

概要

MAX1680/MAX1681は、+2.0V~+5.5Vの入力電圧 を反転又は2倍化して125mAの出力電流を供給する インダクタレスのスイッチドキャパシタ電圧コンバータ です。周波数を選択できるため、小型コンデンサ (MAX1680は4.7µF、MAX1681は1µF)を使用するこ とができます。出力電流能力が大きいため、これらの チャージポンプ素子は(高価な外付部品とボード面積を 要する)インダクタ搭載のレギュレータを置き換えるの に適しています。

これら素子は等価出力抵抗は3.5 (tvp)であるため、僅か 440mVの電圧降下で125mAを供給できます。シャット ダウン機能により自己消費電流を1µA以下に低減できま す。MAX1680/MAX1681は、8ピンSOPパッケージで 提供されています。より小型のμMAXパッケージで 最大50mAを供給する素子については、MAX860/ MAX861データシートを参照してください。

アプリケーション

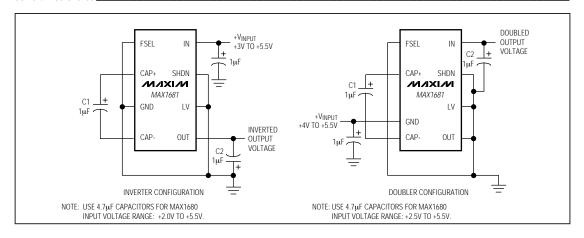
ローカル負電源

インタフェース電源

オペアンプ雷源

MOSFETバイアス

特長


- ◆ スイッチング周波数を選択可能: 125kHz/250kHz(MAX1680) 500kHz/1MHz(MAX1681)
- ◆ 小型コンデンサの使用可能 (MAX1681は1µF)
- ◆ 出力雷流: 125mA
- ◆ 出力インピーダンス:3.5
- ◆ 1µAロジック制御シャットダウン
- ◆ 電圧インバータ又はダブラとして使用可能
- ◆ 入力電圧範囲:+2.0V~+5.5V
- ◆ パッケージ:8ピンSOP
- ◆ 効率:90%

	PART	TEMP. RANGE	PIN-PACKAGE
r	MAX1680C/D	0°C to +70°C	Dice*
N	MAX1680ESA	-40°C to +85°C	8 SO
ľ	MAX1681C/D	0°C to +70°C	Dice*
N	MAX1681ESA	-40°C to +85°C	8 SO

^{*}Contact factory for dice specifications.

ピン配置はデータシートの最後に記載されています。

標準動作回路

ABSOLUTE MAXIMUM RATINGS

Note 1: Shorting OUT to IN may damage the device and should be avoided.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

(*Typical Operating Circuits* (inverter configuration), FSEL = LV = GND, $V_{IN} = 5V$, C1 = C2 = $10\mu F$ (MAX1680), C1 = C2 = $2.2\mu F$ (MAX1681), $T_A = 0^{\circ}C$ to +85°C, unless otherwise noted. Typical values are at $T_A = +25^{\circ}C$.)

PARAMETER	SYMBOL	CO	NDITIONS		MIN	TYP	MAX	UNITS
		Inverter configuration	Inverter configuration, R _L = $1k\Omega$, LV = GND MAX1680 MAX1681		2.0		5.5	
Input Voltage Range	VIN	$R_L = 1k\Omega$, $LV = GN$			3.0		5.5	V
input voltage Range	VIN	Doubler configurati	Doubler configuration,		2.5		5.5	
		$R_L = 1k\Omega$, $LV = OU$	T	MAX1681	4.0		5.5	
			FSEL = IN	$T_A = +25$ °C		2.5	4.5	
		MAX1680	(125kHz)				5.4	
		WAXTOOO	FSEL = LV	T _A = +25°C		5	9	
Supply Current			(250kHz)				10.8	mA
Supply Current	''		FSEL = IN	$T_A = +25^{\circ}C$		10	18	1117 (
	1	MAX1681	(500kHz)				21.6	
		1001	FSEL = LV	T _A = +25°C		20	36	
			(1MHz)				43.2	
Output Voltage Under Load (Note 2)	Vload	I _{LOAD} = 125mA			-3.75	-4.56		V
Output Resistance (Note 2)	Rout	FSEL = IN or LV				3.5	10	Ω
Output Resistance to Ground in Shutdown	Rout(shut)	SHDN = IN				1	5	Ω
Shutdown Current	I+shDN	OUT = GND, SHDN	I = IN				1	μA
Input Bias Current (SHDN)	ISHDN				-1		1	μA
Input Bias Current (FSEL)	IFSEL				-1		1	μA
CL LL FOEL TILLIA	VIL	11/ CND (N. 1. 2)					1	V
Shutdown, FSEL Thresholds	V _{IH}	LV = GND (Note 3)			4			V
			ECEL IV	T _A = +25°C	187	250	313	
		144V/1/00	FSEL = LV		157		348	
		MAX1680	ECEL IN	T _A = +25°C	94	125	156	1
C. Halling Francisco			FSEL = IN		79		174	l
Switching Frequency	fosc		F0F1 137	T _A = +25°C	750	1000	1250	- kHz -
		FSEL = L	FSEL = LV		570		1490	
		MAX1681	5051 111	T _A = +25°C	375	500	625	
			FSEL = IN		285		745	

ELECTRICAL CHARACTERISTICS (continued)

(*Typical Operating Circuits* (inverter configuration), FSEL = LV = GND, $V_{IN} = 5V$, C1 = C2 = $10\mu F$ (MAX1680), C1 = C2 = $2.2\mu F$ (MAX1681), $T_A = 0^{\circ}C$ to +85°C, unless otherwise noted. Typical values are at $T_A = +25^{\circ}C$.)

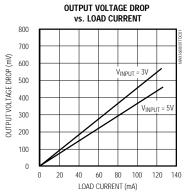
PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Power Efficiency		$R_1 = 100\Omega$ to GND, FSEL = IN	MAX1680		90		0/.
Fower Efficiency		$R_L = 100\Omega$ to GND, FSEL = IN	MAX1681		80		76

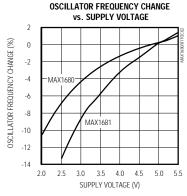
ELECTRICAL CHARACTERISTICS

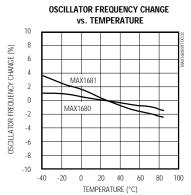
(*Typical Operating Circuits* (inverter configuration), FSEL = LV = GND, V_{IN} = 5V, C1 = C2 = $10\mu F$ (MAX1680), C1 = C2 = $2.2\mu F$ (MAX1681), T_A = -40°C to +85°C, unless otherwise noted.) (Note 4)

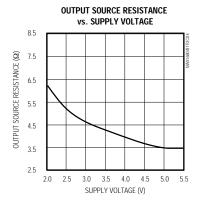
PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS	
		Inverter configuration,	MAX1680	2.0		5.5		
Input Voltage Range	VIN	$R_L = 1k\Omega$, LV = GND	MAX1681	3.0		5.5	V	
iliput voltage Karige	VIN	Doubler configuration,	MAX1680	2.5		5.5		
		$R_L = 1k\Omega$, $LV = OUT$	MAX1681	4.0		5.5		
		MAX1680	FSEL = IN (125kHz)			5.4		
Supply Current	1.	IVIAX 1000	FSEL = LV (250kHz)			10.8		
Supply Current	1+		FSEL = IN (500kHz)			21.6	mA mA	
		MAX1681	FSEL = LV (1MHz)			43.2		
Output Voltage Under Load (Note 2)	V _{LOAD}	I _{LOAD} = 125mA		-3.75			V	
Output Resistance (Note 2)	Rout	FSEL = IN or LV				10	Ω	
Output Resistance in Shutdown	Rout(shut)	SHDN = IN				5	Ω	
Shutdown Current	I+SHDN	OUT = GND, SHDN = IN				1	μΑ	
Input Bias Current (SHDN)	ISHDN					1	μΑ	
Input Bias Current (FSEL)	IFSEL			-1		1	μA	
Shutdown, FSEL Thresholds	VIL	LV = GND (Note 3)		-1		1	- V	
Shataown, i SEE miesholas	V _{IH}	EV - GIVD (Note 3)		4				
		MAX1680	FSEL = LV	157		348		
Switching Frequency	fosc	W/ // 1000	FSEL = IN	79		174	kHz	
Switching Frequency	1030	MAX1681	FSEL = LV	570		1490	NIIZ	
		W. 0.1001	FSEL = IN	285		745		

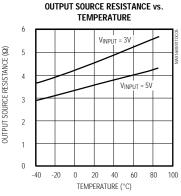
Note 2: C1 and C2 are low-ESR ($<0.2\Omega$) capacitors. Capacitor ESR adds to the circuit's output resistance. Using capacitors with higher ESR reduces output voltage and efficiency. The specified output resistance includes the C1 and C2 0.2Ω ESR.

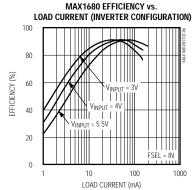

Note 3: The typical threshold for V_{INPUT} other than +5V is 0.35 V_{INPUT} ($V_{IL} = V_{IH}$).

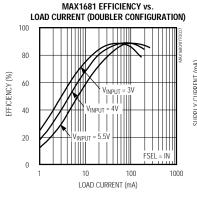

Note 4: Specifications to -40°C are guaranteed by design, not production tested.

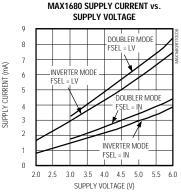


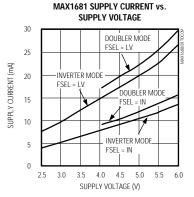

標準動作特性


(All curves generated using the inverter configuration shown in the *Typical Operating Circuits* with LV = GND, FSEL = IN or LV, $C1 = C2 = 10\mu F$ (MAX1680), $C1 = C2 = 2.2\mu F$ (MAX1681), and $T_A = +25^{\circ}C$, unless otherwise noted. Test results are also valid for the doubler configuration with LV = OUT and $T_A = +25^{\circ}C$.)

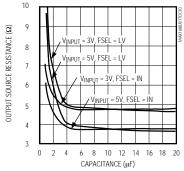


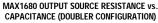


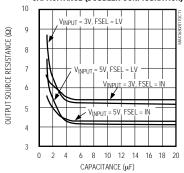


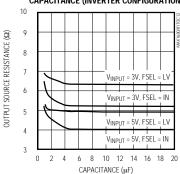


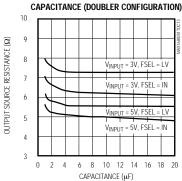
標準動作特性(続き)


(All curves generated using the inverter configuration shown in the *Typical Operating Circuits* with LV = GND, FSEL = IN or LV, $C1 = C2 = 10\mu F$ (MAX1680), $C1 = C2 = 2.2\mu F$ (MAX1681), and $T_A = +25^{\circ}C$, unless otherwise noted. Test results are also valid for the doubler configuration with LV = OUT and $T_A = +25^{\circ}C$.)






MAX1680 OUTPUT SOURCE RESISTANCE vs. CAPACITANCE (INVERTER CONFIGURATION)



MAX1681 OUTPUT SOURCE RESISTANCE vs. CAPACITANCE (INVERTER CONFIGURATION)

MAX1681 OUTPUT SOURCE RESISTANCE vs.

125mA、周波数選択式 <u>スイッチドキャパ</u>シタ電圧コンバータ

端子説明

端子	名称	機能				
编 <u>于</u>		インバータ	ダブラ			
1	FSEL	動作周波数を選択します。MAX1680はFSELがローの時に250kHz、FSELがハイの時に125kHzです。 MAX1681はFSELがローの時に1MHz、FSELがハイの時に500kHzです。				
2	CAP+	正チャージポンプコンデンサ接続部				
3	GND	電源グランド入力	電源正電圧入力			
4	CAP-	負チャージポンプコンデンサ接続部				
5	OUT	負電圧出力	電源グランド接続部			
6	LV	ロジック電圧入力。LVをGNDに接続してください。	LVをOUTに接続してください。			
7	SHDN	シャットダウン入力。SHDNがハイになるとチャージ ポンプがディセーブルされ、出力が0Vになります。 SHDNはCMOS入力です。	シャットダウン機能はありません。OUTに接続して ください。			
8	IN	電源正電圧入力	正電圧出力			

詳細

MAX1680/MAX1681スイッチドキャパシタ電圧コンパータは、入力電圧を反転又は2倍化します。出力抵抗は3.5 と低く、最大125mAの出力電流を供給できます。2つの周波数(MAX1680は125kHz/250kHz、MAX1681は500kHz/1MHz)のうちの1つを動作周波数として選択できます。これにより、コンデンササイズ、動作消費電流及び全体的な回路効率を最適化するための柔軟性が得られます。また、周波数を選択することにより、他の敏感な回路へのカップリングを最小限に抑えることができます。これらの素子は内部分周器を持っていないため、発振器周波数がスイッチング周波数に等しくなっています。カスケード接続にして出力電圧を高くしたり、並列に接続して大きな電流を供給することが簡単にできます。

MAX1680/MAX1681は、消費電流を 1μ A以下に低減するシャットダウンモード(SHDN = 八イ)を備えています。シャットダウンモードでは、インバータ構成におけるOUTは、グランドに引きつけられます。ダブラモードではシャットダウンはできません。この場合は、SHDNをOUTに接続してください。

アプリケーション情報

電圧インバータ

MAX1680/MAX1681の最も一般的なアプリケーションとしては、シンプルなインバータが挙げられます。「標準動作回路」(インバータ構成)に示すように、3つの外部コンデンサ(入力バイパスコンデンサを含む)を必要とします。出力は安定化されていませんが、負荷が

125mAの時の出力抵抗による標準的な電圧降下は僅か 0.44Vです。このように出力抵抗が小さいため、本素 子は負荷の変化に対し比較的鈍感です(「標準動作特性」 の項の出力ソース抵抗対温度及び電源電圧のグラフを 参照)。

電圧ダブラ

「標準動作回路」(ダブラ構成)に示すように、MAX1680/MAX1681は2つの外付コンデンサと組合せることで電圧ダブラとして構成することができます。負荷がある時の出力電圧降下は電圧インバータの場合と同様です。最小入力電源範囲は、インバータ構成の場合よりも多少高くなります。リップル電圧は、「コンデンサの選択」の項の式を使用して計算してください。

周波数制御

周波数制御ピンFSELにより設計に融通性が増します。 各素子は、2つの選択可能な周波数を持っています (MAX1680は125kHz/250kHz、MAX1681は500kHz/ 1MHz)。これにより、必要な出力負荷に対するコン デンササイズ及び消費電流の最適化が可能です。表1に、 選択できる周波数を示します。

表1. 公称スイッチング周波数

FSELの接続	周波数(kHz)			
FSELUJ按統	MAX1680	MAX1681		
FSEL = LV	250	1000		
FSEL = IN	125	500		

動作周波数の選択

スイッチング周波数、消費電力、ノイズ、コスト及び性能の間のバランスを考慮することが重要です。スイッチング周波数が高ければ、同じ出力インピーダンスに対してコンデンサのサイズが小さくなるため、コンデンサコストとボードスペースが節約できます。周波数が低ければ消費電流が小さくなります。表2に長所と短所の比較を示します。。

表2. スイッチング周波数

属性	低周波数	高周波数
出力リップル	大	小
C1、C2の値	大	小
消費電流	小	大

コンデンサの選択

MAX1680/MAX1681は、それぞれ 10μ F及び 2.2μ Fのコンデンサ値でテストされています。コンデンササイズ及びスイッチング速度により、出力抵抗が決まります。C1の値が大きくなると出力抵抗が小さくなり、やがて内部スイッチ抵抗(3.5 typ)が主要成分になります。低ESRコンデンサを使用すると、出力抵抗及びリップル電圧が最小限になります。回路全体の出力抵抗は、次式で近似できます。

 $ROUT \cong RO + 4 \times ESRC1 + ESRC2 + [1 / (fosc \times C1)] + [1 / (fosc \times C2)]$

ここで、 R_0 は素子の内部実効スイッチ抵抗、 f_{OSC} はスイッチング周波数です。出力が理想値の- V_{INPUT} (ダブラの場合は $2V_{INPUT}$)からどの程度降下するかは出力抵抗で決まるため、これは大変重要なパラメータです。

性能を最適化するには、システム内の全体的な抵抗を最小限に抑えてください。特に、コンデンサには大きな電流が流れるため、等価直列抵抗(ESR)により大きな損失が生じます。このため、効率を高くするには低ESRコンデンサを選択する必要があります。表3に、推奨コンデンサ及びメーカが記載されています。

出力リップルは、次式で計算してください。

 $V_{RIPPLE} = [(I_{OUT}) / (2 \times f_{OSC} \times C2)] + 2 \times (I_{OUT} \times ESR_{C2})$ ここで、 I_{OUT} は負荷電流、 f_{SU} は出力コンデンサ、 f_{SU} に出力コンデンサのESRです。

表4に、最大出力電流に必要な最小推奨容量を示します。出力コンデンサC2の容量は、通常チャージポンプポンプコンデンサC1の容量以上です。コンデンサ値は入力電圧、周波数及び負荷電流に直接比例してスケーリングすることができます。例えば、 f_{OSC} =125kHzで V_{INPUT} =5 V_{ILOAD} =125mAの場合、最小 6.4μ Fのコンデンサをお勧めします。出力が62.5mAの場合は、 3.2μ Fのコンデンサをお勧めします。C1の値は、次式で計算できます。

 $C1 = 6.4 \mu F \times (V_{INPUT} / 5.0 V) \times (125 kHz / f_{OSC}) \times (I_{LOAD} / 125 mA)$

ここで、f_{OSC}はスイッチング周波数(kHz)、I_{LOAD}は必要な出力電流(mA)です。

表3. 低ESRコンデンサのメーカ

SUPPLIER	PHONE	FAX	DEVICE TYPE
AVX	(803) 946-0690 (800) 282-4975	(803) 626-3123	Surface mount, TPS series
Marcon/United Chemi-Con	(847) 696-2000	(847) 696-9278	Ceramic capacitors
Matsuo	(714) 969-2491	(714) 960-6492	Surface mount, 267 series
Nichicon	USA: (847) 843-7500 Japan: 81-7-5231-8461	USA: (847) 843-2798 Japan: 81-7-5256-4158	Through-hole, PL series
Sanyo	USA: (619) 661-6835 Japan: 81-7-2070-6306	USA: (619) 661-1055 Japan: 81-7-2070-1174	Through-hole, OS-CON series
Sprague	(603) 224-1961	(603) 224-1430	Surface mount, 595D series
TDK	(847) 390-4373	(847) 390-4428	Ceramic capacitors
United Chemi-Con	(714) 255-9500	(714) 255-9400	Through-hole, LXF series
Vishay/Vitramon	(203) 268-6261	(203) 452-5670	SMT ceramic chip capacitors

表4. 最大出力電流に必要な最小推奨容量

food (kHz)	CAPACITANCE (μ F) (C1 = C2)					
fosc (kHz)	V _{IN} = 2V	V _{IN} = 3V	V _{IN} = 4V	V _{IN} = 5V		
125	2.5	3.8	5.1	6.4		
250	1.2	1.9	2.5	3.2		
500	0.6	0.9	1.2	1.6		
1000	0.3	0.4	0.6	0.8		

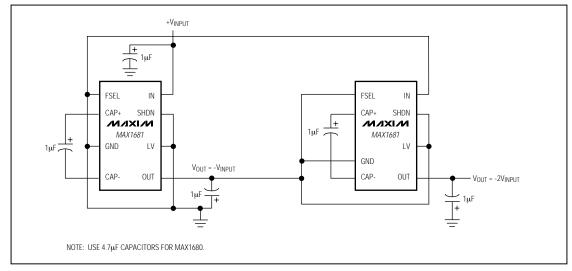


図1. MAX1680/MAX1681をカスケード接続して出力電圧を増加

バイパスコンデンサ

ACインピーダンスを低減し、内部スイッチングノイズを防ぐために入力をバイパスしてください。バイパスはソースインピーダンスの位置に依存します。ダブラ及びインバータのACリップル電流は2 x loutです。電源のACインピーダンスが高い場合は、大きなバイパスコンデンサ(C1に等しいもの)を使用してください。

素子のカスケード接続

大きな負電圧を生成するには、2つの素子をカスケード接続してください(図1)。2つの素子の場合、無負荷の出力電圧は約-2×V_{INPUT}になりますが、この値は1番目の素子の出力抵抗と2番目の素子の自己消費電流の積の分だけ低減します。カスケード接続された素子の

実効出力抵抗は、個々の素子よりも大きくなります(2つの素子で20)。数個の素子をカスケード接続すると、出力抵抗が増加し、効率が低下します。幾つかの段の大きな負電圧が必要な場合は、MAX629又はMAX774のようなインダクタを使った反転スイッチングレギュレータの方が有利な場合があります。

素子の並列接続

2つ以上のMAX1680/MAX1681を並列に接続すると、同じ負荷に対する出力抵抗による電圧降下が低減します。出力抵抗が小さくなるため、並列された素子は大きな負荷電流を供給します。図2に、並列に接続された2つのMAX1680/MAX1681を示します。出力抵抗は素子の数に逆比例します。

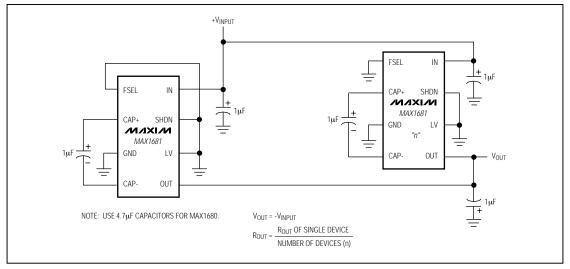


図2. 出力電流を増加させるためにMAX1680/MAX1681を並列に接続

ダブラ兼インバータ

図3は、ひとつのMAX1680/MAX1681をインバータ及びダブラとして使用する場合を示しています。最大出力電流は2つの出力の負荷の和であり、やはり125mAに制限されています。素子に負荷がかかると、出力電圧はグランドに向かって変化します。この構成では、LVをGNDに接続してください(インバータ)。この回路で使用されているダイオードにより、ダブラの出力電圧において約0.7Vの電圧降下が発生し、効率に影響します。

MAX660及びMAX860/MAX861との コンパチビリティ

MAX1680/MAX1681は、SHDNピン及びFSELピンを除けばMAX860/MAX861の代わりに使用できます。MAX1680/MAX1681は、MAX860/MAX861に比べて高い入力電圧でシャットダウンします。MAX1680/MAX1681は、選択できる周波数が2つだけとなっています。

MAX660をMAX1680/MAX1681で置き換えるには、 外部発振器ピンがシャットダウンに変わるため、配線 を変更する必要があります。表5に、これらの素子の比 較を示します。

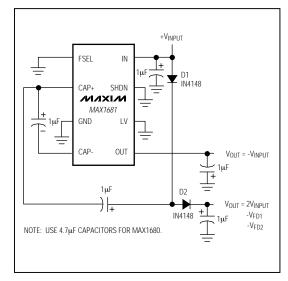
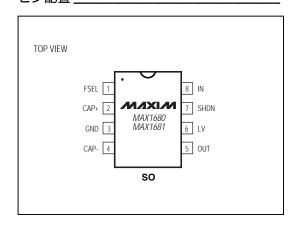
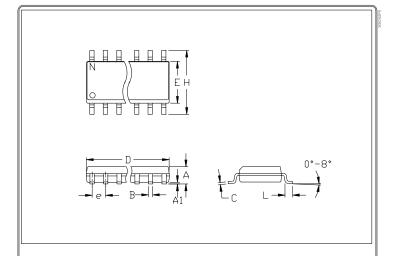



図3. ダブラ兼インバータ

表5. 素子の比較

品名	標準自己消費電流 (mA)	出力電流 (mA)	出力抵抗	スイッチング周波数 (kHz)
MAX660	0.12/1.0	100	6.5	5/40
MAX665	0.20/1.0	100	6.5	5/40
MAX860	0.20/0.60/1.40	50	12	6/50/130
MAX861	0.30/1.10/2.50	50	12	13/100/250
MAX1680	2.5/5.0	125	3.5	125/250
MAX1681	10/20	125	3.5	500/1000
ICL7660	0.080	10	55	5


ピン配置 _____

チップ情報 ____

TRANSISTOR COUNT: 171
SUBSTRATE CONNECTED TO IN

パッケージ

	INC	HES	MILLIM	ETERS
	MIN	MAX	MIN	MAX
Α	0.053	0.069	1.35	1.75
Α1	0.004	0.010	0.10	0.25
В	0.014	0.019	0.35	0.49
С	0.007	0.010	0.19	0.25
е	0.0)50	1.8	27
Ε	0.150	0.157	3.80	4.00
Н	0.228	0.244	5.80	6.20
h	0.010	0.020	0.25	0.50
L	0.016	0.050	0.40	1.27

	INCHES		MILLIMETERS			
	MIN	MAX	MIN	MAX	Z	MS012
D	0.189	0.197	4.80	5.00	8	Α
D	0.337	0.344	8.55	8.75	14	В
D	0.386	0.394	9.80	10.00	16	С

NOTES:

- NOTES:
 1. D&E DO NOT INCLUDE MOLD FLASH
 2. MOLD FLASH OR PROTRUSIONS NOT
 TO EXCEED .15mm (.006')
 3. LEADS TO BE COPLANAR WITHIN
 .102mm (.004')
 4. COUNTROLLING DIMENSION: MILLIMETER
 5. MEETS JEDEC MS012-XX AS SHOWN
 IN ABOVE TABLE
 6. N = NUMBER OF PINS

PACKAGE FAMILY DUTLINE: SDIC .150"

NOTES

販売代理店	

マキシム・ジャパン株式会社

〒169-0051東京都新宿区西早稲田3-30-16(ホリゾン1ビル) TEL. (03)3232-6141 FAX. (03)3232-6149

マキシム社では全体がマキシム社製品で実現されている回路以外の回路の使用については責任を持ちません。回路特許ライセンスは明言されていません。マキシム社は随時予告なしに回路及び仕様を変更する権利を保留します。

12 ______Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600