに 100pF、0.01μF、10μF のコンデ ンサを配置します
34	BG_RBIAS1	ンチを記憶します。 ミキサー・チップのバンド・ギャップ回路用外付け高精度抵抗。このピンの近くに 1.1kΩ の高精度抵抗を 配置し、グラウンドにシャントします。
35	VCC_QUAD	4 逓倍器用 3.3V 電源。このピンの近くに 100pF、0.01μF、10μF のコンデンサを配置します。
37, 38	LON, LOP	負側および正側差動局部発振器入力。このピンは内部でグラウンドに DC カップリングされ、100Ωの差動 または 50Ω のシングルエンドに整合されています。
40	SEN	ミキサー・チップ用 SPI シリアル・イネーブル。このピンをピン 18(SEN2)に接続します。
	EPAD	露出パッド。露出パッドは低インピーダンスのグランド・プレーンにハンダ付けします。

7267-006

1.8

1.6

データシート

代表的な性能特性

I/Q モード

特に指定のない限り、I/Q 振幅 = -20dBm、VCC DRV = VCC2 DRV = VCC AMP2 = VCC ENV = VCC AMP1 = VCC BG2 = VCC MIXER = VCC_BG = VCC_QUAD = 3.3V、DVDD = VCC_VVA = 1.8V、T_A = 25°C、レジスタ 0x0A を 0xE700 に設定。VCTRL1 = VCTRL2。V_{CTRL}は VCTRL1 ピンと VCTRL2 ピンの減衰電圧。特に指定のない限り、V_{CTRL} = 1800mV。特に指定のない限り、I/Qモードでの測定は、Iチャン ネルと Q チャンネルの性能を複合、Vcm = 0V、レジスタ 0x03 のビット 7 = 0、レジスタ 0x05 のビット [6:0] = 0x051 で実行。I/Q fbB = $100 MHz_{\circ}$

図 12. 様々な LO 入力での最大ゲイン時の出力 IP3 と RF 周波数 の関係(RF 振幅 = トーンあたり-20dBm(20MHz 間隔)、 f_{BB} = 100MHz、上側波帯)

図 15. 20MHz 間隔時の出力 IP3 と合計入力電力の関係 (f_{BB} = 100MHz、f_{RF} = 28GHz および 39GHz、上側波帯)

図 16. 様々な温度での最大ゲイン時のノイズ指数と RF 周波数の 関係(f_{BB} = 100MHz、上側波帯)

図 17. 様々な電源電圧でのノイス指数と RF 周波数の関係 (f_{BB} = 100MHz、上側波帯)

図 18. 様々な LO 入力でのノイズ指数と RF 周波数の関係 (f_{BB} = 100MHz、上側波帯)

図 19. 様々な温度での f_{RF} = 28GHz および 39GHz における ノイズ指数と V_{CTRL}の関係(f_{BB} = 100MHz)

7267-025

7267-026

図 24. 様々な LO 入力でのサイドバンド除去比と RF 周波数の 関係(f_{BB} = 100MHz、上側波帯)

- 12/39 -

図 27. 様々な温度での最大ゲイン時の出力 P1dB と RF 周波数の 関係(f_{BB} = 100MHz、上側波帯)

図 30. 様々な温度での f_{RF} = 28GHz および 39GHz における出力 P1dB と V_{CTRL}の関係(f_{BB} = 100MHz)

ADMV1013

IFモード

特に指定のない限り、IF 振幅 = -20dBm、VCC_DRV = VCC2_DRV = VCC_AMP2 = VCC_ENV = VCC_AMP1 = VCC_BG2 = VCC_MIXER = VCC_BG = VCC_QUAD = 3.3V、DVDD = VCC_VVA = 1.8V、T_A = 25°C、レジスタ 0x0A を 0xE700 に設定。VCTRL1 = VCTRL2。V_{CTRL} は VCTRL1 ピンと VCTRL2 ピンの減衰電圧。特に指定のない限り、V_{CTRL} = 1800mV。

IF モードでの測定は、90°ハイブリッド、レジスタ 0x03 のビット7=1、f_F=3.5GHz で実行。

図 35. 様々な LO 入力での変換ゲインと RF 周波数の関係 (f_{IF} = 3.5GHz、上側波帯および下測波帯)

図 37. 様々な温度での f_{RF} = 28GHz および 39GHz における 変換ゲインと V_{CTRL}の関係(f_{IF} = 3.5GHz、上側波帯)

図 39. 様々な温度での最大ゲイン時の出力 IP3 と RF 周波数の 関係(RF 振幅 = トーンあたり-20dBm(20MHz 間隔)、 f_{IF} = 3.5GHz、上側波帯および下側波帯)

図 40. 様々な電源電圧での最大ゲイン時の出力 IP3 と RF 周波数 の関係(RF 振幅 = トーンあたり-20dBm(20MHz 間隔)、 f_{IF} = 3.5GHz、上側波帯および下側波帯)

図 41. 様々な LO 入力での最大ゲイン時の出力 IP3 と RF 周波数 の関係(RF 振幅 = トーンあたり-20dBm(20MHz 間隔)、 f_{IF} = 3.5GHz、上側波帯および下側波帯)

図 42. f_{RF} = 28GHz および 39GHz における出力 IP3 と V_{CTRL}の 関係(RF 振幅 = トーンあたり-20dBm(20MHz 間隔)、 f_{F} = 3.5GHz、上側波帯および下側波帯)

図 43. 最大ゲイン時の f_{RF} = 28GHz および 39GHz における出力 IP3 と IF 周波数の関係(RF 振幅 = トーンあたり-20dBm (20MHz 間隔)、上側波帯および下側波帯)

図 44. f_{RF} = 28GHz および 39GHz における 20MHz 間隔時の出力 IP3 と合計入力電力の関係 (f_{IF} = 3.5GHz、上側波帯および下側波帯)

図 45. 様々な温度での最大ゲイン時のノイズ指数と RF 周波数の 関係(f_{IF} = 3.5GHz、上側波帯および下測波帯)

図 46. 様々な電源電圧での最大ゲイン時のノイズ指数と RF 周波数の関係(f_{IF} = 3.5GHz、上側波帯および下測波帯)

図 47. 様々な LO 入力での最大ゲイン時のノイズ指数と RF 周波数の関係(f_{IF} = 3.5GHz、上側波帯および下測波帯)

図 48. 最大ゲイン時の f_{RF} = 28GHz および 39GHz における ノイズ指数と IF 周波数の関係(上側波帯および下側波帯)

図 49. 様々な温度でのノイス指数と V_{CTRL}の関係 (f_{IF} = 3.5GHz、上側波帯および下測波帯)

図 51. 様々な温度での最大ゲイン時の出力 P1dB と RF 周波数の 関係(f_{IF} = 3.5GHz、上側波帯および下測波帯)

図 52. 様々な電源電圧での出力 P1dB と RF 周波数の関係 (f_{IF} = 3.5GHz、上側波帯および下測波帯)

図 53. 様々な LO 入力での最大ゲイン時の出力 P1dB と RF 周波数の関係(f_{IF} = 3.5GHz、上側波帯および下測波帯)

図 54. 最大ゲイン時の f_{RF} = 28GHz および 39GHz における出力 P1dB と IF 周波数の関係(上側波帯および下側波帯)

図 55. 様々な温度での f_{RF} = 28GHz および 39GHz における出力 P1dB と V_{CTRL}の関係 (f_{IF} = 3.5GHz、上側波帯)

図 56. 様々な温度での f_{RF} = 28GHz および 39GHz における出力 P1dB と V_{CTRL}の関係(f_{IF} = 3.5GHz、下測波帯)

ADMV1013

エンベロープ・ディテクタの性能

特に指定のない限り、IF および I/Q 振幅 = -20dBm、VCC_DRV = VCC2_DRV = VCC_AMP2 = VCC_ENV = VCC_AMP1 = VCC_BG2 = VCC_MIXER = VCC_BG = VCC_QUAD = 3.3V、DVDD = VCC_VVA = 1.8V、T_A = 25°C、レジスタ 0x0A を 0xE700 に設定。

IF モードでの測定は、90°ハイブリッド、レジスタ 0x03 のビット 7=1、 $f_{\rm F}$ = 3.5GHz で実行。

特に指定のない限り、I/Qモードでの測定は、Iチャンネルと Qチャンネルの性能を複合、V_{CM} = 0V、レジスタ 0x03 のビット 7 = 0、レジ スタ 0x05 のビット [6:0] = 0x051 で実行。I/Q f_{BB} = 100MHz。

VCTRL1 = VCTRL2。V_{CTRL}は VCTRL1 ピンと VCTRL2 ピンの減衰電圧。特に指定のない限り、V_{CTRL} = 1800mV。

エンベロープ・ディテクタ測定はレジスタ 0x03 のビット 5=1 の設定で実行しています。

図 63. 様々な出力電力レベルでの VENV_N/VENV_P Delta と RF 周波数の関係(エンベロープ周波数 = 100MHz、V_{CTRL} = 1800mV、T_A = 25°C、LO = 0dBm、IF = 2GHz、上側波帯)

図 64. 止現化高調波金み 1x (HD1) と止現化高調波金み 2x (HD2) に対する出力レベルとエンベロープ周波数の関係 (f_{RF} = 28GHz、LO = 0dBm (25℃)、HD1 および HD2 の 測定はエンベロープ周波数に等しい間隔のツー・トーンで実行、 HD2 は 50MHz の HD1 レベルに対して正規化)

図 65. P_{OUT} RF、P_{OUT} エンベロープ HD1、P_{OUT} エンベロープ HD2、VENV_N/VENV_P Delta に対する P_{OUT} および VENV_N/VENV_P Delta と合計入力電力の関係 (100MHz 間隔のツー・トーンで測定、f_{RF} = 28GHz、 V_{CTRL} = 1800mV)

は 00. 禄々なら計入力電力(FIN) レベル との HDT Four エンベロープおよび VENV_N/VENV_P Delta と V_{CTRL}の関係 (100MHz 間隔のツー・トーンで測定、周波数は 28GHz)

図 67. 様々な温度での f_{RF} = 33GHz における P_{OUT} エンベロープ とトーンあたり P_{OUT} RF の関係(測定は IF = 3.5GHz とし、 100MHz 間隔のツー・トーンで測定、V_{CTRL} = 1800mV)

ADMV1013

リターン損失

特に指定のない限り、IF および I/Q 振幅 = -20dBm、VCC_DRV = VCC2_DRV = VCC_AMP2 = VCC_ENV = VCC_AMP1 = VCC_BG2 = VCC_MIXER = VCC_BG = VCC_QUAD = 3.3V、DVDD = VCC_VVA = 1.8V、T_A = 25°C、レジスタ 0x0A を 0xE700 に設定。

IF モードでの測定は、90°ハイブリッド、レジスタ 0x03 のビット 7=1、f_F = 3.5GHz で実行。

特に指定のない限り、I/Qモードでの測定は、Iチャンネルと Qチャンネルの性能を複合、V_{CM} = 0V、レジスタ 0x03 のビット 7 = 0、レジ スタ 0x05 のビット [6:0] = 0x051 で実行。I/Q f_{BB} = 100MHz。

VCTRL1 = VCTRL2。V_{CTRL}は VCTRL1 ピンと VCTRL2 ピンの減衰電圧。特に指定のない限り、V_{CTRL} = 1800mV。

エンベロープ・ディテクタ測定はレジスタ 0x03 のビット 5=1の設定で実行しています。

図 77. 様々な温度での IF_I および IF_Q に対する LO リークと LO 周波数の関係(ハイブリッドを使用せずに測定)

(未補正)

ADMV1013

M×Nスプリアス性能

ミキサーのスプリアス積は、RF 出力パワー・レベルをどれだけ 下回るかを dBc 単位で測定しています。スプリアス周波数は次 式で計算されます。

 $| (M \times IF) + (N \times LO) |$

N/A は、該当なしを表します。スプリアス性能の表中、空欄は 周波数が 50GHz を上回り測定されないことを示します。REF は リファレンスの RF 出力信号を意味します。

LO 周波数は ADMV1013 に印加された周波数に起因するもので す。IF振幅および I/Q振幅は-20dBm です。

特に指定のない限り、VCC_DRV = VCC2_DRV = VCC_AMP2 = VCC_ENV = VCC_AMP1 = VCC_BG2 = VCC_MIXER = VCC_BG = VCC_QUAD = 3.3V、DVDD = VCC_VVA = 1.8V、T_A = 25° C で、 レジスタ 0x0A を 0xE700 に設定しています。

IF モードでの測定は、90°ハイブリッド、レジスタ 0x03 のビット 7=1、 $f_{\rm F}$ =3.5GHz で実行しています。

特に指定のない限り、I/Q モードでの測定は、I チャンネルと Q チャンネルの性能を複合し、 $V_{CM} = 0V$ 、レジスタ 0x03 のビット 7 = 0、レジスタ 0x05 のビット [6:0] = 0x051 で実行しています。 I/Q f_{BB}は 100MHz です。

VCTRL1=VCTRL2 で、V_{CTRL}は VCTRL1 ピンと VCTRL2 ピンの 減衰電圧です。特に指定のない限り、V_{CTRL}は 1800mV です。

I/Q モード

 f_{BB} = 100MHz $\left(-20dBm\right)$, LO = 6.975GHz $\left(+6dBm\right)$ $_{\circ}$

			N × LO						
		0	1	2	3	4	5	6	7
M × RF	-2	93	105	103	122	79	109	89	108
	-1	93	95	85	57	26	65	53	110
	0	N/A	80	72	53	20	61	35	73
	+1	93	96	74	32	REF	41	37	84
	+2	93	107	86	91	57	89	91	83

 $f_{BB}=100MHz~(-20dBm)$, LO = 9.725GHz (+6dBm) , f_{RF} = 39GHz $_{\!\circ}$

				N	× LO		
		0	1	2	3	4	5
	-2	97	116	95	116	89	113
	-1	101	100	37	62	26	90
M × RF	0	N/A	77	40	63	20	77
	+1	97	91	18	36	REF	68
	+2	101	118	80	99	64	103

IFモード

 $f_{\rm IF}=3.5GHz~(-20dBm)$, LO = 6.125GHz (+6dBm) , $f_{\rm RF}=28GHz_{\circ}$

			N × LO							
		0	1	2	3	4	5	6	7	8
	-2	76	117	120	109	77	92	90	84	45
	-1	68	90	80	77	23	46	56	53	44
M × RE	0	N/A	71	71	26	9	34	24	20	30
I NI	+1	76	92	58	18	REF	24	32	61	
	+2	68	84	75	70	58	80	82	75	

 $f_{IF}=3.5GHz~(-20dBm)$, LO = 8.875GHz (+6dBm) , $f_{RF}=39GHz_{\circ}$

		N × LO							
		0	1	2	3	4	5	6	
	-2	83	132	109	96	68	99	107	
	-1	69	95	76	54	25	57	83	
M × RF	0	N/A	69	44	53	16	52		
	+1	83	89	24	33	REF	58		
	+2	69	114	93	98	75			

 $f_{FF}=3.5GHz~(-20dBm)$, LO = 7.875GHz (+6dBm) , $f_{RF}=28GHz_{\circ}$

			N × LO						
		0	1	2	3	4	5	6	7
	-2	82	140	115	107	69	99	97	95
	-1	65	120	91	41	REF	47	46	
M × RF	0	N/A	82	75	52	23	49	56	
	+1	82	94	60	70	26	75		
	+2	65	120	107	111	93	115		

 $f_{\rm FF}$ = 3.5GHz (-20dBm) , LO = 10.5GHz (+6dBm) , $f_{\rm RF}$ = 39GHz $_{\!\circ}$

				N ×	LO		
		0	1	2	3	4	5
	-2	96	122	99	91	70	94
	-1	80	85	28	26	REF	64
M × RF	0	N/A	83	34	43	16	
	+1	97	95	45	49	41	
	+2	79	113	88	103	102	

動作原理

ADMV1013 は、マイクロ波無線設計に最適化された広帯域のマ イクロ波アップコンバータで、24GHz~44GHzの RF 周波数範囲 で動作します。このデバイスの機能ブロック図は図 1 を参照し てください。ADMV1013のデジタル設定は SPI を介して制御され ます。ADMV1013には、次の2つの動作モードがあります。

- ベースバンド直交変調(I/Oモード)
- 単側波帯アップコンバージョン(IFモード)

スタートアップ・シーケンス

電圧制御 RF VVA1 および RF VVA2 (VCTRL1 および VCTRL2) を使用するには、VCC_VVA (1.8V) 電源をオンにする必要が あります。同様に、SPI 制御を使用するには、SPI 制御ピンの使 用前に DVDD をオンにする必要があります。

ADMV1013 の SPI 設定では、最適動作のため、スタートアップ時にデフォルト設定を変更する必要があります。

パワーアップまたはリセットごとにレジスタ 0x0A を 0xE700 に 設定してください。

ベースバンド直交変調(I/Q モード)

I/Q モードでは、ベースバンド・ピン (I_P、I_N、Q_P、Q_N) の入力インピーダンスは 100Ω 差動です。これらの入力には DC カップリングした 100Ωの差動負荷による負荷が加わっています。 I_PとI_Nは差動ベースバンドのI入力で、Q_PとQ_Nは差動ベ ースパンドのQ入力です。これらの入力は、V_{CM}が 0V~2.6Vの 範囲で動作できます。ベースバンド I/Q ポートは、I および Q チ ャンネルごとに DC~6.0GHz の範囲で動作できます。

ADMV1013 を I/Q モードに設定するには、MIXER_IF_EN ビット (レジスタ 0x03、ビット 7) を 0 に設定します。

外部 V_{CM} を変更する場合、内蔵ミキサーのゲート電圧も変更す る必要があります。この変更を行うには、MIXER_VGATE(レジスタ0x05、ビット[6:0])をセットします。MIXER_VGATE の値は次のように V_{CM} に従います。すなわち、 V_{CM} が 0V~1.8V の場合は MIXER_VGATE = 23.89 V_{CM} +81、 V_{CM} が 1.8V~2.6Vの 場合は MIXER VGATE = 23.75 V_{CM} +1.25 です。

単側波帯アップコンバージョン(IF モード)

ADMV1013 は、不要な側波帯を通常 26dBc 以上抑えながら、 0.8GHz~6.0GHzの任意の実IF入力をアップコンバートする機能 を備えています。IF 入力は互いに直交しており、 50Ω にシング ルエンド整合し、内部で DC カップリングしています。IF_I と IF_Q は直交 IF 入力です。適切な側波帯を選択するには外付けの 90° ハイブリッドが必要です。ADMV1013 を IF モードに設定す るには、MIXER_IF_EN ビット (レジスタ 0x03、ビット 7) を 1 に設定します。MIXER_IF_EN ビットは、SPI の起動時とリセッ ト時に、デフォルトで IF モードに設定されます。

また、IF モードで最適動作するためには、ベースバンド・ピン (I_P、I_N、Q_P、Q_N)の負荷がオープンである必要があり ます。

LO 入力パス

LO入力パスは、周波数が 5.4GHz~10.25GHz、LO振幅が-6dBm ~+6dBmの範囲で動作します。LOには4 逓倍器とプログラマブ ル・バンドパス・フィルタが内蔵されています。LOのバンドパ ス・フィルタは、QUAD_FILTERSビット(レジスタ0x09、ビッ ト [3:0])を使用して設定できます。QUAD_FILTERSの設定 については、様々なクワッド・フィルタ設定での性能のセクシ ョンを参照してください。

LO パスは差動でもシングルエンドでも動作できます。LOP と LON は LO パスへの入力です。QUAD_SE_MODE ビット(レジ スタ 0x09、ビット [9:6])の設定によって、LO パスの差動と シングルエンドの切替えができます。詳細は、差動LO入力とシ ングルエンドLO入力との性能比較のセクションを参照してくだ さい。LO をシングルエンドで使用する場合、使用しない LO入 力ピンは 50Ω 負荷で終端する必要があります。

LO パスのブロック図を図 81 に示します。

図 81. LO パスのブロック図

4 逓倍器をイネーブルするには、QUAD_PD ビット(レジスタ 0x03、ビット [13:11])を 0x0 に設定します。4 逓倍器をパワ ー・ダウンするには、これらのビットを 0x7 に設定します。

側波帯抑圧特性の最適化

直交LO信号と外部直交入力を生成することで、不要な側波帯を 直交誤差からアップコンバートできます。これらの信号が理想 的な直交状態(すなわち、サイドバンド除去が徹底され、サイ ドバンド・トーンのアップコンバートがない状態)からどれだ けずれているかによって、サイドバンドを除去できる量が制限 されます。

ADMV1013では、サイドバンドを抑制するために、LOパスの直 交信号に約25°の直交位相調整幅があります。これらの調整は、 LOAMP_PH_ADJ_I_FINE ビット(レジスタ 0x05、ビット [13:7])とLOAMP_PH_ADJ_Q_FINE ビット(レジスタ 0x06、 ビット [13:7])で行います。これらのビットによって、不要 なサイドバンド信号が除去されます。必要なサイドバンド抑圧 特性を実現するには、直交入力間の振幅の差を外部からも調整 することが必要となる場合があります。

I/Qモードの場合、外部トランシーバーのD/Aコンバータ(DAC) によってサイドバンド抑圧特性を調整することを推奨します。

搬送波フィードスルーのヌル化

搬送波フィードスルーは、内蔵ミキサーで発生するわずかな DC オフセットが原因です。I/Q 変調器の場合、非ゼロの差動オフセ ットが LO と混合し、RF 出力で搬送波フィードスルーを生じま す。この効果に加え、LO 入力の信号の一部が、直接 RF 出力と 結合します(これは、ボンディング・ワイヤ同士のカップリン グやシリコン基板を通じたカップリングが原因である可能性が あります)。これら 2 つの効果のため、RF 出力の正味の搬送波 フィードスルーは、出力に発生する信号のベクトル和となりま す。

IF モードの場合、ADMV1013 には、LOパスにLOフィードスル ー・オフセットのキャリブレーション調整機能を備えています。 これらの調整は、MXER_OFF_ADJ_I_N ビット(レジスタ 0x07、 ビット [8:2])、MXER_OFF_ADJ_I_P ビット(レジスタ 0x07、 ビット [15:9])、MXER_OFF_ADJ_Q_N ビット(レジスタ 0x08、ビット [8:2])、MXER_OFF_ADJ_Q_P ビット(レジス タ 0x08、ビット [15:9])を通じて行い、不要なLO信号を除去 します。

I/Q モードの場合、LO フィードスルー・オフセットの振幅と位 相のキャリブレーションは、トランシーバーDAC を使用して外 部から調整することで最適化できます。

エンベロープ・ディテクタ

ADMV1013 には、擬似差動電圧出力を備えたエンベロープ・デ ィテクタ機能があります。このエンベロープ・ディテクタ出力 ピンは VENV_Pおよび VENV_Nです。エンベロープ・ディテク タがオフのときに ADMV1013 はオンになります。エンベロー プ・ディテクタをオンにするには、DET_EN ビット (レジスタ 0x03、ビット 5)をセットします。エンベロープ・ディテクタ の差動電圧出力は、ディテクタの入力エンベロープ電圧の 2 乗 に比例します。入力のツー・トーンの電力範囲が-20dBm~ 0dBmの場合、ディテクタの出力範囲は-45dBm~-20dBmです。 エンベロープ・ディテクタには、350MHz、3dB のエンベロープ 帯域幅と、1GHz、10dB のエンベロープ帯域幅があります。エ ンベロープ・ディテクタは、ADMV1013 の VVA および出力ド ライバの前段に配置されています。

パワー・ダウンとリセット

ADMV1013 の SPI を使用して、デバイス回路をパワー・ダウン し、消費電力を 77mW (代表値) に低減することができます。 チップ全体をオフにするには、BG_PD ビット (レジスタ 0x03、 ビット 10) を 1 に設定します。また、回路の個々のブロックを 個別にパワー・ダウンすることもできます。4 逓倍器をパワ ー・ダウンするには、QUAD_PD ビット (レジスタ 0x03、ビッ ト [13:11])を 0x7に設定します。VGA をパワー・ダウンする には、VGA_PD ビット (レジスタ 0x03、ビット 15)を1に設定 します。ミキサーをパワー・ダウンするには、MIXER_PD ビッ ト (レジスタ 0x03、ビット 14)を1に設定します。ディテクタ をパワー・ダウンするには、DET_EN ビット (レジスタ 0x03、 ビット 5)を0に設定します。

シリアル・ポート・インターフェース(SPI)

ADMV1013のSPIを使用すると、4線式SPIポートを介して、特定の機能や動作を実行するようデバイスを設定できます。この インターフェースにより、柔軟性とカスタマイズ化が向上しま す。SPIを構成する制御ラインは、SCLK、SDI、SDO、アクテ ィブ・ローのチップ・セレクト・ラインであるSEN/SEN2の4本 です。SENおよびSEN2は、互いに結合している必要があります。

ADMV1013 のプロトコルは、書込み/読出しビットに続き、6 ビットのレジスタ・アドレス・ビット、16 のデータ・ビット、 1 つのパリティ・ビットからなります。アドレス・フィールド とデータ・フィールドは、MSB ファーストで構成され、LSB で 終了します。書込みの場合は、最初のビットを 0 にセットしま す。読出しの場合は、最初のビットを1にセットします。

書込みサイクルは立上がりエッジでサンプリングされます。16 ビットのシリアル書込みデータは、MSB から下側波帯へとシフ ト・インします。ADMV1013 の書込みサイクル用入力ロジッ ク・レベルは、1.8V インターフェースをサポートしています。

読出しサイクルでは、最大 16 ビットのシリアル読出しデータが MSBファーストでシフト・アウトします。16 ビットのデータの シフト・アウト後、パリティ・ビットがシフト・アウトします。 読出しサイクルの出力ロジック・レベルは、1.8Vです。

パリティ・ビットは常にデータの方向に従います。パリティを 使用しない場合、伝送の末尾にはパリティではなく、ゼロが伝 送されます。パリティは奇数です。すなわち、読出し/書込み ビット、アドレス・ビット、データ・ビット、パリティ・ビッ トを含め、コマンドの間に伝送される1の合計数は奇数でなく てはなりません。

SPIの書込みプロトコルを図 82 に、読出しプロトコルを図 83 に 示します。

図 82. SPI 書込みのタイミング図

アプリケーション情報 低周波数からのベースバンド直交変調

低ベースバンド入力周波数時の I/Q モード性能を図 84 に示します。測定条件は、28GHz、入力パワー=-10dBm、 $V_{CM} = 0V$ 、レジスタ 0x03 のビット 7 = 0、LO入力パワー = 0dBm、 $T_A = 25^{\circ}C$ です。

様々なクワッド・フィルタ設定での性能

IF モード時の変換ゲインと RF 周波数の関係を図 85 に示します。 様々な QUAD_FILTERS 設定に対し、 $T_A = 25^{\circ}C$ 、LO入力パワー = 0dBm で測定しました。

RF 周波数の関係(f_{IF} = 3.5GHz、上側波帯)

様々なクワッド・フィルタ設定での 4×LO/RF リークと 4×LO 周 波数の関係を、図 86 に示します。

VVA の温度補償

レジスタ 0x0A の 2 通りの設定(推奨設定(0xE700)と高ゲイン 設定)および 3 通りの温度での IF モードの変換ゲインと RF 周 波数の関係を、図 87 に示します。スタートアップ・シーケンス のセクションで示した推奨値を使用した場合、温度に対する変 換ゲインの変動は最小となっています。変換ゲインを増加する ことを優先する場合は、レジスタ 0x0A を 0xFA00に設定するこ とができます。ただし、この値の場合、温度に対する変換ゲインの変動は 2dB 分増大するおそれがあります。

図 87. 様々な温度およびレジスタ 0x0A 設定 (推奨設定および高ゲイン設定)での最大ゲイン時の変換ゲインと RF 周波数の関係(f_{IF} = 3.5GHz)

ADMV1013

レジスタ 0x0A の 2 通りの設定(推奨設定とデフォルト設定)および 3 通りの温度での IF モードの変換ゲインと RF 周波数の関係を、図 88 に示します。推奨設定に比べ、デフォルト設定の場合、ゲインがわずかに低下し、温度に対するゲイン変動が大きくなっています。

図 88. 様々な温度およのレシスタ 0x0A 設定 (デフォルトおよび推奨のレジスタ 0x0A 設定)での 最大ゲイン時の変換ゲインと RF 周波数の関係(f_{IF} = 2GHz)

差動 LO 入力とシングルエンド LO 入力との 性能比較

ADMV1013 の LO 入力が差動の場合とシングルエンドの場合に ついて、変換ゲイン、出力 IP3、サイドバンド除去性能を、図 89~図 91 に示します。測定条件は、LO 入力パワー = 0dBm、IF モード、IF 周波数 = 3.5GHz、上側波帯、T_A = 25°Cです。

図 89.3 通りの LO モード設定での変換ゲインと RF 周波数の関係 (f_{IF} = 3.5GHz、上側波帯)

図 90.3 通りの LO モード設定での出力 IP3 と RF 周波数の関係 (RF 振幅 = トーンあたり-20dBm(20MHz 間隔)、f_{IF} = 3.5GHz、 上側波帯)

図 91.3 通りの LO モード設定でのサイドバンド除去比と RF 周波数 の関係(RF 振幅 = トーンあたり-30dBm(20MHz 間隔)、 f_{IF} = 3.5GHz、上側波帯)

ADMV1013

固定入力周波数時の RF 周波数特性

ADMV1013 の 4 逓倍器は、21.6GHz~41GHz で動作します。下 側波帯を使用している場合、4 逓倍器の周波数が 41GHz に達す ると、変換ゲインが徐々にロール・オフを始めます。上側波帯 を使用している場合、4逓倍器の周波数が 21.6GHzになると、変 換ゲインがロール・オフを始めます。

固定 IF 周波数での IF モードにおける変換ゲインと RF 周波数の 関係 $(T_A = 25^{\circ}C, LO = 0 \text{ dBm})$ を、上側波帯の場合について図 92 に、下側波帯の場合について図 93 に示します。

図 92. 様々な IF 周波数設定での変換ゲインと RF 周波数の関係 (上側波帯)

図 93. 様々な IF 周波数設定での変換ゲインと RF 周波数の関係 (下側波帯)

様々なベースバンド (BB) 周波数での I/Q モードにおける変換 ゲインと RF 周波数の関係 ($T_A=25^{\circ}C$ 、LO=0dBm) を、上側波 帯の場合について図 94 に、下側波帯の場合について図 95 に示 します。

95. 様々なベースバンド周波数設定での変換ゲインる RF 周波数の関係(下側波帯)

ADMV1013

I/Q モードにおけるコモンモード電圧での性能

図 96~図 98 に、I/Q モードにおける様々なコモンモード電圧での性能を示します。それぞれのコモンモード電圧に対し、ベースバンド直交変調(I/Q モード)のセクションで説明した式に基づいて、ミキサー電圧を変更しています。

図 96. I/Q モードにおける様々なコモンモード電圧での変換ゲイン と RF 周波数の関係(f_{BB} = 100MHz、LO = 0dBm, T_A = 25°C)

図 97. I/Q モードにおける様々なコモンモード電圧での出力 IP3 と RF 周波数の関係(f_{BB} = 100MHz、LO = 0dBm, T_A = 25℃)

図 98. I/Q モードにおける様々なコモンモード電圧での出力 P1dB と RF 周波数の関係(f_{BB} = 100MHz、LO = 0dBm, T_A = 25°C)

VCTRL1とVCTRL2の個別処理

仕様のセクションと代表的な性能特性のセクションで示したデ ータは、VCTRL1 と VCTRL2 の電圧が等しい場合のものです。 VCTRL1 と VCTRL2 を個別に使用できれば、細かいゲイン調整 が可能となります。VCTRL1 と VCTRL2 を個別に処理すること で、RF 出力を減衰しながら、IP3 性能やノイズ指数性能を維持 することもできます。

図 99、図 102、図 105 は、VCTRL1 が VCTRL2 に等しい場合の、 変換ゲイン、入力 IP3、ノイズ指数と RF 周波数の関係をそれぞ れ示したものです (IF = 2GHz、上側波帯、LO = 0dBm、 $T_A = 25$ °C)。

図 100、図 103、図 106 は、VCTRL2 が最小減衰量に維持され、 VCTRL1 を変化させた場合の、変換ゲイン、入力 IP3、ノイズ指 数と RF 周波数の関係をそれぞれ示したものです(IF = 2GHz、 上側波帯、LO = 0dBm、 $T_A = 25$ °C)。

図 101、図 104、図 107 は、VCTRL1 が最小減衰量に維持され、 VCTRL2 を変化させた場合の、変換ゲイン、入力 IP3、ノイズ指 数と RF 周波数の関係をそれぞれ示したものです(IF = 2GHz、 上側波帯、LO = 0dBm、T_A = 25°C)。

図 99. 様々な V_{CTRL}電圧(VCTRL1 = VCTRL2)での変換ゲインと RF 周波数の関係(IF モード、IF 周波数 = 2GHz、上側波帯)

図 101. 様々な VCTRL2 電圧(VCTRL1 = 1.8V) での変換ゲインと RF 周波数の関係(IF モード、IF 周波数 = 2GHz、上側波帯)

図 103. 様々な VCTRL1 電圧(VCTRL2 = 1.8V) での入力 IP3 と RF 周波数の関係(IF モード、IF 周波数 = 2GHz、上側波帯)

図 104. 様々な VCTRL2 電圧(VCTRL1 = 1.8V) での入力 IP3 と RF 周波数の関係(IF モード、IF 周波数 = 2GHz、上側波帯)

図 106. 様々な VCTRL1 電圧(VCTRL2 = 1.8V) でのノイズ指数と RF 周波数の関係(IF モード、IF 周波数 = 2GHz、上側波帯)

図 107. 様々な VCTRL2 電圧(VCTRL1 = 1.8V)でのノイズ指数と RF 周波数の関係(IF モード、IF 周波数 = 2GHz、上側波帯)

推奨されるランド・パターン

データシート

ADMV1013 の底面にある露出パッドを、熱抵抗および電気抵抗 の低いグランド・プレーンにハンダ付けします。通常、このパ ッドを評価用ボードのハンダ・マスクで覆われていない開口部 にハンダ付けします。これらのグラウンド・ビアを評価用ボー ドの他のすべてのグラウンド層に接続し、デバイス・パッケー ジの放熱を最大化します。

評価用ボードの情報

ADMV1013 評価用ボードの詳細については、ADMV1013-EVALZ ユーザ・ガイドを参照してください。

レジスタの一覧

表 6.

Rea			Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8		
(Hex)	Register Name	Bits	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset	R/W
00	SPI_CONTROL	[15:8]	PARITY_EN	SPI_SOFT_ RESET	RESI	ERVED		C	HIP_ID		0x00A4	R/W
		[7:0]		CH	IIP_ID			RI	EVISION			
01	ALARM	[15:8]	PARITY_ ERROR	TOO_FEW_ ERRORS	TOO_MANY_ ERRORS	ADDRESS_ RANGE_ ERROR		RE	SERVED		0x0000	R
		[7:0]				RESERVED						
02	ALARM_MASKS	[15:8]	PARITY_ ERROR_ MASK	TOO_FEW_ ERRORS_ MASK	TOO_MANY_ ERRORS_ MASK	ADDRESS_ RANGE_ ERROR_MASK		RE	SERVED		0xFFFF	R/W
		[7:0]				RESERVED						
03	ENABLE	[15:8]	VGA_PD	MIXER_PD		QUAD_PD		BG_PD	R	ESERVED	0x01D7	R/W
		[7:0]	MIXER_IF_EN	RESERVED	DET_EN		I	RESERVED				
05	LO_AMP_I	[15:8]	RESEF	VED		LOAM	IP_PH_ADJ	_I_FINE			0x5051	R/W
		[7:0]	LOAMP_ PH_ADJ_ I_FINE			MIXER_V	GATE					
06	LO_AMP_Q	[15:8]	RESEF	VED		LOAM	P_PH_ADJ	Q_FINE			0x5000	R/W
		[7:0]	LOAMP_ PH_ADJ_ Q_FINE			RESERV	/ED					
07	OFFSET_ADJUST_I	[15:8]			MXER_OFF	_ADJ_I_P				MXER_OFF_ ADJ_I_N	0xFFFC	R/W
		[7:0]			MXER_OFF_AD.	I_I_N			R	ESERVED		
08	OFFSET_ADJUST_Q	[15:8]		MXER_OFF_ADJ_Q_P ADJ_Q_N						0xFFFC	R/W	
		[7:0]		MXER_OFF_ADJ_Q_N[5:0] RESERVED								
09	QUAD	[15:8]			RESERVED				QUA	D_SE_MODE	0x5700	R/W
		[7:0]	QUAD_SH	E_MODE	RESI	ERVED		QUA	D_FILTER	S		
0A	VVA_TEMPERATURE_	[15:8]			VVA_TEMP	ERATURE_COMPEN	ISATION				0x0000	R/W
	COMPENSATION	[7:0]			VVA_TEMP	ERATURE_COMPEN	ISATION					

ADMV1013

レジスタの詳細

アドレス:0x00、リセット:0x00A4、レジスタ名:SPI_CONTROL

表 7. SPI_CONTROL のビットの説明

ビット	ビット名	設定	説明	リセット	アクセス
15	PARITY_EN		書込み実行のためパリティを有効化	0x0	R/W
14	SPI_SOFT_RESET		SPIソフト・リセット	0x0	R/W
[13:12]	RESERVED		予備	0x0	R
[11:4]	CHIP_ID		チップ ID	0xA	R
[3:0]	REVISION		リビジョン ID	0x4	R

アドレス:0x01、リセット:0x0000、レジスタ名:ALARM

表 8. ALARM のビットの説明

ビット	ビット名	設定	説明	リセット	アクセス
15	PARITY_ERROR		パリティ・エラー	0x0	R
14	TOO_FEW_ERRORS		エラー過少	0x0	R
13	TOO_MANY_ERRORS		エラー過多	0x0	R
12	ADDRESS_RANGE_ERROR		アドレス範囲エラー	0x0	R
[11:0]	RESERVED		予備	0x0	R

アドレス: 0x02、リセット: 0xFFFF、レジスタ名: ALARM_MASKS

表 9. ALARM_MASKS のビットの説明

ビット	ビット名	設定	説明	リセット	アクセス
15	PARITY_ERROR_MASK		パリティ・エラー・マスク	0x1	R/W
14	TOO_FEW_ERRORS_MASK		エラー過少マスク	0x1	R/W
13	TOO_MANY_ERRORS_MASK		エラー過多マスク	0x1	R/W
12	ADDRESS_RANGE_ERROR_MASK		アドレス範囲エラー・マスク	0x1	R/W
[11:0]	RESERVED		予備	0xFFF	R

ADMV1013

アドレス:0x03、リセット:0x01D7、レジスタ名:ENABLE

表 10. ENABLE のビットの説明

ビット	ビット名	設定	説明	リセット	アクセス
15	VGA_PD		VGA 回路をパワー・ダウン	0x0	R/W
14	MIXER_PD		ミキサー回路をパワー・ダウン	0x0	R/W
[13:11]	QUAD_PD		クワッドをパワー・ダウン	0x0	R/W
		000	LOクワッド回路をイネーブル		
		111	LO クワッド回路をディスエーブル		
10	BG_PD		トランスミッタ・バンドギャップをパワー・ダウン	0x0	R/W
[9:8]	RESERVED		予備	0x0	R
7	MIXER_IF_EN		IFモードを有効化	0x1	R/W
6	RESERVED		予備	0x1	R
5	DET_EN		エンベロープ・ディテクタをイネーブル	0x0	R/W
[4:0]	RESERVED		予備	0x17	R

アドレス:0x05、リセット:0x5051、レジスタ名:LO_AMP_I

[13:7] LOAMP_PH_ADJ_I_FINE (R/W) -Mixer Image Rejection Calibration [6:0] MIXER_VGATE (R/W) Control Mixer Gate Voltage. For 0 V to 1.8 V, MIXER_VGATE = 23.89 x Common-Mode Voltage +81, and for 1.8 V to 2.6 V, MIXER_VGATE = 23.75 x Common-Mode Voltage +1.25.

[6:0] RESERVED

表 11. LO_AMP_Iのビットの説明

ビット	ビット名	設定	説明	リセット	アクセス
[15:14]	RESERVED		予備	0x1	R
[13:7]	LOAMP_PH_ADJ_I_FINE		ミキサーのイメージ除去キャリブレーション	0x20	R/W
[6:0]	MIXER_VGATE		制御ミキサーのゲート電圧 0V~1.8Vの場合、 MIXER_VGATE = 23.89×コモンモード電圧+81、1.8V~ 2.6Vの場合、MIXER_VGATE = 23.75×コモンモード電圧 +1.25	0x51	R/W

アドレス:0x06、リセット:0x5000、レジスタ名:LO_AMP_Q

 15
 14
 13
 12
 11
 10
 9
 8
 7
 6
 5
 4
 3
 2
 1
 0

 0
 1
 0
 1
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

表 12. LO AMP Qのビットの説明

ビット	ビット名	設定	説明	リセット	アクセス
[15:14]	RESERVED		予備	0x1	R
[13:7]	LOAMP_PH_ADJ_Q_FINE		ミキサーのイメージ除去キャリブレーション	0x20	R/W
[6:0]	RESERVED		予備	0x0	R

ADMV1013

アドレス:0x07、リセット:0xFFFC、レジスタ名:OFFSET_ADJUST_I

[15:9] MXER_OFF_ADJ_I_P (R/W) LO Feedthrough Offset Calibration I Positive for IF Mode

[8:2] MXER_OFF_ADJ_I_N (R/W) – LO Feedthrough Offset Calibration I Negative for IF Mode

表 13. OFFSET ADJUST Iのビットの説明

ビット	ビット名	設定	説明	リセット	アクセス
[15:9]	MXER_OFF_ADJ_I_P		LOフィードスルー・オフセットのキャリブレーション(IFモー	0x7F	R/W
			ドのIポジティブ)		
[8:2]	MXER_OFF_ADJ_I_N		LOフィードスルー・オフセットのキャリブレーション(IFモー	0x7F	R/W
			ドのIネガティブ)		
[1:0]	RESERVED		予備	0x0	R

アドレス: 0x08、リセット: 0xFFFC、レジスタ名: OFFSET_ADJUST_Q

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	
[15:9] MXER_OFF_ADJ_Q_P (R/W) · LO Feedthrough Offset Calibration Q Positive for IF Mode																	- [1:0] RESERVED
[8:2] MXER_OFF_ADJ_Q_N (R/W) -																	

[8:2] MXER_OFF_ADJ_Q LO Feedthrough Offset Calibration Q Negative for IF Mode

表 14. OFFSET ADJUST Qのビットの説明

ビット	ビット名	設定	説明	リセット	アクセス
[15:9]	MXER_OFF_ADJ_Q_P		LO フィードスルー・オフセットのキャリブレーション(IFモ	0x7F	R/W
			ードのQポジティブ)		
[8:2]	MXER_OFF_ADJ_Q_N		LO フィードスルー・オフセットのキャリブレーション(IFモ	0x7F	R/W
			ードのQネガティブ)		
[1:0]	RESERVED		予備	0x0	R

アドレス:0x09、リセット:0x5700、レジスタ名:QUAD

表 15. QUAD のビットの説明

ビット	ビット名	設定	説明	リセット	アクセス
[15:10]	RESERVED		予備	0x15	R
[9:6]	QUAD_SE_MODE		差動モード/シングルエンド・モードの切替え	0xC	R/W
		0110	シングルエンド・モード、負側ディスエーブル		
		1001	シングルエンド・モード、正側ディスエーブル		
		1100	差動モード		
[5:4]	RESERVED		予備	0x0	R
[3:0]	QUAD_FILTERS		LOフィルタ帯域幅の選択	0x0	R/W
		0000	LOフィルタ帯域幅: 8.62GHz~10.25GHz		
		0101	LO フィルタ帯域幅: 6.6GHz~9.2GHz		
		1010	LOフィルタ帯域幅: 5.4GHz~8GHz		
		1111	LOフィルタ帯域幅: 5.4GHz~7GHz		

データシート

アドレス:0x0A、リセット:0x0000、レジスタ名:VVA_TEMPERATURE_COMPENSATION

15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
<t

[15:0] VVA_TEMPERATURE_COMPENSATION (R/W)-VVA Temperature Compensation. PARITY_EN must be disabled when updating the VVA temperature compensation

表 16. VVA_TEMPERATURE_COMPENSATION のビットの説明

ビット	ビット名	設定	説明	リセット	アクセス
[15:0]	VVA_TEMPERATURE_COMPENSATION		VVA の温度補償。VVA の温度補償を更新する 場合、PARITY_EN を無効化する必要がありま す。起動時には 0xE700 に設定されます。	0x0	R/W

外形寸法

オーダー・ガイド

Model ¹	Temperature Range	Package Description	Package Option
ADMV1013ACCZ	-40°C to +85°C	40-Terminal Land Grid Array Package [LGA]	CC-40-5
ADMV1013ACCZ-R7	-40°C to +85°C	40-Terminal Land Grid Array Package [LGA]	CC-40-5
ADMV1013-EVALZ		Evaluation Board	

¹Z=RoHS 準拠製品。

Rev. 0