

低電力シリアル14ビットDAC フォース/センス電圧出力付

概要

MAX5171/MAX5173は、高精度出力アンプ付の低電力 シリアル14ビット電圧出力D/Aコンバータ(DAC)を 省スペースの16ピンQSOPパッケージに内蔵しています。 MAX5171は+5V単一電源で動作し、MAX5173は+3V 単一電源で動作します。出力アンプの反転入力の使用に より、特定の利得設定、リモートセンシング及び大出力 駆動能力が実現できるため、MAX5171/MAX5173は 工業用プロセス制御等の広範囲のアプリケーションに 最適です。いずれのデバイスも消費電流は僅か260µA となっており、シャットダウンモードではさらに1uAに 低減します。さらに、設定可能なパワーアップリセット 機能により、初期出力状態として0V又は中間値に選択 できます。

3線シリアルインタフェースは、SPI™、QSPI™及び MICROWIRE™規格とコンパチブルです。入力レジスタ にDACレジスタが続く形で構成されたダブルバッファ付 入力を備えているため、16ビットシリアルワードに よってDACレジスタを入力レジスタと同時又は個別に 更新できます。その他の特長としては、ソフトウェア 及びハードウェアシャットダウン、シャットダウン ロックアウト、ハードウェアクリアピン、そしてDC 及びオフセットAC信号を許容するリファレンス入力等 が挙げられます。これらのデバイスは、機能性を増す ための設定可能なディジタル出力ピン及びデイジー チェーン接続用のシリアルデータ出力ピンを備えて います。全てのロジック入力はTTL/CMOSコンパチブル で、内部シュミットトリガでバッファされているため、 フォトカプラと直接インタフェースすることが可能です。

MAX5171/MAX5173は独自の内蔵回路により、パワー アップ時のグリッチを数ミリボルトに抑えて出力電圧 を実質的に「グリッチフリー」に保ちます。

いずれのデバイスも16ピンQSOPパッケージで提供されて おり、温度範囲は拡張工業用(-40 ~+85)のものが 用意されています。MAX5171/MAX5173は、12ビット MAX5175/MAX5177とピンコンパチブルなアップ グレード製品です。100%ピンコンパチブルの内部 リファレンス付DAC製品については、13ビット MAX5130/MAX5131及び12ビットMAX5120/ MAX5121のデータシートを参照して下さい。

アプリケーション

ディジタル設定の4~20mA電流ループ

工業用プロセス制御

ディジタルオフセット及び利得調節

モーションコントロール

自動試験機器(ATE)

リモート工業用制御

uP制御機器

SPI及びQSPIはMotorola Inc.の商標です。

MICROWIREはNational Semiconductor Corp.の商標です。 レイルトゥレイルは日本モトローラの登録商標です。

特長

- ♦ INL: ±1LSB
- ◆ シャットダウン電流:1µA
- ◆ パワーアップ時に出力がグリッチフリー
- ◆ 単一電源動作
 - +5V(MAX5171)
 - +3V(MAX5173)
- ◆ フルスケール出力範囲
 - $+2.048V(MAX5173, V_{REF} = +1.25V)$
 - $+4.096V(MAX5171, V_{REF} = +2.5V)$
- ◆ レイルトゥレイル[®]出力アンプ
- ◆ 乗算動作における低THD: -80dB
- ◆ 3線シリアルインタフェース: SPI/QSPI/MICROWIREコンパチブル
- ◆ 設定可能なシャットダウンモード及び パワーアップリセット
- ◆ バッファ付出力:5k 1100pF負荷を駆動可能
- ◆ ユーザ設定可能なディジタル出力ピンを使って外部 部品のシリアル制御が可能
- ◆ 12ビットMAX5175/MAX5177のピンコンパチブル アップグレード製品

型番

PART	TEMP. RANGE	PIN-PACKAGE	INL (LSB)
MAX5171AEEE	-40°C to +85°C	16 QSOP	±1
MAX5171BEEE	-40°C to +85°C	16 QSOP	±2
MAX5173AEEE	-40°C to +85°C	16 QSOP	±2
MAX5173BEEE	-40°C to +85°C	16 QSOP	±4

ピン配置

ファンクションダイアグラムは、データシートの最後に記載されています。

ABSOLUTE MAXIMUM RATINGS

V _{DD} to AGND, DGND	0.3V to +6.0V
AGND to DGND	0.3V to +0.3V
Digital Inputs to DGND	0.3V to +6.0V
DOUT, UPO to DGND	0.3V to (V _{DD} + 0.3V)
FB, OUT, REF to AGND	0.3V to (V _{DD} + 0.3V)
Maximum Current into Any Pin	50mA

Continuous Power Dissipation ($T_A = +70$ °C)	
16-pin QSOP (derate 8mW/°C above +70°C).	667mW
Operating Temperature Range	40°C to +85°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (soldering, 10sec)	+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—MAX5171

 $(V_{DD} = +5.0V \pm 10\%, V_{REF} = +2.5V, AGND = DGND, FB = OUT, R_L = 5k\Omega, C_L = 100pF$ referenced to ground, $T_A = T_{MIN}$ to T_{MAX} , unless otherwise noted. Typical values are at $T_A = +25$ °C.)

PARAMETER SYMBOL		CONDITIONS	MIN	TYP	MAX	UNITS
STATIC PERFORMANCE	<u>'</u>					
Resolution			14			Bits
Interval Nanling with (Nato 1)	INL	MAX5171A			±1	LSB
Integral Nonlinearity (Note 1)	IINL	MAX5171B			±2	LSD
Differential Nonlinearity	DNL				±1	LSB
Offset Error (Note 2)	Vos				±10	mV
Gain Error	GE	R _L = ∞		-0.6	±4	LSB
Gaill Elloi	GE	$R_L = 5k\Omega$		-1.6	±8	LOD
Power-Supply Rejection Ratio	PSRR			10	120	μV/V
Output Noise Voltage		f = 100kHz		1		LSBp-p
Output Thermal Noise Density				50		nV/√Hz
REFERENCE						
Reference Input Range	V _{REF}		0		V _{DD} - 1.4	V
Reference Input Resistance	RREF		18			kΩ
MULTIPLYING-MODE PERFOR	RMANCE					
Reference -3dB Bandwidth		V _{REF} = 0.5Vp-p + 2.5V _{DC} , slew-rate limited		350		kHz
Reference Feedthrough		V _{REF} = 3.6Vp-p + 1.8V _{DC} , f = 1kHz, code = all 0s		-84		dB
Signal-to-Noise Plus Distortion Ratio	SINAD	VREF = 1.4Vp-p + 2.5VDC, f = 10kHz, code = 3FFF hex		84		dB
DIGITAL INPUTS						
Input High Voltage	VIH		3			V
Input Low Voltage	VIL				0.8	V
Input Hysteresis	V _H YS			200		mV
Input Leakage Current	I _{IN}	V _{IN} = 0 or V _{DD}		0.001	±1	μΑ
Input Capacitance	CIN			8		pF
DIGITAL OUTPUTS						
Output High Voltage	VoH	ISOURCE = 2mA	V _{DD} - 0.5			V
Output Low Voltage	VoL	I _{SINK} = 2mA		0.13	0.4	V

ELECTRICAL CHARACTERISTICS—MAX5171 (continued)

 $(V_{DD}=+5V\pm10\%,\,V_{REF}=+2.5V,\,AGND=DGND,\,FB=OUT,\,R_{L}=5k\Omega,\,C_{L}=100pF$ referenced to ground, $T_{A}=T_{MIN}$ to T_{MAX} , unless otherwise noted. Typical values are at $T_{A}=+25^{\circ}C$.)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
DYNAMIC PERFORMANCE			1			ı
Voltage Output Slew Rate	SR			0.6		V/µs
Output Settling Time		To ±0.5LSB, from 10mV to full scale		12		μs
Output Voltage Swing (Note 3)			0		V_{DD}	V
Current into FB			-0.1	0	0.1	μΑ
Time Required to Exit Shutdown				40		μs
Digital Feedthrough		$\overline{\text{CS}} = \text{V}_{\text{DD}}; \text{f}_{\text{SCLK}} = 100 \text{kHz}, \text{V}_{\text{SCLK}} = 5 \text{Vp-p}$		1		nV-s
POWER SUPPLIES			•			
Positive Supply Voltage	V_{DD}		4.5		5.5	V
Power-Supply Current (Note 4)	IDD			0.26	0.35	mA
Shutdown Current (Note 4)				1	10	μΑ
TIMING CHARACTERISTICS			•			
SCLK Clock Period	tcp		100			ns
SCLK Pulse Width High	tch		40			ns
SCLK Pulse Width Low	tCL		40			ns
CS Fall to SCLK Rise Setup Time	tcss		40			ns
SCLK Rise to $\overline{\text{CS}}$ Rise Hold Time	tcsh		0			ns
SDI Setup Time	t _{DS}		40			ns
SDI Hold Time	tDH		0			ns
SCLK Rise to DOUT Valid Propagation Delay	t _{DO1}	C _{LOAD} = 200pF			80	ns
SCLK Fall to DOUT Valid Propagation Delay	t _{DO2}	C _{LOAD} = 200pF			80	ns
SCLK Rise to CS Fall Delay	tcso		10			ns
CS Rise to SCLK Rise Hold Time	tCS1		40			ns
CS Pulse Width High	tcsw		100			ns
	1	I .	1			

ELECTRICAL CHARACTERISTICS—MAX5173

 $(V_{DD}=+2.7V \text{ to } +3.6V, V_{REF}=1.25V, \text{AGND}=DGND, FB=OUT, R_L=5k\Omega, C_L=100pF referenced to ground, T_A=T_{MIN} \text{ to } T_{MAX}, unless otherwise noted. Typical values are at T_A=+25°C).}$

PARAMETER	SYMBOL	BOL CONDITIONS		TYP	MAX	UNITS
STATIC PERFORMANCE						
Resolution			14			Bits
Integral Nonlinearity (Note 5)	INL	MAX5173A			±2	LSB
integral Nonlinearity (Note 5)	IINL	MAX5173B			±4	LOD
Differential Nonlinearity	DNL				±1	LSB
Offset Error (Note 2)	Vos				±10	mV
Gain Error	GE	R _L = ∞		-0.6	±4	LSB
dain Endi	GL GL	$R_L = 5k\Omega$		-1.6	±8	LOD
Power-Supply Rejection Ratio	PSRR			10	120	μV/V
Output Noise Voltage		f = 100kHz		2		LSBp-p
Output Thermal Noise Density				50		nV/√Hz
REFERENCE						
Reference Input Range	VREF		0		V _{DD} - 1.4	V
Reference Input Resistance	R _{REF}		18			kΩ
MULTIPLYING-MODE PERFORI	MANCE					
Reference -3dB Bandwidth		V _{REF} = 0.5Vp-p + 1.25V _{DC} , slew-rate limited		350		kHz
Reference Feedthrough		$V_{REF} = 1.6Vp-p + 0.8V_{DC}$, $f = 1kHz$, $code = all 0s$		-84		dB
Signal-to-Noise Plus Distortion Ratio	SINAD	$V_{REF} = 0.9V_{p-p} + 1.25V_{DC}, f = 10kHz,$ code = 3 FFF Hex		78		dB
DIGITAL INPUTS			1			
Input High Voltage	VIH		2.2			V
Input Low Voltage	VIL				0.8	V
Input Hysteresis	V _H YS			200		mV
Input Leakage Current	liN	VIN = 0 or VDD	-1	0.001	±1	μΑ
Input Capacitance	CIN			8		pF
DIGITAL OUTPUTS			•			
Output High Voltage	Vон	ISOURCE = 2mA	V _{DD} - 0.5			V
Output Low Voltage	Vol	ISINK = 2mA		0.13	0.4	V

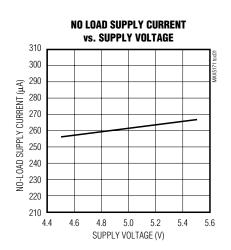
ELECTRICAL CHARACTERISTICS—MAX5173 (continued)

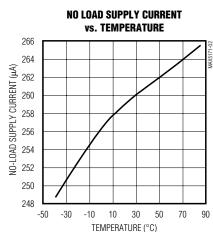
 $(V_{DD} = +2.7V \text{ to } +3.6V, V_{REF} = 1.25V, AGND = DGND, FB = OUT, R_L = 5k\Omega, C_L = 100pF referenced to ground, T_A = T_{MIN} to T_{MAX}, unless otherwise noted. Typical values are at T_A = +25°C).$

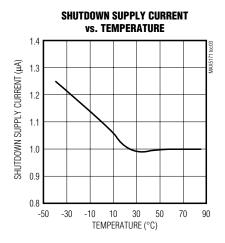
Voltage Output Slew Rate SR	PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Output Settling Time To ±0.5LSB, from 10mV to full-scale 12 μs Output Voltage Swing (Note 3) 0 VDD V Current into FB -0.1 0 0.1 μA Time Required to Exit Shutdown -0.1 0 0.1 μA Digital Feedthrough \(\bar{CS}\) = VDD, DIN = 50kHz; fsCLK = 100kHz, vsCLK = 100kHz, vsCLK = 3VP-P 1 nV-s POWER SUPPLIES Power-Supply Voltage VDD 2.7 3.6 V Power-Supply Current (Note 4) IDD 0.26 0.35 mA Shutdown Current (Note 4) IDD 0.26 0.35 mA Shutdown Current (Note 4) IDD 150 ns SCLK Place Width High tcP 150 ns SCLK Pulse Width Low tcL 75 ns SCLK Rise to CS Rise Hold tcss 0 ns SDI Setup Time tcss 0 ns SDI Hold Time tbH CLOAD = 200pF 200 ns SCLK Ri	DYNAMIC PERFORMANCE	"		1			
Output Voltage Swing (Note 3) 0 VpD V Current into FB -0.1 0 0.1 μA Time Required to Exit Shutdown 40 μs Digital Feedthrough CS = VpD, DIN = 50kHz; fsCLK = 100kHz, vsCLK = 3Vp-p 1 nV-s POWER SUPPLIES Power-Supply Voltage VpD 2.7 3.6 V Power-Supply Current (Note 4) lpp 0.26 0.35 mA Shutdown Current (Note 4) lpp 0.26 0.35 mA Shutdown Current (Note 4) lpp 1 10 μA TIMING CHARACTERISTICS SCLK Clock Period tcp 150 ns SCLK Pulse Width High tch 75 ns SCLK Pulse Width Low tcl 75 ns SCLK Rise Setup Time tcss 60 ns SCLK Rise to CS Rise Hold Time tp ns SCLK Rise to DOUT Valid Propagation Delay tbo1 CLOAD = 200pF 200 ns SCLK Rilse to CS Fall Delay <td< td=""><td>Voltage Output Slew Rate</td><td>SR</td><td></td><td></td><td>0.6</td><td></td><td>V/µs</td></td<>	Voltage Output Slew Rate	SR			0.6		V/µs
Current into FB -0.1 0 0.1 μA Time Required to Exit Shutdown CS = VDD, DIN = 50kHz; fSCLK = 100kHz, VSCLK = 100kHz, VSCLK = 3Vp-p 1 nV-s POWER SUPPLIES Power-Supply Voltage VDD 2.7 3.6 V Power-Supply Current (Note 4) IDD 0.26 0.35 mA Shutdown current (Note 4) IDD 0.26 0.35 mA Shutdown Current (Note 4) IDD 0.26 0.35 mA Shutdown Current (Note 4) IDD 1 10 μA TIMING CHARACTERISTICS SCLK Clock Period 150 ns SCLK Pulse Width Low 1CL 75 ns SCLK Pulse Width Low 1CL 75 ns SCLK Rise Setup Time 1cSs 60 ns SCLK Rise to CS Rise Hold Time 1bH 0 ns SCLK Rise to DOUT Valid Propagation Delay 1bO1 CLOAD = 200pF 200 ns SCLK Rise to CS Fall Delay 1cSo CLOAD = 200pF 200 <t< td=""><td>Output Settling Time</td><td></td><td>To ±0.5LSB, from 10mV to full-scale</td><td></td><td>12</td><td></td><td>μs</td></t<>	Output Settling Time		To ±0.5LSB, from 10mV to full-scale		12		μs
Time Required to Exit Shutdown CS = VDD, DIN = 50kHz; fSCLK = 100kHz, VSCLK = 3VP-P	Output Voltage Swing (Note 3)			0		V_{DD}	V
Digital Feedthrough CS = VDD, DIN = 50kHz; fsCLK = 100kHz, VSCLK = 3Vp-p	Current into FB			-0.1	0	0.1	μΑ
VSCLK = 3Vp-p INV-S POWER SUPPLIES Positive Supply Voltage VDD 2.7 3.6 V Power-Supply Current (Note 4) IDD 0.26 0.35 mA Shutdown Current (Note 4) IDD 1 10 μA TIMING CHARACTERISTICS SCLK Clock Period tCP 150 ns SCLK Pulse Width High tCH 75 ns SCLK Pulse Width Low tCL 75 ns CS Fall to SCLK Rise Setup Time tCSS 60 ns SCLK Rise to CS Rise Hold Time tDS 60 ns SDI Setup Time tDS 60 ns SDI Hold Time tDH 0 ns SCLK Rise to DOUT Valid Propagation Delay tDO1 CLOAD = 200pF 200 ns SCLK Fall to DOUT Valid Propagation Delay tCS 10 ns SCLK Rise to CS Fall Delay tCS0 10 ns SCLK Rise to CS Fall Delay tCS0 10	Time Required to Exit Shutdown				40		μs
Positive Supply Voltage VDD 2.7 3.6 V Power-Supply Current (Note 4) IDD 0.26 0.35 mA Shutdown Current (Note 4) 1 10 μA TIMING CHARACTERISTICS 5 150 ns SCLK Clock Period tcp 150 ns SCLK Pulse Width High tch 75 ns SCLK Pulse Width Low tcl 75 ns SCLK Pulse Width Low tcl 75 ns SCLK Rise Setup Time tcss 60 ns SCLK Rise to CS Rise Hold Time tbs 60 ns SDI Hold Time tbH 0 ns SCLK Rise to DOUT Valid Propagation Delay tbO1 CLOAD = 200pF 200 ns SCLK Fall to DOUT Valid Propagation Delay tbo2 CLOAD = 200pF 200 ns SCLK Rise to CS Fall Delay tcso 10 ns ns SCLK Rise to SCLK Rise Hold Time tcso 10 ns ns	Digital Feedthrough				1		nV-s
Power-Supply Current (Note 4) IDD 0.26 0.35 mA Shutdown Current (Note 4) 1 10 μA TIMING CHARACTERISTICS SCLK Clock Period tcp 150 ns SCLK Pulse Width High tcH 75 ns SCLK Pulse Width Low tcL 75 ns CS Fall to SCLK Rise Setup Time tcss 60 ns SCLK Rise to CS Rise Hold Time tcss 0 ns SDI Setup Time tbs 60 ns SDI Hold Time tbH 0 ns SCLK Rise to DOUT Valid Propagation Delay tbO1 CLOAD = 200pF 200 ns SCLK Fall to DOUT Valid Propagation Delay tbO2 CLOAD = 200pF 200 ns SCLK Rise to CS Fall Delay tcs0 10 ns SCLK Rise to SCLK Rise Hold Time tcs1 75 ns	POWER SUPPLIES		1	1			
Shutdown Current (Note 4) 1 10 μA TIMING CHARACTERISTICS SCLK Clock Period tcp 150 ns SCLK Pulse Width High tcH 75 ns SCLK Pulse Width Low tcL 75 ns CS Fall to SCLK Rise Setup Time tcss 60 ns SCLK Rise to CS Rise Hold Time tcss 0 ns SDI Setup Time tbs 60 ns SDI Hold Time tbh 0 ns SCLK Rise to DOUT Valid Propagation Delay tbo1 CLOAD = 200pF 200 ns SCLK Fall to DOUT Valid Propagation Delay tbo2 CLOAD = 200pF 200 ns SCLK Rise to CS Fall Delay tcso 10 ns SCLK Rise to SCLK Rise Hold Time tcsi 75 ns	Positive Supply Voltage	V_{DD}		2.7		3.6	V
TIMING CHARACTERISTICS SCLK Clock Period tCP 150 ns SCLK Pulse Width High tCH 75 ns SCLK Pulse Width Low tCL 75 ns CS Fall to SCLK Rise Setup Time tCSS 60 ns SCLK Rise to CS Rise Hold Time tCSS 0 ns SDI Setup Time tDS 60 ns SDI Hold Time tDH 0 ns SCLK Rise to DOUT Valid Propagation Delay tDO1 CLOAD = 200pF 200 ns SCLK Fall to DOUT Valid Propagation Delay tDO2 CLOAD = 200pF 200 ns SCLK Rise to CS Fall Delay tCS0 10 ns SCLK Rise to SCLK Rise Hold Time tCS1 75 ns	Power-Supply Current (Note 4)	I _{DD}			0.26	0.35	mA
SCLK Clock Period tcp 150 ns SCLK Pulse Width High tch 75 ns SCLK Pulse Width Low tcl 75 ns CS Fall to SCLK Rise Setup Time tcss 60 ns SCLK Rise to CS Rise Hold Time tcss 0 ns SDI Setup Time tbs 60 ns SDI Hold Time tbh 0 ns SCLK Rise to DOUT Valid Propagation Delay tbo1 CLOAD = 200pF 200 ns SCLK Fall to DOUT Valid Propagation Delay tbo2 CLOAD = 200pF 200 ns SCLK Fall to DOUT Valid Propagation Delay tcso 10 ns SCLK Rise to CS Fall Delay tcso 10 ns SCLK Rise to SCLK Rise Hold Time tcsi 75 ns	Shutdown Current (Note 4)				1	10	μΑ
SCLK Pulse Width High tch 75 ns SCLK Pulse Width Low tcl 75 ns CS Fall to SCLK Rise Setup Time tcss 60 ns SCLK Rise to CS Rise Hold Time tcss 0 ns SDI Setup Time tbs 60 ns SDI Hold Time tbh 0 ns SCLK Rise to DOUT Valid Propagation Delay tbo1 CLOAD = 200pF 200 ns SCLK Fall to DOUT Valid Propagation Delay tbo2 CLOAD = 200pF 200 ns SCLK Rise to CS Fall Delay tcso 10 ns CS Rise to SCLK Rise Hold Time tcsi 75 ns	TIMING CHARACTERISTICS			'			•
SCLK Pulse Width Low tCL 75 ns \$\overline{\text{CS}}\$ Fall to SCLK Rise Setup Time tCSS 60 ns \$\text{SCLK Rise to \$\overline{\text{CS}}\$ Rise Hold Time tCSS 0 ns \$\text{SDI Setup Time}\$ tDS 60 ns \$\text{SDI Hold Time}\$ tDH 0 ns \$\text{SCLK Rise to DOUT Valid Propagation Delay} tD01 \$\text{CLOAD} = 200pF\$ 200 ns \$\text{SCLK Fall to DOUT Valid Propagation Delay} tD02 \$\text{CLOAD} = 200pF\$ 200 ns \$\text{SCLK Rise to \$\overline{\text{CS}}\$ Fall Delay tCS0 10 ns \$\overline{\text{CS Rise to SCLK Rise Hold Time}} tCS1 75 ns	SCLK Clock Period	tcp		150			ns
CS Fall to SCLK Rise Setup Time tcss 60 ns SCLK Rise to CS Rise Hold Time tcss 0 ns SDI Setup Time tbs 60 ns SDI Hold Time tbh 0 ns SCLK Rise to DOUT Valid Propagation Delay tbo1 CLOAD = 200pF 200 ns SCLK Fall to DOUT Valid Propagation Delay tbo2 CLOAD = 200pF 200 ns SCLK Rise to CS Fall Delay tcso 10 ns CS Rise to SCLK Rise Hold Time tcs1 75 ns	SCLK Pulse Width High	tch		75			ns
Time tCSS 60 ns SCLK Rise to \overline{CS} Rise Hold Time tCSS 0 ns SDI Setup Time tDS 60 ns SDI Hold Time tDH 0 ns SCLK Rise to DOUT Valid Propagation Delay tD01 CLOAD = 200pF 200 ns SCLK Fall to DOUT Valid Propagation Delay tD02 CLOAD = 200pF 200 ns SCLK Rise to \overline{CS} Fall Delay tCSO 10 ns \overline{CS} Rise to SCLK Rise Hold Time tCS1 75 ns	SCLK Pulse Width Low	tcl		75			ns
Time tCSS 0 ns SDI Setup Time tDS 60 ns SDI Hold Time tDH 0 ns SCLK Rise to DOUT Valid Propagation Delay tDO1 CLOAD = 200pF 200 ns SCLK Fall to DOUT Valid Propagation Delay tDO2 CLOAD = 200pF 200 ns SCLK Rise to \overline{CS} Fall Delay tCS0 10 ns \overline{CS} Rise to SCLK Rise Hold Time tCS1 75 ns	•	tcss		60			ns
SDI Hold Time tDH 0 ns SCLK Rise to DOUT Valid Propagation Delay tDO1 CLOAD = 200pF 200 ns SCLK Fall to DOUT Valid Propagation Delay tDO2 CLOAD = 200pF 200 ns SCLK Rise to \overline{CS} Fall Delay tCS0 10 ns \overline{CS} Rise to SCLK Rise Hold Time tCS1 75 ns		tcss		0			ns
SCLK Rise to DOUT Valid Propagation Delay t_{DO1} $C_{LOAD} = 200pF$ 200 nsSCLK Fall to DOUT Valid Propagation Delay t_{DO2} $C_{LOAD} = 200pF$ 200 nsSCLK Rise to \overline{CS} Fall Delay t_{CSO} 10 ns \overline{CS} Rise to SCLK Rise Hold Time t_{CS1} 75 ns	SDI Setup Time	t _{DS}		60			ns
Propagation DelaytD01CLOAD = 200pF200nsSCLK Fall to DOUT Valid Propagation DelaytD02 $C_{LOAD} = 200pF$ 200nsSCLK Rise to \overline{CS} Fall DelaytCs010ns \overline{CS} Rise to SCLK Rise Hold TimetCs175ns	SDI Hold Time	tDH		0			ns
Propagation Delay $tDO2$ $CLOAD = 200pF$ 200 ns SCLK Rise to \overline{CS} Fall Delay $tCS0$ 10 ns \overline{CS} Rise to SCLK Rise Hold Time $tCS1$ 75 ns		tDO1	C _{LOAD} = 200pF			200	ns
CS Rise to SCLK Rise Hold Time tCS1 75 ns		t _{DO2}	C _{LOAD} = 200pF			200	ns
	SCLK Rise to CS Fall Delay	tcso		10			ns
CS Pulse Width High tosw 150 ns	CS Rise to SCLK Rise Hold Time	tCS1		75			ns
	CS Pulse Width High	tcsw		150			ns

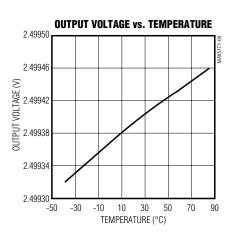
Note 1: INL guaranteed between codes 64 and 16383.

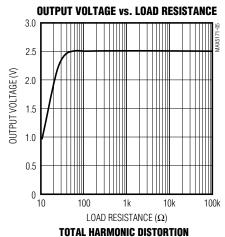
Note 2: Offset is measured at the code that comes closest to 10mV.

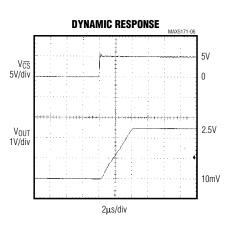

Note 3: Accuracy is better than 1.0 LSB for VouT = 10mV to Vpp - 180mV. Guaranteed by PSR test on end points.

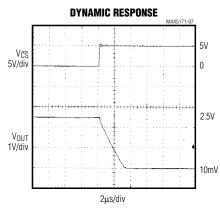

Note 4: R_L = open and digital inputs are either V_{DD} or DGND.


Note 5: INL guaranteed between codes 128 and 16383.

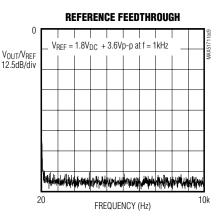

標準動作特性

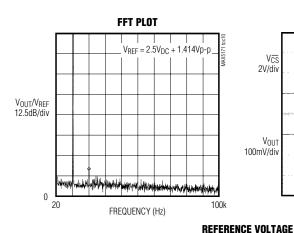

 $(\text{MAX5171: V}_{\text{DD}} = +5\text{V}, \text{V}_{\text{REF}} = 2.5\text{V}; \text{MAX5173: V}_{\text{DD}} = +3\text{V}, \text{V}_{\text{REF}} = 1.25\text{V}; \text{C}_{\text{L}} = 100\text{pF}, \text{FB} = \text{OUT}, \text{code} = 3\text{FFF hex}, \text{T}_{\text{A}} = +25^{\circ}\text{C}, \text{unless otherwise noted.})$ MAX5171

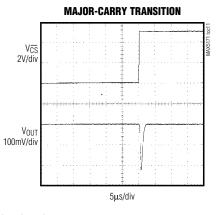


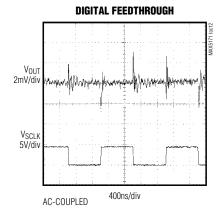




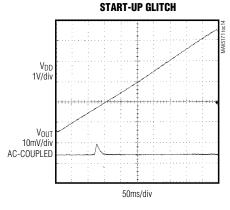


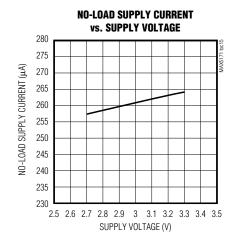


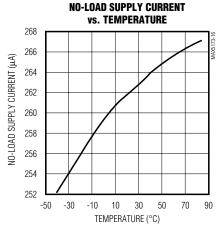


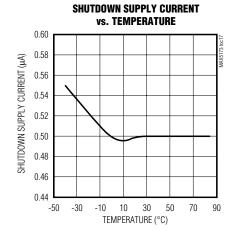

標準動作特性(続き)

 $(MAX5171: V_{DD} = +5V, V_{REF} = 2.5V; MAX5173: V_{DD} = +3V, V_{REF} = 1.25V; C_{L} = 100pF, FB = OUT, code = 3FFF hex, T_{A} = +25^{\circ}C, unless otherwise noted.)$

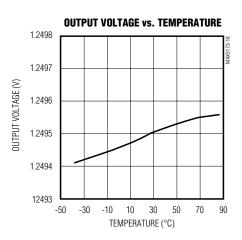

MAX5171

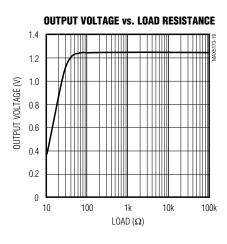


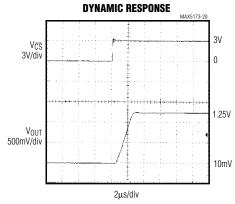


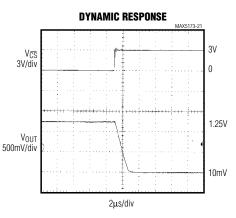

INPUT FREQUENCY RESPONSE 0 -5 GAIN (dB) -10 -15 -20 $V_{REF} = 0.67V_{p-p} + 2.5V_{DC}$ -25 0 500 1000 1500 2000 2500 3000 FREQUENCY (kHz)

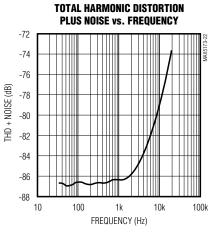
MAX5173

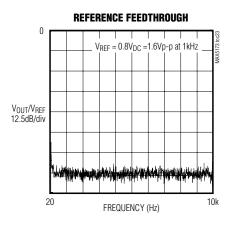


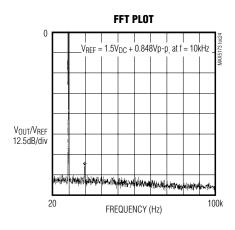


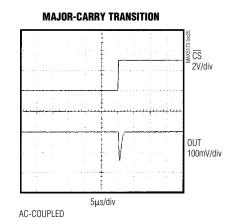

標準動作特性(続き)_

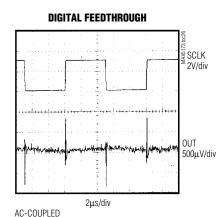

(MAX5171: V_{DD} = +5V, V_{REF} = 2.5V; MAX5173: V_{DD} = +3V, V_{REF} = 1.25V; C_L = 100pF, FB = OUT, code = 3FFF hex, T_A = +25°C, unless otherwise noted.)

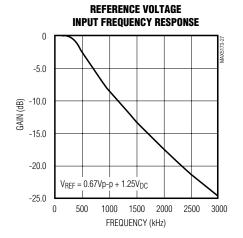

MAX5173

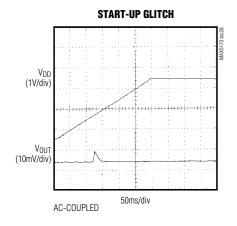












標準動作特性(続き)_

(MAX5171: V_{DD} = +5V, V_{REF} = 2.5V; MAX5173: V_{DD} = +3V, V_{REF} = 1.25V; C_L = 100pF, FB = OUT, code = 3FFF hex, T_A = +25°C, unless otherwise noted.)

端子説明

端子	名称	機能
1	FB	フィードバック入力
2	OUT	出力電圧。シャットダウン中はハイインピーダンスです。出力電圧はV _{DD} に制限されています。
3	RS	リセットモード選択(ディジタル入力)。V _{DD} に接続するとミッドスケールがリセット出力電圧になります。 DGNDに接続すると0Vがリセット出力電圧になります。
4	PDL	パワーダウンロックアウト(ディジタル入力)。V _{DD} に接続するとシャットダウンが許容されます。DGNDに接続すると、ソフトウェア及びハードウェアのシャットダウンがディセーブルされます。
5	CLR	DACクリア(ディジタル入力)。DACをRSで設定される出力状態にクリアします。
6	CS	チップセレクト入力(ディジタル入力)
7	DIN	シリアルデータ入力(ディジタル入力)。データはSCLKの立上がりエッジで同期入力されます。
8	SCLK	シリアルクロック入力(ディジタル入力)
9	DGND	ディジタルグランド
10	DOUT	シリアルデータ出力
11	UPO	ユーザ設定出力。状態はシリアル入力によって設定されます。
12	SHDN	シャットダウン(ディジタル入力)。 $\overline{PDL} = V_{DD}$ の時にSHDNをハイにすると、チップはシャットダウン状態になります。最大シャットダウン電流は10 μ Aです。
13	AGND	アナロググランド
14	REF	リファレンス入力。最大V _{REF} はV _{DD} - 1.4Vです。
15	N.C.	無接続
16	V _{DD}	正電源。4.7µFコンデンサと0.1µFコンデンサを並列にしたものでAGNDにバイパスして下さい。

詳細

MAX5171/MAX5173 14ビットシリアル電圧出力 DACは、3線シリアルインタフェースで動作します。これらのデバイスは16ビットシフトレジスタを含み、入力レジスタ及びDACレジスタからなるダブルバッファ付入力を備えています(「ファンクションダイアグラム」を参照)。さらに、出力アンプの負端子が利用可能です。これらのDACは、ディジタル入力コードに比例する重み付き出力電圧を生成する反転R-2Rラダーネットワーク(図1)を使用して設計されています。

リファレンス入力

リファレンス入力は、 $0 \sim (V_{DD}-1.4V)$ の範囲のAC及びDC値を受け付けます。出力電圧は次式で表されます。

$$V_{OUT} = \frac{V_{REF} \cdot N \cdot Gain}{16384}$$

ここで、NはMAX5171/MAX5173の入力コードの数値 $(0 \sim 16383)$ 、 V_{REF} はリファレンス電圧、「Gain」は外部で設定された電圧利得です。最大出力電圧は、 V_{DD} です。REFピンの入力抵抗は最小値が18kで、コードに依存します。

出力アンプ

MAX5171/MAX5173のDAC出力は、標準スルーレートが 0.6V/µsの内部高精度アンプでバッファされています。 出力アンプの反転入力へのアクセスが可能であるため、出力利得設定及び信号調節に融通が利きます(「アプリケーション情報」を参照)。

出力アンプは、5k と100pFの並列負荷の時、フルスケール遷移から 12μ s以内に $\pm 0.5LSB$ までセトリングします。負荷が2k 以下になると性能が劣化します。

シャットダウンモード

MAX5171/MAX5173は、ソフトウェア及びハードウェア・プログラマブルのシャットダウンモードを備えています。このモードでは標準消費電流が1µAに低減します。シャットダウンモードに入るには、表1に示すように該当する入力制御ワードを書き込むか、あるいはハードウェアシャットダウンを使って下さい。シャットダウンモード時のリファレンス入力及びアンプ出力はハイインピーダンスになり、シリアルインタフェースはアクティブ状態に留まります。入力レジスタのデータはセーブされるため、MAX5171/MAX5173は通常動作状態に戻った時に、シャットダウン以前の出力状態を呼び戻すことができます。シャットダウンモードを解除するには、DACレジスタにシフトレジスタのデータを再ロードするか、入力レジスタ及びDACレジスタに同時にロードするか、あるいはPDLをトグルして下さい。

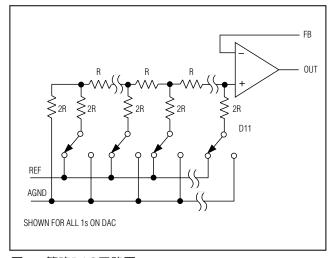


図1. 簡略DAC回路図

シャットダウンモードから戻った時は、リファレンスが落ち着くまで40us待って下さい。

パワーダウンロックアウト

パワーダウンロックアウトは、ソフトウェア/ハードウェアシャットダウンモードをディセーブルします。 PDLがハイからローに遷移すると、デバイスのシャットダウンが解除され、この時出力は、以前の状態に戻ります。

シャットダウン

PDLがハイの時にSHDNをハイに引き上げると、MAX5171/MAX5173はシャットダウンします。SHDNをローに引き下げてもデバイスは通常動作に戻りません。シャットダウンを解除するには、PDLのハイからローへの遷移、あるいはシリアルインタフェースを通じた適切なコマンドが必要です(コマンドについては表1を参照)。

シリアルインタフェース

MAX5171/MAX5173の3線シリアルインタフェースは、SPI/QSPI(図2)及びMICROWIRE(図3)インタフェース 規格とコンパチブルです。16ビットのシリアル入力 ワードは、2つの制御ビットと14個のデータビット (MSBからLSBへ)からなっています。

制御ビットは、表1にしたがってMAX5171/MAX5173 の動作を決定します。MAX5171/MAX5173のディジタル入力はダブルバッファ付であるため、ユーザは以下の作業を行うことができます。

- DACレジスタを更新することなく入力レジスタに ロードすること
- 入力レジスタからのデータでDACレジスタを更新 すること
- 入力及びDACレジスタを同時に更新すること

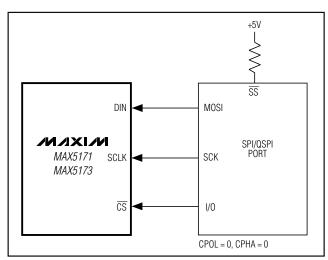


図2. SPI/QSPIインタフェースの接続

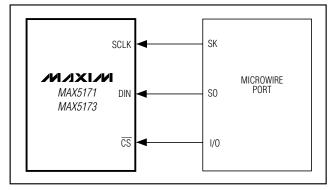


図3. MICROWIREインタフェースの接続

でSがローの状態の時に、MAX5171/MAX5173は送られてきた1つの16ビットパケットあるいは2つの8ビットパケットを受け付けます。MAX5171/MAX5173は下記の構成が設定可能になっています。

- どのクロックエッジでDOUTが同期出力されるか
- ユーザ設定可能なロジック出力の状態
- リセット状態の構成

表1に、これらの設定に必要なコマンドが記載されています。

図4の一般タイミング図に、MAX5171/MAX5173 データ収集の方法が図解されています。 \overline{CS} はシリアルクロック(SCLK)の立上がりエッジよりも少なくとも t_{CSS} 前にローになることが必要です。 \overline{CS} がローの状態で、データがSCLKの立上がりエッジでレジスタに同期入力されます。適正動作が保証された最大シリアルクロック周波数は、MAX5171が10MHz、MAX5173が6MHzです。図5に、シリアルインタフェースの詳細タイミング図を示します。

シリアルデータ出力(DOUT)

シリアルデータ出力(DOUT)は、内部シフトレジスタの出力です。これにより、複数デバイスのデイジーチェーン接続及びデータの読み戻しが可能です(アプリケーション情報」を参照)。スタートアップ時のデフォルト状態では、データはシリアルクロックの立上がリエッジ(モードの)でDOUTからシフトアウトされるため、遅れが16クロックサイクルとなり、SPI、QSPI及びMICROWIREコンパチビリティが確保されます。しかし、デバイスがモード1に設定されていると、出力はDINから16.5クロックサイクル遅れ、シリアルクロックの立上がリエッジで同期出力されます。シャットダウン中、DOUTはシャットダウン前の最後のディジタル状態を保持します。

- 表1. シリアルインタフェースのブログラ	゚゙ミングコマンド
------------------------	-----------

	16-BIT SE	RIAL WORD	FUNCTION
C1	C0	D13D0	FUNCTION
0	0	14-bit DAC data	Load input register; DAC registers are unchanged.
0	1	14-bit DAC data	Load input register; DAC registers are updated (start up DAC with new data).
1	0	X X X XXX XXXX XXXX	Update DAC register from input register (start up DAC with data previously stored in the input registers).
1	1	0 0 x xxx xxxx xxxx	No operation (NOP).
1	1	0 1 x xxx xxxx xxxx	Shut down DAC (provided PDL = 1).
1	1	1 0 0 xxx xxxx xxxx	UPO goes low (default).
1	1	1 0 1 xxx xxxx xxxx	UPO goes high.
1	1	1 1 0 xxx xxxx xxxx	Mode 1, DOUT clocked out on SCLK's rising edge.
1	1	1 1 1 xxx xxxx xxxx	Mode 0, DOUT clocked out on SCLK's falling edge (default).

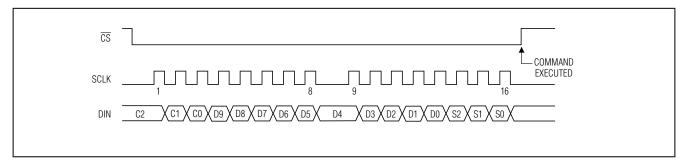


図4. シリアルインタフェースのタイミング

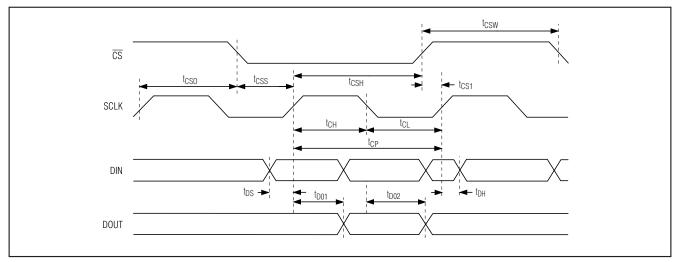


図5. シリアルインタフェースの詳細タイミング

ユーザ設定可能な出力(UPO)

UPO機能により、シリアルインタフェースを通じて外部デバイスを制御できます。このため、必要なマイクロコントローラI/Oポート数が減らせます。パワーダウン中、この出力は、シャットダウン前の最後のディジタル状態を保持します。CLRがローに引き下げられると、UPOはデフォルト状態にリセットされます。UPOを制御するための具体的なコマンドについては、表1を参照して下さい。

リセット(RS)及びクリア(CLR)

MAX5171/MAX5173は、出力電圧をリセットする クリアピンを備えています。RST = DGNDの時、 \overline{CLR} は出力電圧を最小電圧(オフセットがない場合は0)に リセットします。RST = V_{DD} の時、 \overline{CLR} は出力電圧を ミッドスケールにリセットします。いずれの場合も、 \overline{CLR} はUPOを設定されたデフォルト状態にリセットします。

アプリケーション情報

ユニポーラ出力

図6に、MAX5171/MAX5173を利得+2V/Vのユニポーラ、レイルトゥレイル動作にセットアップした例を示します。表2に、ユニポーラ出力電圧のコードを示します。出力電圧は V_{DD} に制限されています。

バイポーラ出力

図7は、MAX5171/MAX5173をバイポーラ動作に設定した場合です。出力電圧は次式によって与えられます (FB = OUT)。

$$V_{OUT} = V_{REF} \left(\frac{2 \cdot N}{16384} - 1 \right)$$

ここで、NはDACのバイナリ入力コードの数値、V_{REF}は外部リファレンスの電圧です。表3に、図7の回路のディジタルコード及び対応する出力電圧を示します。

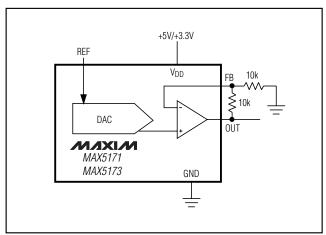


図6. ユニポーラ出力回路(レイルトゥレイル)

表2. ユニポーラコード表(図6の回路)

DAC CONTE	NTS LSB	ANALOG OUTPUT
11 1111 1111	1111	2 • V _{REF} (16383/16384)
10 0000 0000	0001	2 • V _{REF} (8193/16384)
10 0000 0000	0000	2 • V _{REF} (8192/16384)
01 1111 1111	1111	2 • V _{REF} (8191/16384)
00 0000 0000 0001		2 • V _{REF} (1/16384)
00 0000 0000	0000	0

デバイスのデイジーチェーン接続

シリアルデータ出力ピン(DOUT)を使用することによって、複数のMAX5171/MAX5173をまとめてデイジーチェーン接続できます(図8)。この方式の長所は、僅か2本のラインで、ライン上の全てのDACを制御できることにあります。但し、DACを設定するためにn個のコマンドが必要であるという短所があります。図9に、1本の共通なDIN信号ラインを共有するいくつかのMAX5171/MAX5173を示します。この構成においては、データバスは全てのデバイスの共通です。しかし、この構成は各デバイスが専用のCSラインを必要とするため、必要なI/Oラインの数が多くなります。この構成の長所は、いずれのDACの設定にも僅か1つのコマンドしか必要としないことです。

ACリファレンスの使用

MAX5171/MAX5173は、リファレンス電圧が0~ $(V_{DD}-1.4V)$ の範囲に収まっている限り、AC成分を含むリファレンスを許容します。図10は、REFにサイン波入力を印加する技法を示しています。リファレンス電圧はAGNDよりも上に維持される必要があります。

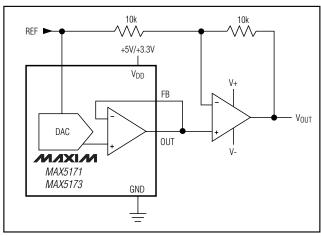


図7. バイポーラ出力回路

表3. バイポーラコード表(図7の回路)

DAC CONTEN	TS LSB	ANALOG OUTPUT
11 1111 1111 1	111	+V _{REF} [(2 • 16383/16384) - 1]
10 0000 0000 0	001	+V _{REF} [(2 • 8193/16384) - 1]
10 0000 0000 0	000	+V _{REF} [(2 • 8192/16384) - 1]
01 1111 1111 1	111	+V _{REF} [(2 • 8191/16384) - 1]
00 0000 0000 0	001	+V _{REF} [(2 • 1/16384) - 1]
00 0000 0000 0	000	-V _{REF}

ディジタルプログラマブル電流ソース

図11の回路を使用すると、オペアンプのフィードバックループ内のNPNトランジスタ(2N3904等)がディジタルでプログラムできる一方向性電流ソースになります。出力電流は、次式で計算されます。

$$I_{OUT} = \frac{V_{REF} \cdot N}{R \cdot 16384}$$

ここで、NはDACのバイナリ入力コードの数値、Rは 図11に示されている検出抵抗です。

電源及びレイアウト上の考慮

ワイヤラップ基板はお勧めできません。最高のシステム性能を得るには、アナログとディジタルのグランドプレーンが別々になったプリント基板を使用して下さい。2つのグランドプレーンは、低インピーダンス電源ソースのところで一緒にまとめて接続して下さい。DGNDとAGNDピンはICのところで一緒にまとめて接続して下さい。最善のグランドを得るためには、DACのDGNDピンとAGNDピンを一緒にまとめて接続し、それを今度はシステムアナロググランドプレーンに接続して下さい。DACのDGNDがシステムディジタルグランドに接続されていると、ディジタルノイズがDACのアナログ部分に漏れる可能性があります。

4.7µFコンデンサと0.1µFコンデンサを並列にしたもので、電源をAGNDにバイパスして下さい。リードインダクタンスを小さくするために、リードはできるだけ短くして下さい。ノイズが問題になる場合は、シールド及び/又はフェライトビーズを使用して分離を改善して下さい。

利得ドリフト及びINLとDNL性能を維持するには、DACリファレンス入力ピンのところでリファレンス出力インピーダンスをできるだけ低くすることが非常に重要です。REFピンの直列抵抗が0.1 を超えるとINLが劣化します。AGNDピンについても同様の配慮が必要です。

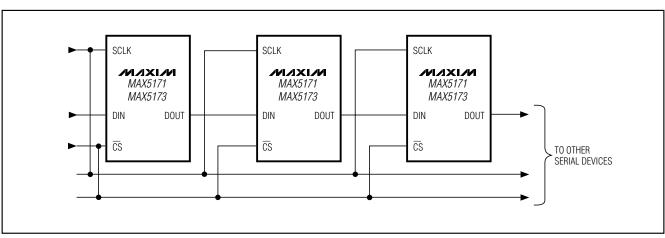


図8. 複数のMAX5171/MAX5173デバイスのデイジーチェーン接続

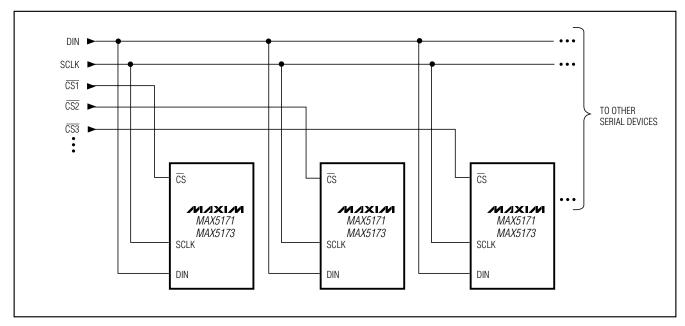
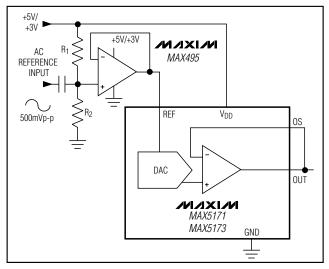
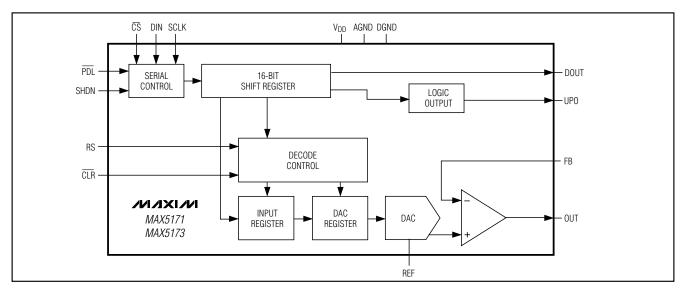



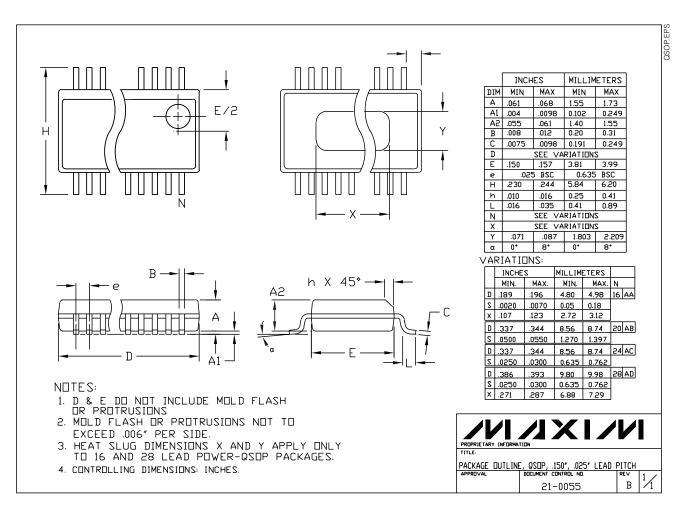
図9. 複数のMAX5171/MAX5173が1つの共通のDINとSCLKラインを共有する場合



+5V/+3.3V REF V_{DD} MIXIM V_L MAX5171 MAX5173 I_{OUT} DAC OUT 2N3904 FB

図10. ACリファレンス入力回路

図11. ディジタルプログラマブル電流ソース


ファンクションダイアグラム

チップ情報

TRANSISTOR COUNT: 3457

パッケージ _____

(販売代理店

マキシム・ジャパン株式会社

〒169-0051東京都新宿区西早稲田3-30-16(ホリゾン1ビル) TEL. (03)3232-6141 FAX. (03)3232-6149

マキシム社では全体がマキシム社製品で実現されている回路以外の回路の使用については責任を持ちません。回路特許ライセンスは明言されていません。マキシム社は随時予告なしに回路及び仕様を変更する権利を保留します。

16 ______Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600