

低電力、デュアル、10ビット電圧出力DAC シリアルインタフェース付

概要

MAX5158/MAX5159は、低電力、シリアル、電圧出力、 デュアル10ビットD/Aコンバータ(DAC)です。これらの 製品は、単一電源+5V(MAX5158)又は+3V(MAX5159) からの消費電流が僅か500µAとなっています。これら のデバイスはレイルトゥレイル®出力スイングを特長と し、省スペースの16ピンQSOPパッケージで提供されて います。DAC出力アンプは、ダイナミックレンジを最小 にするために、+2V/Vの内部利得で構成されています。

3線シリアルインタフェースは、SPI™/QSPI™及び Microwire™とコンパチブルです。各DACには、入力レジ スタとして構成したダブルバッファ入力と、入力レジ スタ及びDACレジスタを16ビットシリアルワードで個別 又は同時に更新できるDACレジスタを備えています。さ らに、2µAプログラマブルシャットダウン、ハードウェア シャットダウンロックアウト、AC及びDC信号を受け付け る各DAC用の個別リファレンス電圧入力、全てのレジ スタとDACをゼロにリセットするアクティブロークリア 入力(CL)も備えています。MAX5158/MAX5159では、 機能拡張用のプログラマブルロジックピンに加え、デイ ジーチェーン構成用のシリアルデータ出力ピンも提供 されています。

アプリケーション ___

ディジタルオフセット及び利得調整

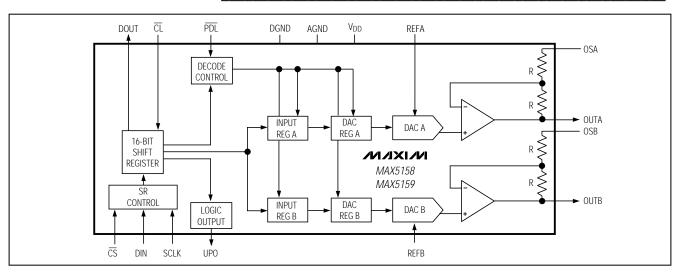
μP制御システム

モーション制御

リモート工業制御

特長

- ◆ 内部利得+2V/Vの10ビットデュアルDAC
- ◆ レイルトゥレイル出力スイング
- ◆ 8µsセトリング時間
- ◆ 単一電源動作: +5V (MAX5158)
 - +3V (MAX5159)
- ◆ 低自己消費電流:500µA(通常動作時)
 - 2μA(シャットダウンモード時)
- ◆ SPI/QSPI及びMicrowireとコンパチブル
- ◆ 省スペースの16ピンQSOPパッケージで提供
- ◆ パワーオンリセットによってレジスタ及び DACをゼロにクリア
- ◆ 調整可能な出力オフセット


型番

PART	TEMP. RANGE	PIN-PACKAGE
MAX5158CPE	0°C to +70°C	16 Plastic DIP
MAX5158CEE	0°C to +70°C	16 QSOP
MAX5158EPE	-40°C to +85°C	16 Plastic DIP
MAX5158EEE	-40°C to +85°C	16 QSOP
MAX5158MJE	-55°C to +125°C	16 CERDIP*

Ordering Information continued at end of data sheet.

*Contact factory for availability.

ファンクションダイアグラム

レイルトゥレイルは日本モトローラの登録商標です。MicrowireはNational Semiconductor Corp.の商標です。 SPI及びQSPIはモトローラの商標です。

ABSOLUTE MAXIMUM RATINGS

VDD to DGND -0.3V to +6V AGND to DGND ±0.3V OSA, OSB to AGND (AGND - 4V) to (VDD + 0.3V) REF_, OUT_ to AGND -0.3V to (VDD + 0.3V)	Continuous Power Dissipation (T _A = +70°C) Plastic DIP (derate 10.5mW/°C above +70°C)842mW QSOP (derate 8.30mW/°C above +70°C)
Digital Inputs (SCLK, DIN, CS, CL, PDL) to DGND(-0.3V to +6V)	MAX515C_ E0°C to +70°C MAX515E_ E40C° to +85°C
Digital Outputs (DOUT, UPO) to DGND0.3V to (V _{DD} + 0.3V) Maximum Current into Any Pin±20mA	MAX515MJE55°C to +125°C Storage Temperature Range65°C to +160°C Lead Temperature (soldering, 10sec)+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—MAX5158

 $(V_{DD} = +5V \pm 10\%, V_{REFA} = V_{REFB} = 2.048V, R_L = 10k\Omega, C_L = 100pF, T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted. Typical values are at $T_{AB} = +25^{\circ}C$ (OS_ tied to AGND for a gain of +2V/V).)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
STATIC PERFORMANCE	L					ı
Resolution			10			Bits
Integral Nonlinearity	INL	(Note 1)			±1	LSB
Differential Nonlinearity	DNL	Guaranteed monotonic			±1	LSB
Offset Error	Vos_	Code = 2			±6	mV
Offset Tempco	TCVos	Normalized to 2.048V		4		ppm/°C
Gain Error				-0.1	1	LSB
Gain-Error Tempco		Normalized to 2.048V		4		ppm/°C
V _{DD} Power-Supply Rejection Ratio	PSRR	2.7V ≤ V _{DD} ≤ 5.5V		20	260	μV/V
REFERENCE INPUT						ı
Reference Input Range	REF		0		V _{DD} - 1.4	V
Reference Input Resistance	R _{REF}	Minimum with code 1558 hex	18 25			kΩ
MULTIPLYING-MODE PERFO	RMANCE		•			
Reference 3dB Bandwidth		Input code = 1FF8 hex, V _{REF} _ = 0.67Vp-p at 0.75V _{DC}		300		kHz
Reference Feedthrough		Input code = 0000 hex, V _{REF} _ = (V _{DD} - 1.4 Vp-p) at 1kHz		-82		dB
Signal-to-Noise plus Distortion Ratio	SINAD	Input code = 1FF8 hex, V _{REF} _ = 1Vp-p at 1.25V _{DC} , f = 25kHz	75		dB	
DIGITAL INPUTS	"		'			
Input High Voltage	VIH	CL, PDL, CS, DIN, SCLK	3			V
Input Low Voltage	VIL	CL, PDL, CS, DIN, SCLK 0.		0.8	V	
Input Hysteresis	V _H YS	200			mV	
Input Leakage Current	I _{IN}	$V_{IN} = 0V \text{ to } V_{DD}$ 0.001 ±1			±1	μΑ
Input Capacitance	CIN			8		pF

ELECTRICAL CHARACTERISTICS—MAX5158 (continued)

 $(V_{DD} = +5V \pm 10\%, V_{REFA} = V_{REFB} = 2.048V, R_L = 10k\Omega, C_L = 100pF, T_A = T_{MIN} \ to \ T_{MAX}, \ unless \ otherwise \ noted. \ Typical \ values \ are \ at \ T_A = +25^{\circ}C \ (OS_ \ tied \ to \ AGND \ for \ a \ gain \ of \ +2V/V).)$

PARAMETER	SYMBOL	CONDITIONS		TYP	MAX	UNITS
DIGITAL OUTPUTS (DOUT, UPO)			<u>'</u>			
Output High Voltage	Voн	ISOURCE = 2mA	V _{DD} - 0.5			V
Output Low Voltage	V _{OL}	I _{SINK} = 2mA		0.13	0.4	V
DYNAMIC PERFORMANCE			•			
Voltage Output Slew Rate	SR			0.75		V/µs
Output Settling Time		To 1/2LSB of full-scale, V _{STEP} = 4V		8		μs
Output Voltage Swing		Rail-to-rail (Note 2)		0 to V _{DD}		V
OSA or OSB Input Resistance	Ros_		24	34		kΩ
Time Required to Exit Shutdown				25		μs
Digital Feedthrough		$\overline{\text{CS}} = \text{V}_{\text{DD}}, \text{f}_{\text{DIN}} = 100 \text{kHz}, \text{V}_{\text{SCLK}} = 5 \text{Vp-p}$		5		nV-s
Digital Crosstalk				5		nV-s
POWER SUPPLIES			<u>'</u>			
Positive Supply Voltage	V _{DD}		4.5		5.5	V
Power-Supply Current	I _{DD}	(Note 3)		0.5	0.65	mA
Power-Supply Current in Shutdown	IDD(SHDN)	(Note 3)		2	10	μΑ
Reference Current in Shutdown				0	±1	μΑ
TIMING CHARACTERISTICS						
SCLK Clock Period	tcp	(Note 4)	100			ns
SCLK Pulse Width High	tch		40			ns
SCLK Pulse Width Low	tcL		40			ns
CS Fall to SCLK Rise Setup Time	tcss		40			ns
SCLK Rise to CS Rise Hold Time	tcsh		0			ns
SDI Setup Time	t _{DS}		40			ns
SDI Hold Time	t _{DH}		0			ns
SCLK Rise to DOUT Valid Propagation Delay	t _{DO1}	C _{LOAD} = 200pF			80	ns
SCLK Fall to DOUT Valid Propagation Delay	t _{DO2}	C _{LOAD} = 200pF			80	ns
SCLK Rise to CS Fall Delay	tcs0		10			ns
CS Rise to SCLK Rise Hold	tCS1		40			ns
CS Pulse Width High	tcsw		100			ns

- Note 1: Accuracy is specified from code 2 to code 1023.
- Note 2: Accuracy is better than 1LSB for V_{OUT} greater than 6mV and less than V_{DD} 50mV. Guaranteed by PSRR test at the end points.
- **Note 3:** Digital inputs are set to either V_{DD} or DGND, code = 0000 hex, $R_L = \infty$.
- Note 4: SCLK minimum clock period includes rise and fall times.

ELECTRICAL CHARACTERISTICS—MAX5159

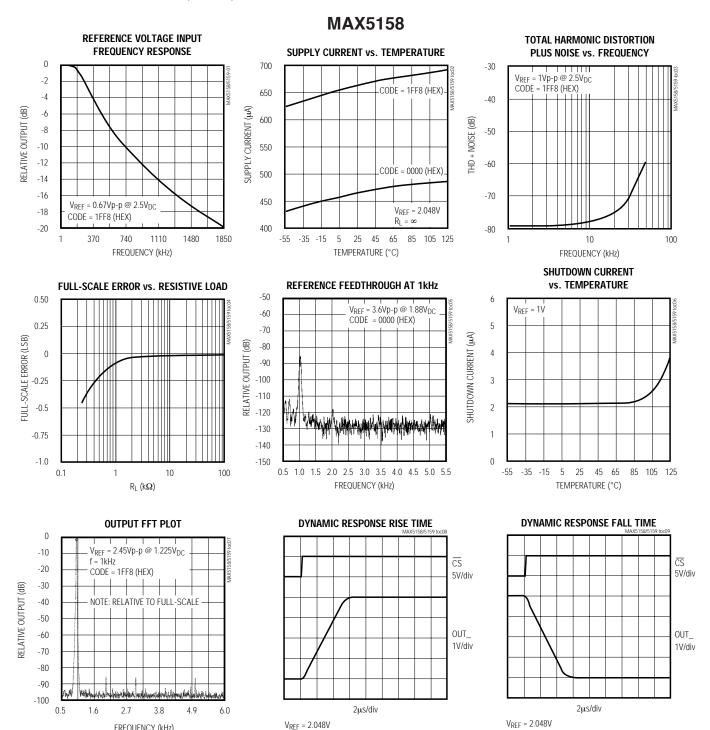
 $(V_{DD} = +2.7V \text{ to } +3.6V, V_{REFA} = V_{REFB} = 1.25V, R_L = 10k\Omega, C_L = 100pF, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted.}$ Typical values are at $T_A = +25^{\circ}C$ (OS_ pins tied to AGND for a gain of +2V/V).)

PARAMETER	PARAMETER SYMBOL CONDITIONS		MIN	TYP	MAX	UNITS
STATIC PERFORMANCE	<u>'</u>					
Resolution			10			Bits
Integral Nonlinearity	INL	(Note 5)			±1	LSB
Differential Nonlinearity	DNL	Guaranteed monotonic			±1	LSB
Offset Error	Vos	Code = 3			±6	mV
Offset Tempco	TCVos	Normalized to 1.25V		6.5		ppm/°C
Gain Error				-0.1	±1	LSB
Gain-Error Tempco		Normalized to 1.25V		6.5		ppm/°C
V _{DD} Power-Supply Rejection Ratio	PSRR	2.7V ≤ _{VDD} ≤ 3.6V		40	320	μV/V
REFERENCE INPUT (VREF)						
Reference Input Range	REF		0		V _{DD} - 1.4	V
Reference Input Resistance	R _{REF}	Minimum with code 1558 hex	18	25		kΩ
MULTIPLYING-MODE PERFOR	RMANCE					
Reference 3dB Bandwidth		Input code = 1FF8 hex, V _{REF} _ = 0.67Vp-p at 0.75V _{DC}		300		kHz
Reference Feedthrough		Input code = 0000 hex, V _{REF} _ = (V _{DD} - 1.4)Vp-p at 1kHz		-82		dB
Signal-to-Noise plus Distortion Ratio	SINAD	Input code = 1FF8 hex, V _{REF} _ = 1Vp-p at 1V _{DC} , f = 15kHz		73		dB
DIGITAL INPUTS						
Input High Voltage	VIH	CL, PDL, CS, DIN, SCLK	2.2			V
Input Low Voltage	VIL	CL, PDL, CS, DIN, SCLK			0.8	V
Input Hysteresis	VHYS			200		mV
Input Leakage Current	I _{IN}	$V_{IN} = OV \text{ to } V_{DD}$		0	±1	μΑ
Input Capacitance	CIN			8		рF
DIGITAL OUTPUTS	*					
Output High Voltage	Voн	I _{SOURCE} = 2mA	V _{DD} - 0.5			V
Output Low Voltage	VoL	I _{SINK} = 2mA		0.13	0.4	V
DYNAMIC PERFORMANCE (D	OUT, UPO)					
Voltage Output Slew Rate	SR			0.75		V/µs
Output Settling Time		To 1/2LSB of full-scale, V _{STEP} = 2.5V		8		μs
Output Voltage Swing		Rail-to-rail (Note 6)		0 to V _D	D	V
OSA or OSB Input Resistance	Ros_		24	34		kΩ
Time Required for Valid Operation after Shutdown				25		μs
Digital Feedthrough		$\overline{CS} = V_{DD}$, $f_{DIN} = 100$ kHz, $V_{SCLK} = 3$ Vp-p		5		nV-s
Digital Crosstalk				5		nV-s

ELECTRICAL CHARACTERISTICS—MAX5159 (continued)

 $(V_{DD} = +2.7 \text{V to } +3.6 \text{V}, V_{REFA} = V_{REFB} = 1.25 \text{V}, R_L = 10 \text{k}\Omega, C_L = 100 \text{pF}, T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } T_A = +25 ^{\circ}\text{C} \text{ (OS_pins tied to AGND for a gain of } +2 \text{V/V}).)$

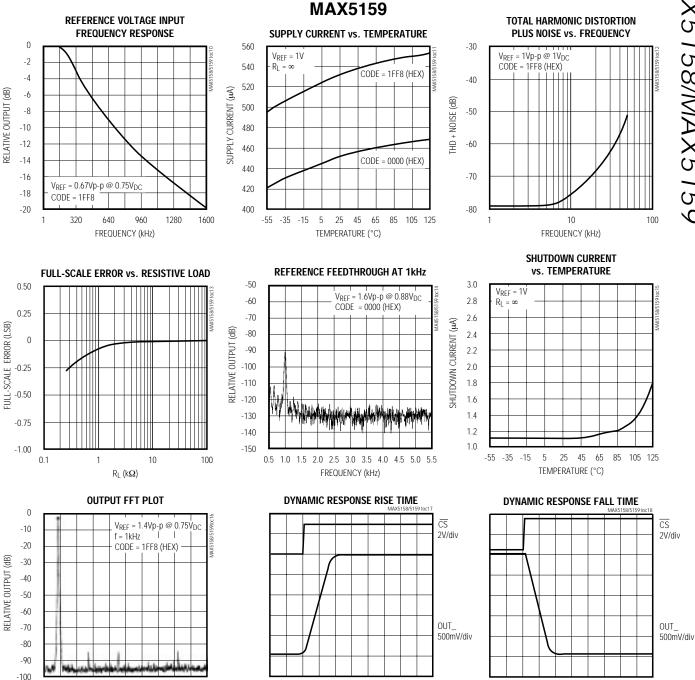
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
POWER SUPPLIES						,
Positive Supply Voltage	V _{DD}		2.7		3.6	V
Power-Supply Current	IDD	(Note 7)		0.5	0.6	mA
Power-Supply Current in Shutdown	I _{DD} (SHDN)	(Note 7)		1	8	μΑ
Reference Current in Shutdown					±1	μΑ
TIMING CHARACTERISTICS	S					
SCLK Clock Period	tcp	(Note 4)	100			ns
SCLK Pulse Width High	tcH		40			ns
SCLK Pulse Width Low	t _{CL}		40			ns
CS Fall to SCLK Rise Setup Time	tcss		40			ns
SCLK Rise to $\overline{\text{CS}}$ Rise Hold Time	tCSH		0			ns
SDI Setup Time	t _{DS}		50			ns
SDI Hold Time	tDH		0			ns
SCLK Rise to DOUT Valid Propagation Delay	t _{DO1}	C _{LOAD} = 200pF			120	ns
SCLK Fall to DOUT Valid Propagation Delay	t _{DO2}	C _{LOAD} = 200pF			120	ns
SCLK Rise to CS Fall Delay	tcs0		10			ns
CS Rise to SCLK Rise Hold	t _{CS1}		40			ns
CS Pulse Width High	tcsw		100			ns


Note 5: Accuracy is specified from code 3 to code 1023.

Note 6: Accuracy is better than 1LSB for V_{OUT} greater than 6mV and less than V_{DD} - 80mV. Guaranteed by PSRR test at the end points.

Note 7: Digital inputs are set to either V_{DD} or DGND, code = 0000 hex, $R_L = \infty$.

標準動作特性


 $(V_{DD} = +5V, R_I = 10k\Omega, C_I = 100pF, OS_pins tied to AGND, T_A = +25°C, unless otherwise noted.)$

FREQUENCY (kHz)

標準動作特性(続き)_

 $(V_{DD} = +3V, R_{I} = 10k\Omega, C_{I} = 100pF, OS_{pins} \text{ tied to AGND, } T_{A} = +25^{\circ}C, \text{ unless otherwise noted.})$

2us/div

V_{REF} = 1.25V

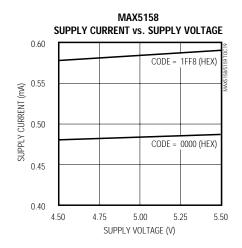
0.5

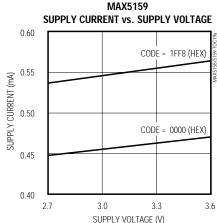
3.8

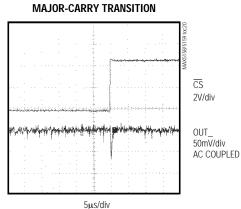
FREQUENCY (kHz)

4.9

6.0

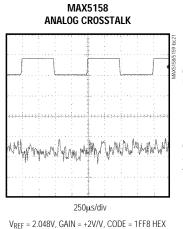

2μs/div


 $V_{REF} = 1.25V$


標準動作特性(続き)_

 $(V_{DD} = +5V \text{ (MAX5158)}, V_{DD} = +3V \text{ (MAX5159)}, R_L = 10k\Omega, C_L = 100pF, OS_pins tied to AGND, unless otherwise noted.)$

MAX5158/MAX5159



MAX5158

TRANSITION FROM 1000 (HEX) TO 0FF8 (HEX)

MAX5158
DIGITAL FEEDTHROUGH

SCLK
5V/div

OUTA
500µV/div

AC COUPLED

端子説明

端子	名称	機能
1	AGND	アナロググランド
2	OUTA	DAC A出力電圧
3	OSA	DAC Aオフセット調整
4	REFA	DAC Aのリファレンス
5	CL	アクティブロークリア入力。全レジスタをゼロ にリセットします。DAC出力はOVになります。
6	CS	チップセレクト入力
7	DIN	シリアルデータ入力
8	SCLK	シリアルクロック入力
9	DGND	ディジタルグランド
10	DOUT	シリアルデータ出力
11	UPO	ユーザープログラマブル出力
12	PDL	パワーダウンロックアウト。PDLがローの時は、 デバイスをパワーダウンすることはできません。
13	REFB	DAC Bのリファレンス
14	OSB	DAC Bオフセット調整
15	OUTB	DAC B出力電圧
16	V _{DD}	正電源

詳細

MAX5158/MAX5159デュアル、10ビット、電圧出力 DACは、3線シリアルインタフェースで容易に構成できます。これらのデバイスは、16ビットデータイン/データ アウトシフトレジスタを含み、各DACには入力レジスタ 及びDACレジスタから構成されるダブルバッファ入力 が備わっています(「ファンクションダイアグラム」参照)。さらに、トリミングした内部抵抗は、出力電圧スイング が最大になる+2V/Vの内部利得を提供します。アンプのオフセット調整ピンは、DAC出力のDCシフトを可能にします。

これらのDACは、入力電圧に比例した重み付け電圧を発生する反転R-2Rラダーネットワークを使用しています。各DACには専用のリファレンス入力があり、独立したフルスケール値を提供します。図1に、このDACの概略回路図を示します。

リファレンス入力

リファレンス入力は、 $0V \sim (V_{DD} - 1.4V)$ の範囲のAC値及びDC値の両方を受け付けます。出力電圧は次式で計算できます(OS_ = AGND)。

 $V_{OUT} = (V_{REF} \times NB / 1024) \times 2$

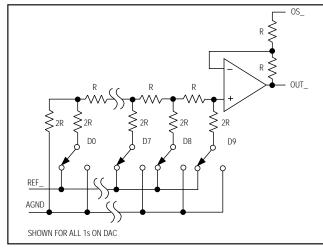


図1. DACの概略回路図

ここで、NBはDACのバイナリ入力コードの数値(0~1023)を示し、 V_{REF} はリファレンス電圧を示します。

リファレンス入力インピーダンスの範囲は、18k (16進表示:1558)~数G (入力コードの16進表示:0000)です。リファレンス入力キャパシタンスはコードに依存し、通常15pF(入力コードが全部ゼロの場合)から50pF(フルスケール入力コード)の範囲になります。

出力アンプ

MAX5158/MAX5159の出力アンプは、OS_をAGNDに接続した時の利得が+2V/Vになる内部抵抗を備えています。これらの抵抗は、利得誤差が最小になるようにトリミングされています。負荷10k を100pFと並列に接続した場合、出力アンプのスルーレートは0.75V/µs(typ)で、8µs以内に1/2LSBにセトリングします。2k 以下の負荷では性能が低下します。

OS_ピンは、出力段で調整可能なオフセット電圧を得るために使用できます。例えば、1Vのオフセットを得るには、OS_ピンに-1Vを印可し、1V~(1V+VREF \times 2)の出力範囲を発生します。但し、最大出力電圧仕様の制約は、この場合もDACの出力範囲に適用されます。

パワーダウンモード

MAX5158/MAX5159は、公称消費電流を2μAに低減するソフトウェアプログラマブル シャットダウンモードを備えています。これら2つのDACは、プログラミングコマンドで個別又は同時にシャットダウンできます。シャットダウンモードは、指定の入力制御ワードを記述することによって設定します(表1)。シャットダウンモードにすると、リファレンス入力及びアンプ出力がハイインピーダンスになり、シリアルインタフェースはアクティブのまま維持されます。この時入力レジスタ内のデータ

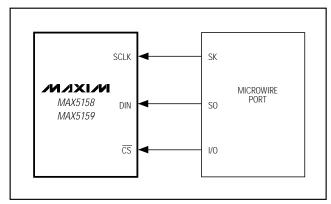


図2. Microwireの接続

は保存されているため、通常モードに切り替えた時には、MAX5158/MAX5159をシャットダウン直前の出力状態に戻すことができます。シャットダウンモードを終了するには、直前の状態を復元するか、又はDACを別の情報で更新します。(シャットダウンモードを終了し)通常動作に切り替えた時は、出力を安定させるために20μs待ってください。

シリアルインタフェース

MAX5158/MAX5159 3線シリアルインタフェースは、Microwire(図2)及びSPI/QSPI(図3)シリアルインタフェース標準とコンパチブルです。16ビットのシリアル入力ワードは、図4に示すように1ビットのアドレスビット、2ビットの制御ビット、10ビットのデータ(MSBからLSB)及び3ビットのサブビットで構成されています。MAX5158/MAX5159の応答は、表1に示すようにアドレスビット及び制御ビットで決まります。

表1. シリアルインタフェース プログラミングコマンド

	16ビットシリアルワード				
Α0	C1	C0	D9D0 (MSB) (LSB)	S2-S0	機能
0	0	1	10ビットのDACデータ	000	入力レジスタAをロード。DACレジスタは不変。
1	0	1	10ビットのDACデータ	000	入力レジスタBをロード。DACレジスタは不変。
0	1	0	10ビットのDACデータ	000	入力レジスタAをロード。全てのDACレジスタを更新。
1	1	0	10ビットのDACデータ	000	入力レジスタBをロード。全てのDACレジスタを更新。
0	1	1	10ビットのDACデータ	000	シフトレジスタから全てのDACレジスタへロード(両方のDACを新しいデータでスタートアップ)。
1	0	0	xxxxxxxxx	000	両方のDACレジスタを各々の入力レジスタで更新(両方のDACを 入力レジスタに既に保存されているデータでスタートアップ)。
1	1	1	XXXXXXXXX	000	PDL = 1の場合に両方のDACをシャットダウン。
0	0	0	0 0 1 x xxxxxx	000	DACレジスタAを入力レジスタAで更新(DAC Aを入力レジスタAに既に保存されているデータでスタートアップ)。
0	0	0	1 0 1 x xxxxxx	000	DACレジスタBを入力レジスタBで更新(DAC Bを入力レジスタBに既に保存されているデータでスタートアップ)。
0	0	0	1 1 0 x xxxxxx	000	PDL = 1の場合にDAC Aをシャットダウン。
0	0	0	1 1 1 x xxxxxx	000	PDL = 1の場合にDAC Bをシャットダウン。
0	0	0	0 1 0 x xxxxxx	000	UPOがローになります(デフォルト)。
0	0	0	0 1 1 x xxxxxx	000	UPOがハイになります。
0	0	0	1 0 0 1 xxxxxx	000	モード1、DOUTはSCLKの立上がりエッジでクロック出力。
0	0	0	1 0 0 0 xxxxxx	000	モード0、DOUTはSCLKの立下がりエッジでクロック出力(デフォルト)。
0	0	0	0 0 0 x xxxxxx	000	ノーオペレーション(NOP)

x = 任意

注記: AO、C1及びCO="0"の場合、D9、D8、D7及びD6が制御ビットになります。S2 S0はサブビットで常にゼロです。

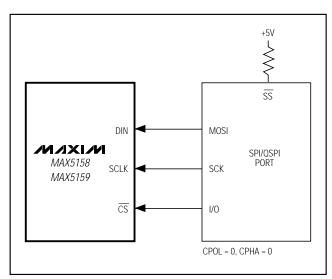


図3. SPI/QSPIの接続

MSBLSB						
16 Bits of Serial Data						
Address Bits	Control Bits	MSBDataBitsLSB	Sub Bits			
A0	C1, C0	D9D0	S2-S0			
1 Addi 2 Contr		─ 10 Data Bits →	000			

図4. シリアルデータフォーマット

MAX5158/MAX5159のディジタル入力はダブルバッファ構成になっているため、DACレジスタを更新することなく入力レジスタをロードすることも、入力レジスタからDACレジスタを更新することも、又入力レジスタとDACレジスタを同時に更新することもできます。DACは、これらのアドレスビット及び制御ビットによって個別に動作させることができます。

この期間は、CSがローの状態で、16ビットデータを1つの16ビットワード(QSPI)又は2つの8ビットパケット(SPI、Microwire)として送信します。このアドレス及び制御ビットは、更新するレジスタとシャットダウンモードを終了する時のレジスタの状態を決定します。3ビットのアドレス/制御は、次の事項を決定します。

- 更新するレジスタ
- ・ どのクロックエッジでデータがシリアルデータ出力 (DOUT)からクロック出力されるか
- ・ ユーザプログラマブルロジック出力の状態
- ・ シャットダウン後のデバイス構成

図5のタイミング図は、データがどのように取得されるかを示したものです。データは、CSをローで駆動すると受信できます。これ以外の状態では、インタフェース制御回路がディセーブルされます。CSがローの時は、DINのデータがSCLKの立上りエッジでレジスタ内にクロックされます。CSがハイになると、アドレスビットと制御ビットに従って、入力レジスタ及び(又は)DACレジスタ内にデータがラッチされます。正しい動作を保証できる最大クロック周波数は10MHzです。図6に、シリアルインタフェースのより詳細なタイミングを示します。

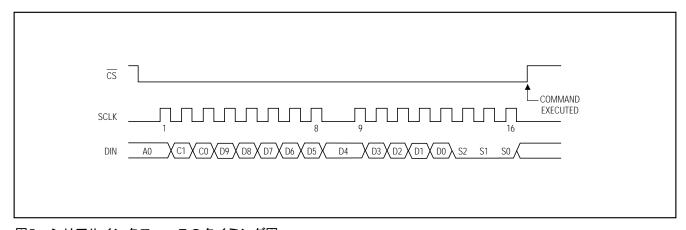


図5. シリアルインタフェースのタイミング図

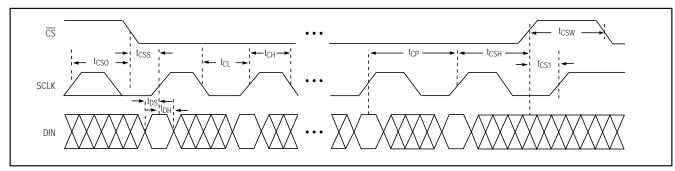


図6. 詳細なシリアルインタフェースタイミング図

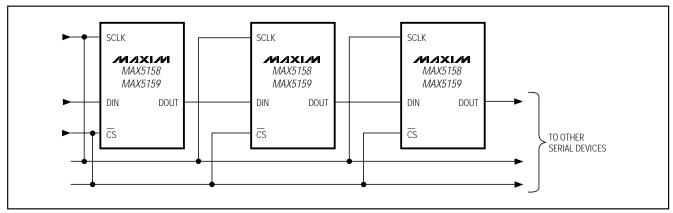


図7. MAX5158/MAX5159をデイジーチェーン構成した場合

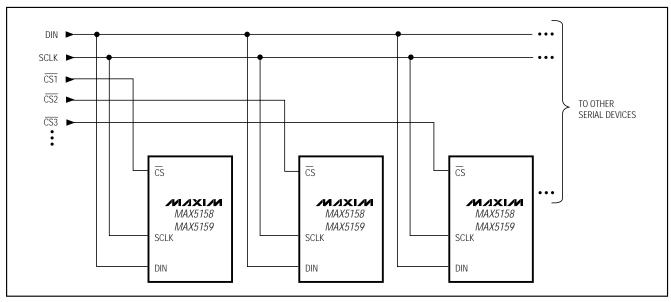


図8. 複数のMAX5158/MAX5159でDINラインを共用した場合

表2. ユニポーラコード表(利得 = +2)

MS		ONTEN	TS LSB	ANALOG OUTPUT
11	1111	1111	(000)	$+V_{REF} \left(\frac{1023}{1024}\right) \times 2$
10	0000	0001	(000)	$+V_{REF} \left(\frac{513}{1024}\right) \times 2$
10	0000	0000	(000)	$+V_{REF}\left(\frac{512}{1024}\right) \times 2 = V_{REF}$
01	1111	1111	(000)	$+V_{REF} \left(\frac{511}{1024}\right) \times 2$
00	0000	0001	(000)	$+V_{REF}\left(\frac{1}{1024}\right)$
00	0000	0000	(000)	OV

Note: () are for the sub bits.

シリアルデータ出力

シリアルデータ出力DOUTは、内部シフトレジスタの出力です。DOUTは、デバイスのデイジーチェーン構成やデータの読み戻しを可能にします。MAX5158/MAX5159は、SCLKの立下リエッジ(モード0)又は立上リエッジ(モード1)でDOUTのデータをシフトするようにプログラムできます。モード0は16クロックサイクルの遅れを提供し、SPI/QSPI及びMicrowireインタフェースとの互換性を維持します。モード1では、出力データの遅れが15.5クロックサイクルになります。パワーアップ時には、デバイスがモード0(標準設定)に設定されます。

ユーザプログラマブルロジック出力(UPO)

UPOは、シリアルインタフェースを介した外部デバイスの制御を可能にするため(表1)、必要なマイクロコントローラI/Oピンの数が低減できます。パワーアップ時には、UPOがローになります。

パワーダウンロックアウト入力(PDL)

パワーダウンロックアウトピン(PDL)がローの時は、ソフトウェアシャットダウンがディセーブルされます。シャットダウン時にPDLをハイからローに設定すると、シャットダウン前の出力状態でデバイスがウェイクアップされます。このPDLは、デバイスを非同期でウェイクアップするために利用することもできます。

デバイスのデイジーチェーン構成

MAX5158/MAX5159のDOUTピンを別のMAX5158/MAX5159のDINピンに接続することにより、複数のMAX5158/MAX5159をデイジーチェーン式に構成できます(図7)。

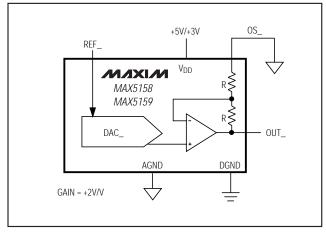


図9. ユニポーラ出力回路(レイルトゥレイル)

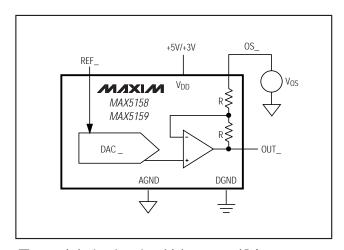


図10. 出力オフセットに対するOS_の設定

MAX5158/MAX5159のDOUTピンには内部アクティブプルアップが備わっているため、容量性負荷の放電/充電に掛かる時間は、DOUTシンク/ソース機能によって決まります。「Electrical Characteristics」のディジタル出力 V_{OH} 及び V_{OL} の仕様を参照してください。

図8に、いくつかのMAX5158/MAX5159を別方法で接続した場合を示します。この構成では、全デバイスに対して共通のデータバスを使用しているため、データはデイジーチェーンでシフトされません。この場合、各ICに専用のチップセレクト入力(CS)が必要になるため、より多くのI/Oラインが必要になります。

アプリケーション情報

ユニポーラ出力

図9に、+2V/Vの利得でユニポーラ、レイルトゥレイル 動作用に構成したMAX5158/MAX5159を示します。 この構成のMAX5158は、2.048Vリファレンスで0V ~4.096V出力を発生し(図9)、MAX5159は1.25V

表3. バイポーラコード表

MS		ONTEN	TS LSB	ANALOG OUTPUT
11	1111	1111	(000)	$+V_{REF}\left(\frac{511}{512}\right)$
10	0000	0001	(000)	$+V_{REF}\left(\frac{1}{512}\right)$
10	0000	0000	(000)	OV
01	1111	1111	(000)	$-V_{REF}\left(\frac{1}{512}\right)$
00	0000	0001	(000)	$-V_{REF}$ $\left(\frac{511}{512}\right)$
00	0000	0000	(000)	$-V_{REF} \left(\frac{512}{512} \right) = -V_{REF}$

Note: () are for the sub bits.

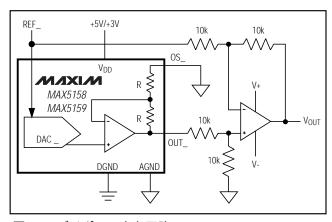


図11. バイポーラ出力回路

リファレンスで0V~2.5Vを発生します。表2に、ユニポーラ出力コードを示します。出力のオフセットは、図10に示すように電圧をOS_に接続することによって得られます。 $V_{OS}=-1$ Vを印可すると、出力値が1V~(1V + V_{RFF} x 2)の範囲になります。

バイポーラ出力

MAX5158/MAX5159は、図11に示すようにバイポーラ 出力用として構成できます。出力電圧は次式から得ら れます(OS_ = AGND)。

 $V_{OUT} = V_{RFF}[((2 \times NB)/1024) - 1]$

ここで、NBは、DACのバイナリ入力コードの数値を示します。表3に、図11の回路のディジタルコード及びこれに該当する出力電圧を示します。

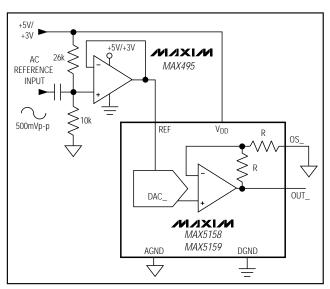


図12. ACリファレンス入力回路

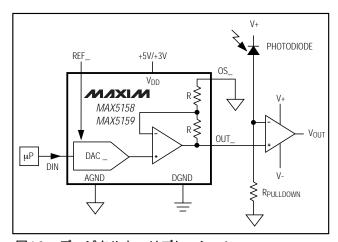


図13. ディジタルキャリブレーション

ACリファレンスの使用

リファレンスにAC信号コンポーネントが伴なうアプリケーションでは、MAX5158/MAX5159がリファレンス入力電圧範囲仕様内で乗算能力があります。図12は、正弦波入力をREF_に適用する方法を示したもので、AC信号はリファレンス入力に送る前にオフセットされます。

高調波歪み及びノイズ

全高調波歪み及びノイズ(THD+N)は、5kHzの1Vp-p 入力スイング、フルスケールで通常-78dB以下です。 -3dB周波数は、「標準動作特性」で示すように両方の デバイスとも300kHzです。

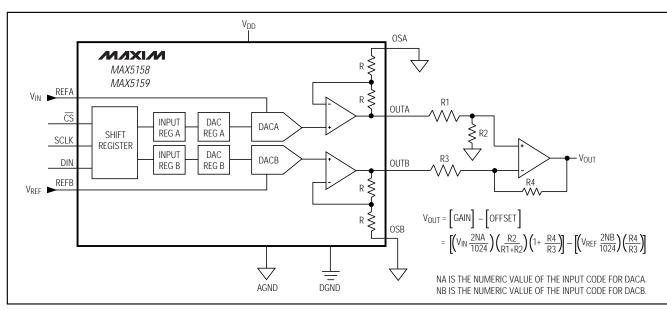


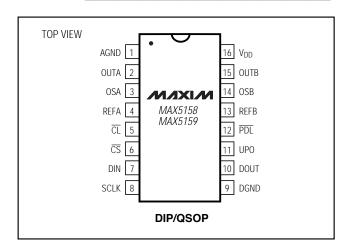
図14. 利得とオフセットのディジタル制御

ディジタルキャリブレーション及び スレッショルド選択

図13に、ディジタルキャリブレーションアプリケーションに適用したMAX5158/MAX5159を示します。フォトダイオードに光が当たっているとき(オン)、コンパレータがトリップされるまでDACの出力をディジタル的に増加させます。"ハイ"キャリブレーション値は、マイクロプロセッサ(μ P)に保存されます。次に、光を暗くして(オフ)同じ手順を繰り返し、暗電流キャリブレーションを得ます。この後 μ Pは、出力電圧がこれら2つのキャリブレーション値の中間になるように、DACをプログラムします。アプリケーションとしては、タコメータ、モーションセンサ、自動リーダ及び液体鮮度分析が挙げられます。

利得及びオフセットのディジタル制御

MAX5158/MAX5159の2つのDACは、トランスデューサ線形化やアナログ圧縮/拡張アプリケーションのような、カーブフィティング非線形機能のオフセット及び利得を制御する目的に使用できます。この場合入力信号は、利得調整DACのリファレンスとして使用し、DACの出力はオフセット調整DACの出力と加算します。各DAC出力の相対重みは、R1、R2、R3及びR4で調整します(図14)。


電源の留意点

パワーアップ時は、入力とDACレジスタがクリア(ゼロのコードに設定)されます。定格性能では、 V_{REF} が少なくとも V_{DD} の1.4V以下になることが必要です。電源は、AGNDへの0.1 μ Fコンデンサと並列に接続した4.7 μ Fコンデンサでバイパスしてください。

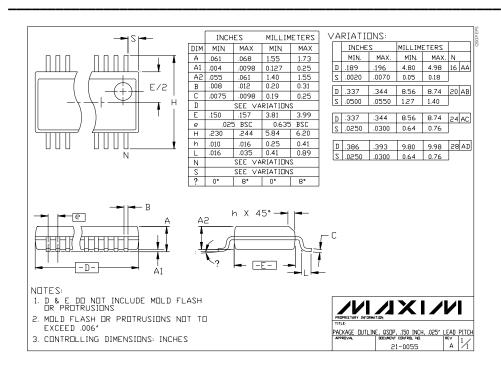
グランド及びレイアウトの留意点

AGNDのディジタル及びAC過渡信号は、出力段におけるノイズ発生の原因になります。AGNDは最高品質のグランドに接続してください。この場合、低インダクタンスグランドプレーンを持つ多層ボードなどの正しいグランド方法を使用します。チャネル間のトレースは、ACクロスカップリングやクロストークを低減できるように配線します。ワイヤーラップ式ボードやソケットの使用は避けてください。ノイズが問題になる場合は、シールドを使用してください。

ピン配置

型番(続き) _____

PART	TEMP. RANGE	PIN-PACKAGE
MAX5159CPE	0°C to +70°C	16 Plastic DIP
MAX5159CEE	0°C to +70°C	16 QSOP
MAX5159EPE	-40°C to +85°C	16 Plastic DIP
MAX5159EEE	-40°C to +85°C	16 QSOP
MAX5159MJE	-55°C to +125°C	16 CERDIP*


^{*}Contact factory for availability.

チップ情報 _____

TRANSISTOR COUNT: 3053

SUBSTRATE CONNECTED TO AGND

パッケージ _

マキシム・ジャパン株式会社

〒169-0051東京都新宿区西早稲田3-30-16(ホリゾン1ビル) TEL. (03)3232-6141 FAX. (03)3232-6149

マキシム社では全体がマキシム社製品で実現されている回路以外の回路の使用については責任を持ちません。回路特許ライセンスは明言されていません。マキシム社は随時予告なしに回路及び仕様を変更する権利を保留します。

16 _____Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600