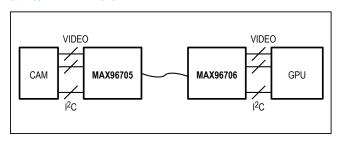
MAX96705

16ビットGMSLシリアライザ、高耐性/広帯域幅モードおよび同軸/STPケーブル駆動

概要

MAX96705は、特に車載カメラアプリケーションに最適な小型シリアライザです。このデバイスは、MAX9271と機能およびピン互換です。広帯域幅モードでは、12ビットリニアまたは組合せHDRデータ型のパラレルクロック最大値は116MHzです。

内蔵の制御チャネルは、UART、I²C、およびミックスド UART/I²Cモードで、9.6kbps~1Mbpsで動作し、ビデオ タイミングに関係なく、シリアライザ、デシリアライザ、およびカメラのレジスタを設定することができます。


より長いケーブルを駆動するために、このICは設定可能なプリエンファシス/デエンファシスを備えています。設定可能なスペクトラム拡散がシリアル出力で使用可能です。シリアル出力は、ISO 10605およびIEC 61000-4-2のESD規格に準拠しています。コア電源範囲は1.7V~1.9V、I/O電源範囲は1.7V~3.6Vです。

MAX96705は、32ピンTQFNパッケージ(5mm x 5mm、0.5mmリードピッチ)で提供され、-40 $^{\circ}$ ~+115 $^{\circ}$ の温度範囲で動作します。

アプリケーション

• 車載カメラアプリケーション

簡略ブロック図

型番はデータシートの最後に記載されています。

利点と特長

- セーフティカメラアプリケーションに最適
 - 低コスト50Ω同軸(100Ω STP)ケーブルで動作
 - ビデオ/制御データのエラー検出
 - 高耐性モードによる堅牢な制御チャネルEMC耐性
 - エラー検出時に制御データを再送
 - クラス最高の消費電流:93mA (max)
 - プリ/デエンファシスによってフルスピードで15mまでの ケーブルが使用可能
 - 32ピンTQFNパッケージ(5mm x 5mm、0.5mmリード ピッチ)
- メガピクセルカメラに対応する高速データシリアライズ機能
 - シリアルビットレート: 最大1.74Gbps
 - 12.5MHz~87MHz x 14ビット + H/Vデータ
 - 36.66MHz~116MHz x 12ビット + H/Vデータ(内部エンコード使用)
- 複数のモードによるシステムの柔軟性
 - 制御チャネル: 9.6kbps~1Mbps (UART、クロックストレッチ機能を備えたI²C、またはUART-I²Cモード)
 - クロスポイントスイッチによって任意の入力ビットマップに対応
 - VSYNCおよびHSYNCエンコードモード
- EMIおよびシールド要件を軽減
 - 設定可能な出力スペクトラム拡散
 - パラレル入力のスペクトラム拡散をトラッキング
 - I/O電源: 1.7V~3.6V
- カメラの起動と検証用ペリフェラル機能
 - BER試験用PRBSジェネレータ内蔵
 - カメラのフレーム同期トリガおよびその他の用途の専用 GPO
 - スリープモードからのリモート/ローカルウェイクアップ
- AEC-O100車載仕様に適合
 - 動作温度:-40℃~+115℃
 - IEC 61000-4-2およびISO 10605 ESD保護: ±8kV接 触放電および±15kV気中放電

目次

概要
アプリケーション
利点と特長
簡略ブロック図 1
Absolute Maximum Ratings
パッケージ
32-Pin TQFN-EP
DC Electrical Characteristics
AC Electrical Characteristics
標準動作特性
ピン配置15
端子説明
ファンクションブロックダイアグラム
詳細
シリアルリンクの信号方式とデータ形式23
動作モード
ビデオ/設定リンク
シングル/ダブルモード
HS/VSの符号化24
エラー検出
バス幅
制御チャネルおよびレジスタの設定
順方向制御チャネル 28
逆方向制御チャネル 28
UARTインタフェース
l ² Cインタフェース
リモート端の動作28
クロックストレッチのタイミング
パケットベースのI ² C
パケットプロトコルの概要29
制御チャネルのエラー検出およびパケット再送信29
GPO/GPI制御
スペクトラム拡散29
ケーブルタイプ設定
クロスバースイッチ
ビデオタイミング発生器
シャットダウンモード/スリープモード
設定リンク
シリアライズのディセーブル
スリープモード
パワーダウンモード

目次 (続き)	
ー リンクのスタートアップ手順	2
レジスタマップ	3
GMSL Register Map	3
アプリケーション情報	9
パラレルインタフェース	9
バスデータ幅	9
バスデータレート	9
クロスバースイッチ70	О
クロスバースイッチの設定70	О
推奨クロスバースイッチ設定手順70	О
タイミング発生器の設定 7:	3
ダブルモードのアライメント	3
外部ハイ/ロー信号	3
HSまたはDEによるアライメント	3
制御チャネルインタフェース	3
I ² C	3
l ² Cビットレート	3
デバイスアドレスのソフトウェア設定	4
I ² Cアドレス変換	4
設定のブロック	4
カスケード/パラレルデバイス	4
デュアルμC制御	4
UART74	4
ベースモード	4
UARTのタイミング	4
UART-I ² C変換70	6
UARTバイパスモード7	7
デバイスアドレス7	7
スペクトラム拡散7	7
スペクトラム拡散分周器のマニュアル設定	7
基板レイアウト	8
電源回路とバイパス処理	8
高周波数信号	8
ESD保護78	8
他のGMSLデバイスとの互換性	9
デバイスの設定および部品の選択	9
内蔵入力プルダウン	9
3レベル設定入力	9
多機能入力79	9
I ² C/UARTのプルアップ抵抗	Γ

MAX96705

	AC 福台コンテンサ
	ケーブルおよびコネクタ80
	PRBS
	GPI/GPO
	ロック喪失の高速検出
	フレーム同期の供給(カメラアプリケーション)
	スリープモードの移行/終了
1	票準アプリケーション回路
J	型番
Ē	收訂履歴
_	図リスト
-	図1. シリアル出力パラメータ
	図2. OUT+、OUT-の出力波形
	図3. シングルエンド出力テンプレート
	図4. ワーストケースパターンの入力
	図5. パラレルクロック入力の要件
	図6. I ² Cのタイミングパラメータ
	図7. 差動出力テンプレート
	図8. 入力のセットアップおよびホールド時間
	図9. GPI-GPO間の遅延
	図10. シリアライザの遅延
	図11. リンクのスタートアップ時間
	図12. 起動遅延
	図13. 24ビットモードのシリアルデータ形式
	図14. 27ビット広帯域幅モードのシリアルデータ形式
	図15. 32ビットモードのシリアルデータ形式
	図16. 同軸接続
	図17. クロスバースイッチのデータフロー30
	図18. ビデオタイミング生成用の同期信号フォーマット
	図19. 状態遷移図
	図20. クロスバースイッチのデフォルトマッピング
	図21. ベースモードのGMSL-UARTデータ形式
	図22. ベースモードのGMSL-UARTプロトコル
	図23. SYNCバイト(0x79)
	図24. ACKバイト(0xC3)
	図25. レジスタアドレスによるGMSL UARTとI ² C間の形式変換(I2CMETHOD = 0)
	図26. レジスタアドレスによるGMSL UARTと l^2 C間の形式変換(l^2 CMETHOD = 1)
	図27. ヒューマンボディモデルESDテスト回路78
	図28. IEC 61000-4-2接触放電ESDテスト回路
	図29. ISO 10605接触放電ESDテスト回路

MAX96705

表リスト	
表1. 逆方向制御チャネルのモード	28
表2. リンクのスタートアップ手順	32
表3. 入力データ幅の選択	69
表4. データレートの選択	69
表5. クロスバー出力とシリアルリンクのマッピング(D23:0)	70
表6. クロスバー出力とシリアルリンクのマッピング(D31:24および特殊パケット)	
表7. 凡例	
表8. タイミング発生器のパラメータの制限	
表9. 出力の拡散	
表10. 拡散の制限	77
表11. 変調係数と最大SDIV設定値	
表12. 機能上の互換性	
表13. 3レベル設定入力マップ	79
表14. GMSLの推奨コネクタおよびケーブル	80

Absolute Maximum Ratings

AVDD to EP*	0.5V to +1.9V
DVDD to EP*	0.5V to +1.9V
IOVDD to EP*	0.5V to +3.9V
OUT+, OUT- to EP*	0.5V to +1.9V
All Other Pins to EP*	0.5V to (IOVDD + 0.5V)
OUT+, OUT- Short Circuit to Groun	d or SupplyContinuous

Continuous Power Dissipation, T _A = +70°C	
TQFN (derate 34.5 mW/°C above +70°C).	2758.6mW
Operating Temperature Range	40°C to +115°C
Junction Temperature	+125°C
Storage Temperature Range	40°C to +150°C
Soldering Temperature (reflow)	+260°C

^{*}EP connected to IC ground.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

パッケージ

最新のパッケージ図面情報およびランドパターン(フットプリント)は www.maximintegrated.com/jp/packaging を参照してください。なお、 パッケージコードに含まれる[+]、「#」、または[-]はRoHS対応状況を表したものでしかありません。パッケージ図面はパッケージそのものに 関するものでRoHS対応状況とは関係がなく、図面によってパッケージコードが異なることがある点を注意してください。

32-Pin TQFN-EP

Package Code	T3255+8
Outline Number	21-0140
Land Pattern Number	90-0013
Single-Layer Board:	
Junction-to-Ambient Thermal Resistance (θ _{JA})	47
Junction-to-Case Thermal Resistance (θ _{JC})	1.7
Four-Layer Board:	
Junction-to-Ambient Thermal Resistance (θ _{JA})	29
Junction-to-Case Thermal Resistance (θ_{JC})	1.7

パッケージの熱抵抗は、4層基板を使用して、JEDEC仕様JESD51-7に記載されている方法で測定した値です。パッケージの熱に関する詳細に ついては、www.maximintegrated.com/jp/thermal-tutorialを参照してください。

DC Electrical Characteristics

 $(V_{DVDD} = V_{AVDD} = 1.7V \text{ to } 1.9V, \ V_{IOVDD} = 1.7V \text{ to } 3.6V, \ R_L = 100\Omega \pm 1\% \text{ (differential)}, \ T_A = -40^{\circ}\text{C to } +115^{\circ}\text{C}, \ \text{EP connected to PCB ground, typical values are at } V_{DVDD} = V_{AVDD} = V_{IOVDD} = 1.8V, \ T_A = +25^{\circ}\text{C}, \ \text{unless otherwise noted.)} \text{ (Note 1)}$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
SINGLE-ENDED INPUTS (LC	CEN, DIN_, F	PCLKIN, HS, VS, DE, BWS, DBL, HIM, MS, F	IVEN, PWDI	NB)		
High-Level Input Voltage	V _{IH}		0.65 x V _{IOVDD}			V
Low-Level Input Voltage	V _{IL}				0.35 x V _{IOVDD}	V
Input Current	I _{IN}	V _{IN} = 0 to V _{IOVDD}	-20		+20	μA
THREE-LEVEL INPUTS (COI	NF0, CONF1)					
High-Level Input Voltage	V _{IH}		0.7 x V _{IOVDD}			V
Low-Level Input Voltage	V_{IL}				0.3 x V _{IOVDD}	V
Mid-Level Input Current	I _{INM}	Open or connected to a driver with output in high impedance (Note 2)	-10		+10	μΑ
Input Current	I _{IN}	High or low, PWDNB high or low	-220		+220	μA
SINGLE-ENDED OUTPUT (G	PO)					
High-Level Output Voltage	V _{OH}	I _{OH} = -2mA	V _{IOVDD} - 0.2			V
Low-Level Output Voltage	V _{OL}	I _{OL} = 2mA			0.2	V
Output Short-Circuit Current	1	V _O = 0V, V _{IOVDD} = 3.0V to 3.6V	-16	-35	-64	mA
Output Short-Circuit Current	los	$V_{O} = 0V, V_{IOVDD} = 1.7V \text{ to } 1.9V$	-3	-12	-21	ША
UART/I ² C and GENERAL-PU	IRPOSE I/Os	(RX/SDA, TX/SCL, GPIO_) with OPEN-DRA	IN OUTPUT	S		
High-Level Input Voltage	V _{IH}		0.7 x V _{IOVDD}			V
Low-Level Input Voltage	V _{IL}				0.3 x V _{IOVDD}	V
Input Current	I _{IN}	V _{IN} = 0 to V _{IOVDD} (Note 3), RX/SDA, TX/SCL	-110		+5	μA
		V _{IN} = 0 to V _{IOVDD} (Note 3), GPIO_	-80		+5	
Low-Level Open-Drain	V	I _{OL} = 3mA, V _{IOVDD} = 1.7V to 1.9V			0.4	.,
Output Voltage	V_{OL}	I _{OL} = 3mA, V _{IOVDD} = 3.0V to 3.6V			0.3	V
Input Capacitance	C _{IN}	Each pin (Note 4)			10	pF

DC Electrical Characteristics (continued)

 $(V_{DVDD} = V_{AVDD} = 1.7V \text{ to } 1.9V, V_{IOVDD} = 1.7V \text{ to } 3.6V, R_L = 100\Omega \pm 1\% \text{ (differential)}, T_A = -40^{\circ}\text{C to } +115^{\circ}\text{C}, EP \text{ connected to PCB ground, typical values are at, } V_{DVDD} = V_{AVDD} = V_{IOVDD} = 1.8V, T_A = +25^{\circ}\text{C}, \text{ unless otherwise noted.)}$ (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
DIFFERENTIAL OUTPUTS (OUT+, OUT-)					
		Preemphasis off, high drive (Figure 1)	300	400	500	
Differential Output Voltage	V _{OD}	3.3dB preemphasis, high drive (Figure 2)	350		610	mV
		3.3dB deemphasis, high drive (Figure 2)	240		425	1
Change in V _{OD} Between Complementary Output States	ΔV _{OD}				25	mV
Output Offset Voltage (V _{OUT+} + V _{OUT-})/2 = V _{OS}	Vos	Preemphasis off	1.1	1.4	1.56	V
Change in V _{OS} Between Complementary Output States	ΔV _{OS}				25	mV
Output Chart Circuit Current	1	V _{OUT+} or V _{OUT-} = 0V	-60			A
Output Short-Circuit Current	los	V _{OUT+} or V _{OUT-} = 1.9V			25	mA
Magnitude of Differential Output Short-Circuit Current	I _{OSD}	V _{OD} = 0V			25	mA
Output-Termination Resistance (Internal)	R _O	From OUT+ or OUT- to AVDD	45	54	63	Ω
REVERSE CONTROL-CHAN	NEL RECEIV	ER OUTPUTS (OUT+, OUT-)				
High Cuitabing Throubald	V	Legacy			27	ma\/
High-Switching Threshold	V _{CHR}	High immunity			40	mV
Low-Switching Threshold	\/	Legacy	-27			mV
	V _{CLR}	High immunity	-40] ""V
SINGLE-ENDED SERIAL OU	TPUTS (OUT	+ or OUT-)				
0: 1 5 1 10 1 1		Preemphasis off, high drive (Figure 3)	375	500	625	
Single-Ended Output Voltage	VO	3.3dB preemphasis, high drive (Figure 2)	435		765	mV
		3.3dB deemphasis, high drive (Figure 2)	300		535	
Output Chart Circuit Correct	1	V _{OUT+} or V _{OUT-} = 0V	-69			mA
Output Short-Circuit Current	los	V _{OUT+} or V _{OUT-} = 1.9V			32	
Output-Termination Resistance (Internal)	R _O	From OUT+ or OUT- to AVDD	45	54	63	Ω

DC Electrical Characteristics (continued)

 $(V_{DVDD} = V_{AVDD} = 1.7V \text{ to } 1.9V, V_{IOVDD} = 1.7V \text{ to } 3.6V, R_L = 100\Omega \pm 1\% \text{ (differential)}, T_A = -40^{\circ}\text{C to } +115^{\circ}\text{C}, \text{ EP Connected to PCB ground, typical values are at, } V_{DVDD} = V_{AVDD} = V_{IOVDD} = 1.8V, T_A = +25^{\circ}\text{C}, \text{ unless otherwise noted.)} \text{ (Note 1)}$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
POWER SUPPLY						
		f _{PCLKIN} = 116MHz, HIBW = 0, BWS = 0, default register values, AVDD + DVDD (1.9V)		64	90	
		f _{PCLKIN} = 116MHz, HIBW = 0, BWS = 0, default register values, IOVDD (3.6V)		1.8	2.7	
		f _{PCLKIN} = 116MHz, HIBW = 0, BWS = 0, default register values, IOVDD (1.9V) (Note 4)		0.45	0.69	
Supply Current, Worst-Case Pattern (<u>Figure 4</u>)		f _{PCLKIN} = 116MHz, HIBW = 1, BWS = 0, default register values, AVDD + DVDD (1.9V)		62	83	
	I _{WCS}	f _{PCLKIN} = 116MHz, HIBW = 1, BWS = 0, default register values, IOVDD (3.6V)		1.8	2.7	mA
		f _{PCLKIN} = 116MHz, HIBW = 1, BWS = 0, default register values, IOVDD (1.9V) (Note 4)		0.45	0.69	
		f _{PCLKIN} = 87MHz, BWS = 1, default register values, AVDD + DVDD (1.9V)		61	85	
		f _{PCLKIN} = 87MHz, BWS = 1, default register values, IOVDD (3.6V)		1.4	2.0	
		f _{PCLKIN} = 87MHz, BWS = 1, default register values, IOVDD (1.9V) (Note 4)		0.37	0.61	
Sleep-Mode Supply Current	Iccs	Wake-up receiver enabled		40	100	μA
Power-Down Supply Current	I _{CCZ}	PWDNB = low		15	70	μA
ESD PROTECTION						
		Human Body Model, $R_D = 1.5kΩ$, $C_S = 100pF$		±8		
		IEC 61000-4-2, R_D = 330Ω, C_S = 150pF, Contact Discharge		±8		
OUT+, OUT- (Note 5)	V_{ESD}	IEC 61000-4-2, R_D = 330Ω, C_S = 150pF, Air Discharge		±15		kV
		ISO 10605, R_D = 2kΩ, C_S = 330pF, Contact Discharge		±8		
		ISO 10605, R _D = 2kΩ, C _S = 330pF, Air Discharge		±15		
All Other Pins (Note 6)	V _{ESD}	Human Body Model, R_D = 1.5kΩ, C_S = 100pF		±4		kV

AC Electrical Characteristics

 $(V_{DVDD} = V_{AVDD} = 1.7V \text{ to } 1.9V, \ V_{IOVDD} = 1.7V \text{ to } 3.6V, \ R_L = 100\Omega \pm 1\% \text{ (differential)}, \ T_A = -40^{\circ}\text{C to } +115^{\circ}\text{C}, \ \text{EP connected to PCB ground, typical values are at, } V_{DVDD} = V_{AVDD} = V_{IOVDD} = 1.8V, \ T_A = +25^{\circ}\text{C}, \ \text{unless otherwise noted.)} \text{ (Note 1)}$

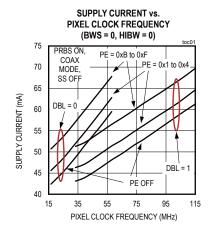
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
PARALLEL CLOCK INPUT (PCLKIN)					
		BWS = 0, HIBW = 0, single input	16.66		58	
		BWS = 0, HIBW = 1, single input	36.66		58	
		BWS = 1, single input	12.5		43.5	MHz
Clock Frequency	fPCLKIN	BWS = 0, HIBW = 0, double input	33.32		116	
		BWS = 0, HIBW = 1, double input	73.33		116	
		BWS = 1, double input	25		87]
Clock Duty Cycle	DC	t _{HIGH} /t _T or t _{LOW} /t _T (Note 4, Figure 5)	35	50	65	%
Clock Transition Time	t _{R,} t _F	(Note 4, Figure 5)			4	ns
Clock Jitter	tJ	1.74Gbps bit rate, 300kHz sinusoidal jitter (Note 4)			800	ps
I ² C/UART PORT TIMING	'					
I ² C/UART Bit Rate			9.6		1000	kbps
Output Rise Time	t _R	30% to 70%, C_L = 10pF to 100pF, 1kΩ pullup to IOVDD	20		150	ns
Output Fall Time	t _F	70% to 30%, C_L = 10pF to 100pF, 1kΩ pullup to IOVDD	20		150	ns
I ² C TIMING (Figure 6)						
		Low f _{SCL} range: (I2CMSTBT = 010, I2CSLVSH = 10)	9.6		100	kHz
SCL Clock Frequency	f _{SCL}	Mid f _{SCL} range: (I2CMSTBT 101, I2CSLVSH = 01)	> 100		400	
		High f _{SCL} range: (I2CMSTBT = 111, I2CSLVSH = 00)	> 400		1000	
		f _{SCL} range, low	4			
START Condition Hold Time	ime t _{HD:STA} f _{SCL} range, mid	f _{SCL} range, mid	0.6			μs
		f _{SCL} range, high	0.26			
		f _{SCL} range, low	4.7			
Low Period of SCL Clock	t _{LOW}	f _{SCL} range, mid	1.3			μs
		f _{SCL} range, high	0.5			
		f _{SCL} range, low	4			
High Period of SCL Clock	tHIGH	f _{SCL} range, mid	0.6			μs
		f _{SCL} range, high	0.26			1
D	TART Condition t _{SU:STA} f _{SCL} range, mid 0	4.7				
Repeated START Condition Setup Time		f _{SCL} range, mid	0.6			μs
Cottap Timo		0.26				

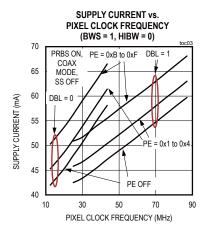
AC Electrical Characteristics (continued)

 $(V_{DVDD} = V_{AVDD} = 1.7V \text{ to } 1.9V, V_{IOVDD} = 1.7V \text{ to } 3.6V, R_L = 100\Omega \pm 1\% \text{ (differential)}, T_A = -40^{\circ}\text{C to } +115^{\circ}\text{C}, EP \text{ connected to PCB ground, typical values are at, } V_{DVDD} = V_{AVDD} = V_{IOVDD} = 1.8V, T_A = +25^{\circ}\text{C}, \text{ unless otherwise noted.)} \text{ (Note 1)}$

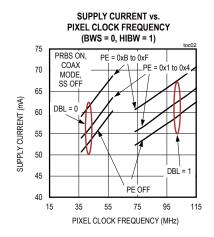
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
		f _{SCL} range, low	0			
Data Hold Time	t _{HD:DAT}	f _{SCL} range, mid	0			ns
		f _{SCL} range, high	0			1
		f _{SCL} range, low	250			
Data Setup Time	t _{SU:DAT}	f _{SCL} range, mid	100			ns
		f _{SCL} range, high	50			1
0.4 = 4.0=0		f _{SCL} range, low	4			
Setup Time for STOP Condition	t _{SU:STO}	f _{SCL} range, mid	0.6			μs
Condition		f _{SCL} range, high	0.26			1
		f _{SCL} range, low	4.7			
Bus-Free Time	t _{BUF}	f _{SCL} range, mid	1.3			μs
		f _{SCL} range, high	0.5			1
		f _{SCL} range, low			3.45	
Data Valid Time	t _{VD:DAT}	f _{SCL} range, mid			0.9	μs
		f _{SCL} range, high			0.45	
		f _{SCL} range, low			3.45	μs
Data Valid-Acknowledge Time	t _{VD:ACK}	f _{SCL} range, mid			0.9	
Time		f _{SCL} range, high			0.45	1
5		f _{SCL} range, low			50	
Pulse Width of Spikes Suppressed	t _{SP}	f _{SCL} range, mid			50	ns
Suppresseu		f _{SCL} range, high			50	1
Capacitive Load of Each Bus Line	C _B	Note 4			100	pF
SWITCHING CHARACTERIS	TICS (Note 4)					
Differential/Single-Ended Output Rise/Fall Time	t _{R,} t _F	20% to 80%, V_{OD} , 400mV differential R_L = 100Ω, 500mV single-ended R_L = 50Ω, serial bit rate = 1.74Gbps			250	ps
Total Serial-Output Jitter (Differential Output)	t _{TSOJ1}	1.74Gbps PRBS, measured at V _{OD} = 0V differential, preemphasis disabled (Figure 7)		0.25		UI
Deterministic Serial-Output Jitter (Differential Output)	t _{DSOJ2}	1.74Gbps PRBS, measured at V _{OD} = 0V differential, preemphasis disabled (Figure 7)		0.15		UI
Total Serial-Output Jitter (Single-Ended Output)	t _{TSOJ1}	1.74Gbps PRBS, measured at V _O /2, preemphasis disabled (<u>Figure 3</u>)		0.25		UI
Deterministic Serial-Output Jitter (Single-Ended Output)	t _{DSOJ2}	1.74Gbps PRBS, measured at V _O /2, preemphasis disabled (<u>Figure 3</u>)		0.15		UI
Parallel Data-Input Setup Time	tset	(Figure 8)	2			ns

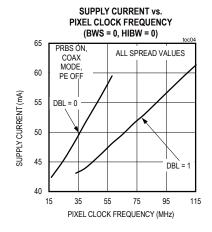
AC Electrical Characteristics (continued)

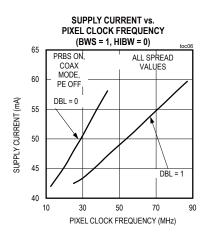

 $(V_{DVDD} = V_{AVDD} = 1.7V \text{ to } 1.9V, \ V_{IOVDD} = 1.7V \text{ to } 3.6V, \ R_L = 100\Omega \pm 1\% \text{ (differential)}, \ T_A = -40^{\circ}\text{C to } +115^{\circ}\text{C}, \ \text{EP connected to PCB}$ ground, typical values are at, $V_{DVDD} = V_{AVDD} = V_{IOVDD} = 1.8V$, $T_A = +25$ °C, unless otherwise noted.) (Note 1)

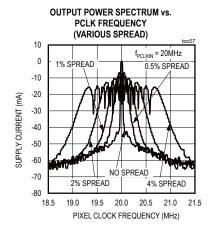

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Parallel Data Input Hold Time	^t HOLD	(Figure 8) (Note 4)	1			ns
GPI-to-GPO Delay	t _{GPIO}	Deserializer GPI to serializer GPO (Figure 9)			350	μs
Serializer Delay	t _{SD}	Spread spectrum enabled (Figure 10) (Notes 4, 7)			2065	Bits
ochanzer bolay		Spread spectrum disabled (Figure 10) (Notes 4, 7)			1095	
Link Start Time	tLOCK	(Figure 11)			2	ms
Power-Up Time	t _{PU}	(Figure 12)			7	ms

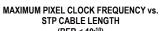

- Note 1: Limits are 100% production tested at $T_A = +115$ °C. Limits over the operating temperature range are guaranteed by design and characterization, unless otherwise noted.
- Note 2: To provide a mid-level voltage, leave the input open; or, if driven, put the driver in high-impedance state. High-impedance leakage current must be less than ±10µA.
- Note 3: I_{IN} min is due to voltage drop across the internal pullup resistor.
- Note 4: Not production tested. Guaranteed by design.
- Note 5: Specified pin to ground.
- Note 6: Specified pin to all supply/ground.
- Note 7: Measured in serial link bit times. Bit time = $1/(30 \text{ x f}_{PCLKIN})$ for BWS = 0; bit time = $1/(40 \text{ x f}_{PCLKIN})$ for BWS = 1.

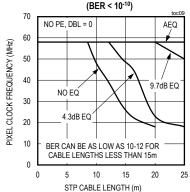

標準動作特性


 $(V_{AVDD} = V_{DVDD} = V_{IOVDD} = 1.8V, T_A = +25$ °C, unless otherwise noted.)

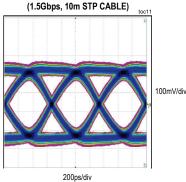


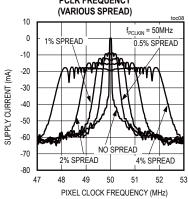


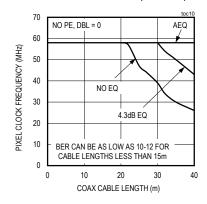


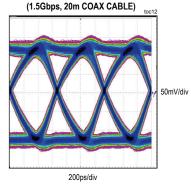


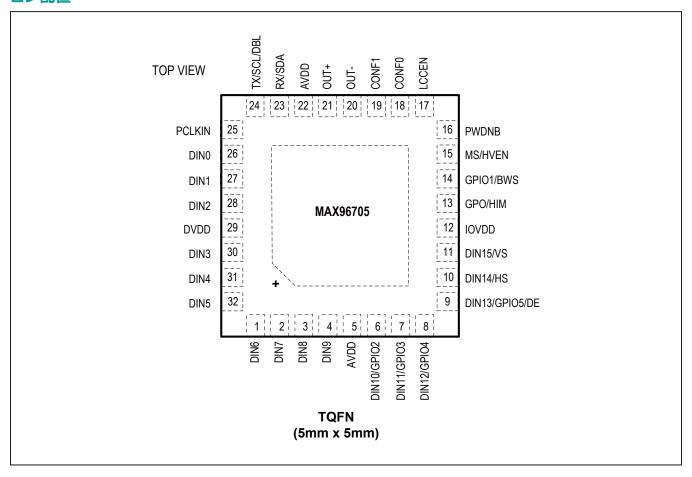
標準動作特性(続き)


 $(V_{AVDD} = V_{DVDD} = V_{IOVDD} = 1.8V, T_A = +25^{\circ}C, unless otherwise noted.)$




SERIAL LINK SWITCHING PATTERN WITH 4.4dB PREEMPHASIS


OUTPUT POWER SPECTRUM vs. PCLK FREQUENCY

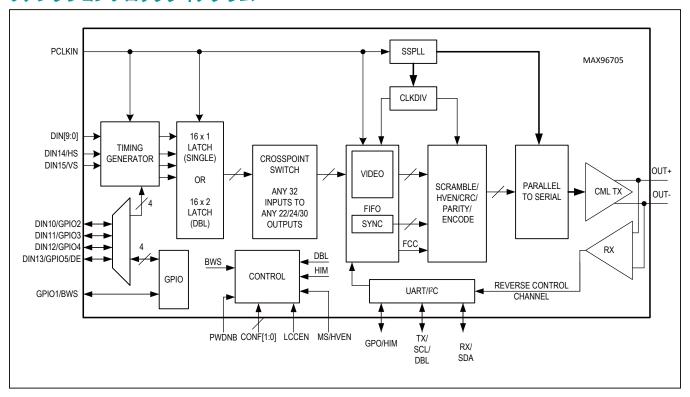

MAXIMUM PIXEL CLOCK FREQUENCY vs. COAX CABLE LENGTH (BER < 10⁻¹⁰)

SERIAL LINK SWITCHING PATTERN WITH 3.3dB PREEMPHASIS

ピン配置

端子説明

端子	名称	機能	基準電源	タイプ
電源				
5, 22	AVDD	1.8Vアナログ電源。AVDDとEPの間に0.1µFと0.001µFのコンデンサを配置します。(値の小さい方のコンデンサをよりAVDD側に配置します。)。		電源
12	IOVDD	入出力電源電圧。1.8V~3.3Vのロジック入出力電源です。IOVDDとEPの間に0.1µFと0.001µFのコンデンサを配置します。(値の小さい方のコンデンサをよりIOVDD側に配置します。)。		電源
29	DVDD	1.8Vデジタル電源。DVDDとEPの間に0.1µFと0.001µFのコンデンサを配置します。(値の小さい方のコンデンサをよりDVDD側に配置します。)。		電源
EP	_	エクスポーズドパッド。EPは内部でデバイスのグランドに接続されています。十分な熱的および電気的性能を実現するために、一連のビアを介してEPをPCBのグランドプレーンに接続する必要があります。		電源


端子説明(続き)

端子	名称	機能	基準電源	タイプ
高速デジタル		-		
単機能				
1	DIN6	パラレルデータ入力。EPへのプルダウン内蔵。	IOVDD	デジタル
2	DIN7	パラレルデータ入力。EPへのプルダウン内蔵。	IOVDD	デジタル
3	DIN8	パラレルデータ入力。EPへのプルダウン内蔵。	IOVDD	デジタル
4	DIN9	パラレルデータ入力。EPへのプルダウン内蔵。	IOVDD	デジタル
25	PCLKIN	EPへのプルダウンを内蔵したパラレルクロック入力。パラレルデータ入力 をラッチし、PLLリファレンスクロックを供給します。	IOVDD	デジタル
26	DIN0	パラレルデータ入力。EPへのプルダウン内蔵。	IOVDD	デジタル
27	DIN1	パラレルデータ入力。EPへのプルダウン内蔵。	IOVDD	デジタル
28	DIN2	パラレルデータ入力。EPへのプルダウン内蔵。	IOVDD	デジタル
30	DIN3	パラレルデータ入力。EPへのプルダウン内蔵。	IOVDD	デジタル
31	DIN4	パラレルデータ入力。EPへのプルダウン内蔵。	IOVDD	デジタル
32	DIN5	パラレルデータ入力。EPへのプルダウン内蔵。	IOVDD	デジタル
多機能	·			
6	DIN10/GPIO2	パラレルデータ入力/GPIO。起動時にデフォルトでパラレルデータ入力になります。パラレルデータ入力はEPへのプルダウンを内蔵しています。 GPIO2はIOVDDへの60kΩのプルアップを内蔵したオープンドレインの入出力を備えています。	IOVDD	デジタル
7	DIN11/GPIO3	パラレルデータ入力/GPIO。起動時にデフォルトでパラレルデータ入力 になります。パラレルデータ入力はEPへのプルダウンを内蔵しています。 GPIO3はIOVDDへの60kΩのプルアップを内蔵したオープンドレインの 入出力を備えています。	IOVDD	デジタル
8	DIN12/GPIO4	パラレルデータ入力/GPIO。起動時にデフォルトでパラレルデータ入力 になります。パラレルデータ入力はEPへのプルダウンを内蔵しています。 GPIO4はIOVDDへの60kΩのプルアップを内蔵したオープンドレインの 入出力を備えています。	IOVDD	デジタル
9	DIN13/ GPIO5/DE	EPへのプルダウンを内蔵したパラレルデータ入力/GPIO/データイネーブル。起動時にデフォルトでパラレルデータ入力になります。GPIO5はIOVDDへの60kΩのプルアップを内蔵したオープンドレインの入出力を備えています。広帯域幅モード時はデータイネーブル入力です。	IOVDD	デジタル
10	DIN14/HS	EPへのプルダウンを内蔵したパラレルデータ入力/水平同期。起動時に デフォルトでパラレルデータ入力になります。HS/VSの符号化がイネーブ ルのとき、または広帯域幅モード時は、デフォルトで水平同期入力にな ります。	IOVDD	デジタル
11	DIN15/VS	EPへのプルダウンを内蔵したパラレルデータ入力/垂直同期。起動時に デフォルトでパラレルデータ入力になります。HS/VSの符号化がイネーブ ルのとき、または広帯域幅モード時は、デフォルトで垂直同期入力にな ります。	IOVDD	デジタル
多機能の設定	(LCCENによる)			
14	GPIO1/BWS	GPIO1/バス幅選択入力。機能はLCCENの状態によって決まります。 GPIO1 (LCCEN = ハイ): IOVDDへの60kΩのプルアップを内蔵したオー プンドレインの汎用入出力。BWS (LCCEN = ロー): EPへのプルダウン を内蔵した入力。22ビットの入力ラッチにする場合はBWS = ローに設 定します。30ビットの入力ラッチにする場合はBWS = ハイに設定します。	IOVDD	デジタル

端子説明(続き)

端子	名称	機能	基準電源	タイプ
15	MS/HVEN	EPへのプルダウンを内蔵したモード選択/HSとVSの符号化イネーブル入力。機能はLCCENの状態によって決まります。MS (LCCENがハイ):ベースモードを選択する場合はMSをローに設定します。バイパスモードを選択する場合はMSをハイに設定します。HVEN (LCCENがロー):HS/VSの符号化をイネーブルする場合はHVEN = ハイに設定します。HS/VSの符号化をディセーブルする場合はHVEN = ローに設定します。	IOVDD	デジタル
17	LCCEN	EPへのプルダウンを内蔵したローカル制御チャネルイネーブル入力。 LCCEN = ハイに設定すると、制御チャネルインタフェースの端子がイネーブルされます。LCCEN = ローに設定すると、制御チャネルインタフェースの端子がディセーブルされ、指示された端子で代替機能が選択されます。	IOVDD	デジタル
24	TX/SCL/DBL	送信/シリアルクロック/ダブルモード。機能はLCCENの状態によって決まります。TX/SCL (LCCEN = ハイ): $IOVDD \sim 0.30 k \Omega \sigma J \sim 0.000 k \Omega J \sim $	IOVDD	デジタル
設定およびイン	ノタフェース			
13	GPO/HIM	EPへのプルダウンを内蔵した汎用出力/高耐性モード入力。HIMは起動時またはパワーダウンモード(PWDNB = ロー)からの復帰時にラッチされ、起動後に自動的にGPO出力に切り替わります。HIMを30kΩの抵抗でIOVDDに接続してハイに設定するか、またはオープンのままにしてローに設定します。HIGHIMMは、起動後に異なる値に設定することができます。デシリアライザのHIGHIMMを、同じ値に設定する必要があります。GPO出力は、GMSLデシリアライザのGPI (またはINT)入力の状態に従います。起動時またはPWDNBがローのとき、GPOはローです。	IOVDD	デジタル
16	PWDNB	EPへのプルダウンを内蔵したアクティブローのパワーダウン入力。消費電力を低減するには、PWDNBをローに設定してパワーダウンモードに移行します。	IOVDD	デジタル
18	CONF0	コンフィギュレーション0。3レベルの設定入力(表13)。CONFO端子の値は、起動時、またはパワーダウンモードからの復帰時にラッチされます。	IOVDD	3レベル
19	CONF1	コンフィギュレーション1。3レベルの設定入力(表13)。CONF1端子の値は、起動時またはパワーダウンモードからの復帰時にラッチされます。	IOVDD	3レベル
20	OUT-	反転同軸/ツイストペアシリアル出力		デジタル
21	OUT+	非反転同軸/ツイストペアシリアル出力		デジタル
23	RX/SDA	受信/シリアルデータ。IOVDDへの $30k\Omega$ のプルアップを内蔵した入出力。UARTモードでは、RX/SDAはシリアライザのUARTの Rx 入力です。 I^2C モードでは、RX/SDAはシリアライザの I^2C マスター/スレーブのSDA入出力です。RX/SDAはオープンドレインのドライバを備えているため、プルアップ抵抗が必要です。	IOVDD	デジタル

ファンクションブロックダイアグラム

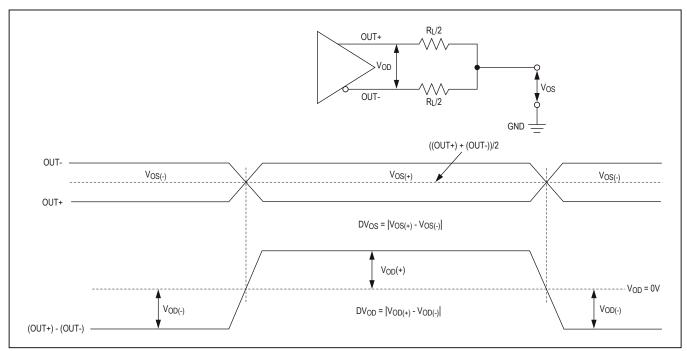


図1. シリアル出力パラメータ

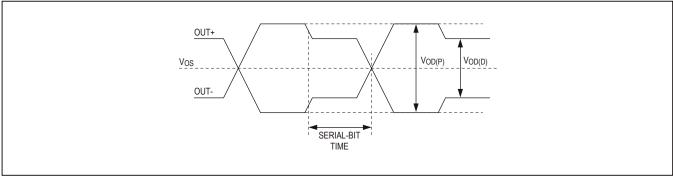


図2. OUT+、OUT-の出力波形

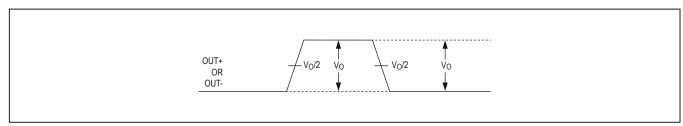


図3. シングルエンド出力テンプレート

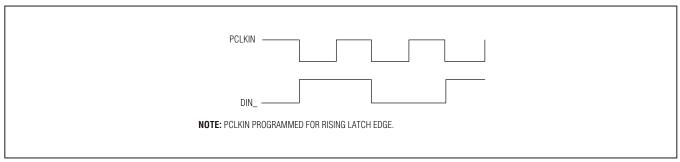


図4. ワーストケースパターンの入力

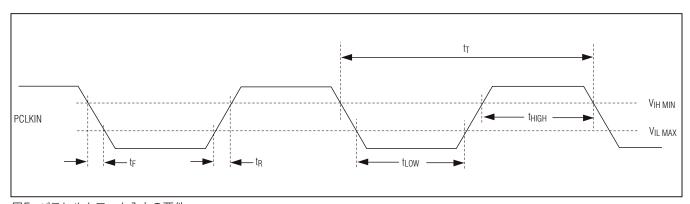


図5. パラレルクロック入力の要件

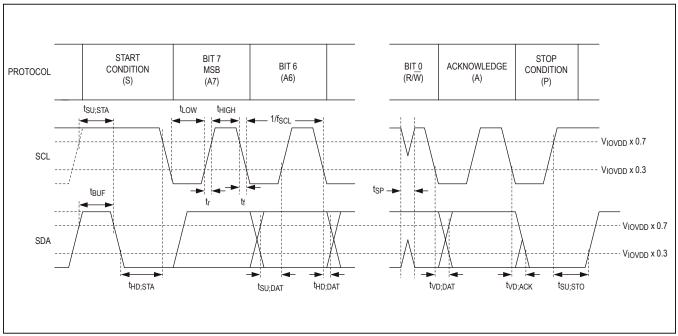


図6. I²Cのタイミングパラメータ

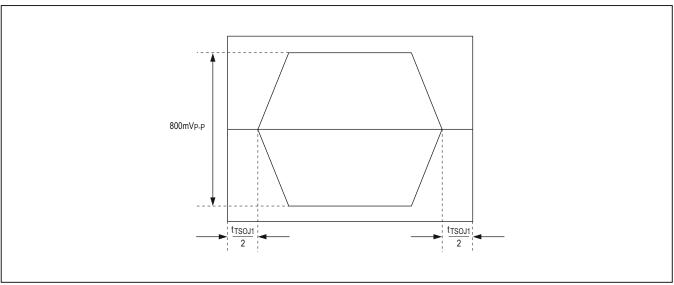


図7. 差動出力テンプレート

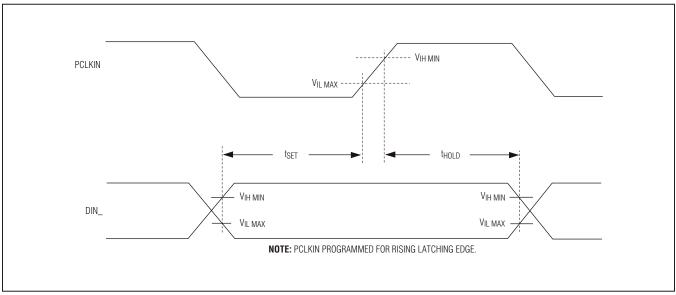


図8. 入力のセットアップおよびホールド時間

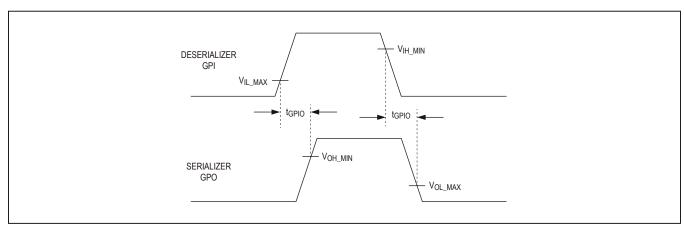


図9. GPI-GPO間の遅延

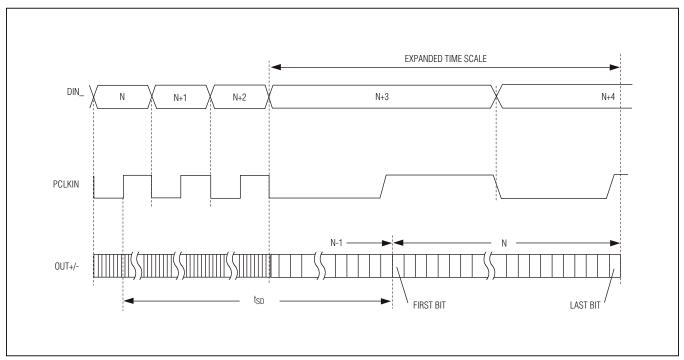


図10. シリアライザの遅延

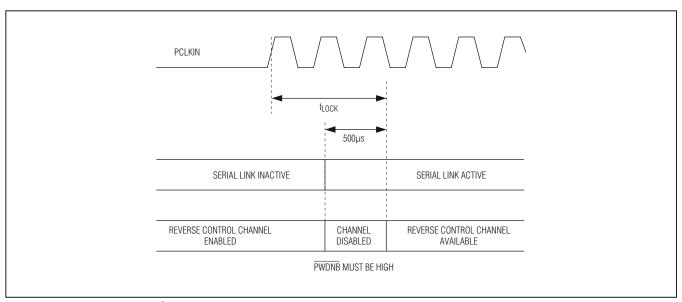


図11. リンクのスタートアップ時間

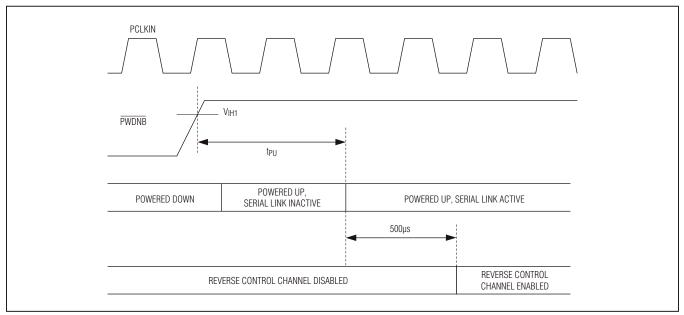


図12. 起動遅延

詳細

MAX96705は、特に車載カメラアプリケーションに最適な機能を備えた小型デバイスです。このデバイスは、最大1.74Gbpsの総シリアルデータレートまでのさまざまな入力幅およびワードレートで動作します。広帯域幅モードは、12ビットのビデオデータと2ビットの同期(HS/VS)データで、116MHzのパラレルクロックレートを提供します。9.6kbps~1Mbpsの内蔵の制御チャネルは、シリアライザ、デシリアライザ、および接続されている任意のUARTまたはI²Cペリフェラルを設定します。

セーフティアプリケーションを促進するため、このデバイスはビデオおよび制御データを保護するCRCを備えています。さらに、制御チャネル再送信および高耐性モードは、通信を劣化するビットエラーの可能性を低減します。プリエンファシスとPRBSテスターは、リンク品質のシステム内での評価および最適化を可能にします。

このMAX96705は、-40℃~+115℃の車載用温度範囲で動作します。

シリアルリンクの信号方式とデータ形式

シリアライザは、入力パラレルデータを、順方向制御データと組み合わせスクランブルします。次に、データは送信用に符号化され、入力ワードレートの数倍(バス幅によって決定)の速度で、1つのシリアライズされたビットストリームとして出力されます。デシリアライザはシリアルデータを受信し、クロック信号を復元します。次に、データはデシリアライズ、復号化、およびスクランブル解除されて、パラレル出力データと順方向制御データになります。

動作モード

GMSLデバイスは、アプリケーションに応じて多数のモードで動作するように設定可能です。これらのモードによって、シリアル帯域幅をより効率的に使用することができます。これらの設定の大部分はシステム設計時に決められ、外部設定端子を使用するかまたはレジスタビットを介して設定されます。

ビデオ/設定リンク

通常動作時、シリアライザはビデオリンクモード(シリアライザのSEREN = 1)で動作し、ビデオデータおよび設定データがシリアルリンクで送信されます。シリアライズをオフにするには、シリアライザでSEREN = 0に設定します。シリアライザはビデオリンクモードで起動し、動作のために有効なPCLKを必要とします。

設定リンクは、PCLKが利用可能でない場合に、シリアライザ、デシリアライザ、およびペリフェラルをセットアップするために利用可能です。設定リンクをイネーブルするには、シリアライザでSEREN = 0およびCLINK = 1に設定します(SEREN = 1にするとシリアライザは強制的にビデオリンクモードになります)。PCLKの確立後に、ビデオリンクをオンにします(SEREN = 1)。

デフォルトでは、ビデオリンクモードは動作のために有効な PCLKを必要とします。PCLKがなくなるたびにビデオリン クと設定リンク間の切り替えをデバイスが自動的に行うようにするには、シリアライザでAUTO_CLINKビット = 1 およびSEREN = 1に設定します。

シングル/ダブルモード

シングル/ダブルモード動作は、利用可能な1.74Gbpsの 帯域幅をさまざまな幅およびワードレートに設定します。シングルモード動作は全GMSLデバイスおよびシリアライ ザと互換性があり、各シリアルワードに対して1つのパラレルワードを生成します。ダブルモードは各シリアルワードに対して2つの半分の幅のパラレルワードをシリアライズする ため、パラレルワードレートの範囲が(シングルモードと比較して) 2倍に増大します。シングルモード動作の場合は DBL = 0に設定し、ダブルモード動作の場合は DBL = 1 に設定します。

HS/VSの符号化

デフォルトでは、GMSLは1つのビデオビットスロットをHSYNC、VSYNC、およびDE (使用する場合)に割り当てます。HS/VSの符号化を使用すると、デバイスはその代わりに特殊パケットを同期信号に符号化し、追加のビデオビットスロットを解放します。HS/VSの符号化は、デバイスが広帯域幅モード(HIBW = 1)の場合はデフォルトでオンになります。DEはHIBW = 1およびDE_EN = 1の場合にのみ符号化されます。HIBW = 0の場合にHS/VSの符号化をオンにするには、HVEN = 1に設定します(DEは、イネーブルされている場合1つのビデオビットを使用します)。HS/VSの符号化では、HSYNC、VSYNC、およびDE (使用する場合)が、アクティブビデオ時はハイのままで、ブランキング期間はローのままである必要があります。逆極性の同期信号を使用する場合は、HS/VS反転を使用します。

エラー検出

シリアルリンクの8b/10b符号化/復号化および1ビットパリティは、シリアルリンクで発生するビットエラーを検出します。6ビデオビットと引き換えに、オプションの6ビットCRCチェックが利用可能です(HIBW = 0の場合)。6ビットCRCモードをアクティブ化するには、先にリモート側デバイスでPXL_CRC = 1に設定し、次にローカル側デバイスで設定します。6ビットCRCモードを使用する場合、利用可能な内部バス幅がシングル入力モード(DBL = 0)では6ビット減少し、ダブル入力モード(DBL = 1)では3ビット減少します。シリアライザまたはデシリアライザで利用可能な端子数によって、入力バス幅がすでに削減されている場合があることに注意してください。そのため、CRCによる帯域幅の減少は目に見えない可能性があります(表3を参照)。

LINE_CRC_EN = 1に設定することによって、追加の32ビットビデオラインCRCが利用可能です。イネーブル時、シリアライザはビデオラインの32ビットCRCを計算し、ブランキング期間にこの情報を送信します。デシリアライザは、受信したCRCをビデオラインのデータと比較します。CRCエラーが検出されると、デシリアライザのLINE_CRC_ERRビットがラッチされます。LINE_CRC_ERRは読取り時にクリアされます。

バス幅

シリアルリンクには複数のバス幅設定があり、それによって パラレルバス幅および結果のパラレルワードレートが決ま ります。シリアルリンクは、1.74Gbpsの最大シリアルビッ トレートで動作します。BWSビットは、各シリアルパケット が30ビット長か40ビット長かを決定し、それによって最 大シリアルパケットレート(および結果の最大パラレルワー ドレート)はBWS = 0または1の場合にそれぞれ58MHzま たは43.5MHzになります。符号化は、24、27、または 32パラレルビットを、30または40ビットのシリアルパケット に変換します。1つのビットはパリティに使用され、もう1つ のビットは制御チャネル用に使用されます。追加の6ビット はオプションの6ビットCRC時に使用されます。さらに、 ダブルモードは、使用されている場合に残りのワードサイ ズを半分に分割します。残りのビットはビデオビットに使 用することができます(H/Vの符号化を使用しない場合は 同期ビット分を除く)。

下記の各モードは、内部バス幅のリストを示します。利用 可能な入力および出力端子の数によって、実際に利用可 能なバス幅が制限される場合があります。

• 24ビットモード(図13)

BWS = 0およびHIBW = 0の場合、30ビットのシリアルパケットは24ビットを表す3つの8b/10bシンボルに対応します(24ビットモード)。ここからパリティおよび制御チャネルを除いた残りのビデオデータは、CRC使用時/未使用時に16/22ビット(シングルモード)、またはCRC使用時/未使用時に8/11ビット(ダブルモード)になります。

• 27ビット広帯域幅モード(図14)

BWS = 0およびHIBW = 1の場合(広帯域幅モード)、30ビットのシリアルパケットは27ビットを表す3つの9b/10bシンボルを表します。ここからパリティおよび制御チャネルを除いた残りのビデオデータは、CRC使用時/未使用時に19/25ビット(シングルモード)、またはCRC使用時/未使用時に9/12ビット(ダブルモード)になります。

• 32ビットモード(図15)

BWS = 1の場合、40ビットのシリアルパケットは32ビットを表す4つの8b/10bシンボルに対応します(32ビットモード)。ここからパリティおよび制御チャネルを除いた残りのビデオデータは、CRC使用時/未使用時に24/30ビット(シングルモード)、またはCRC使用時/未使用時に12/15ビット(ダブルモード)になります。

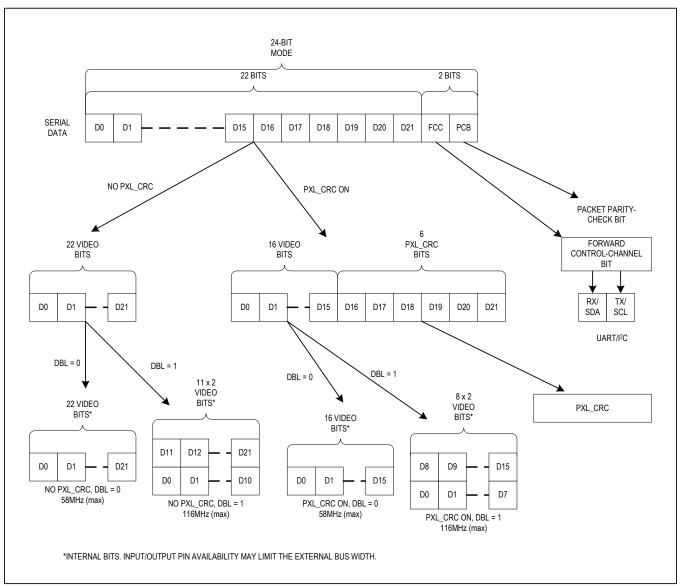


図13. 24ビットモードのシリアルデータ形式

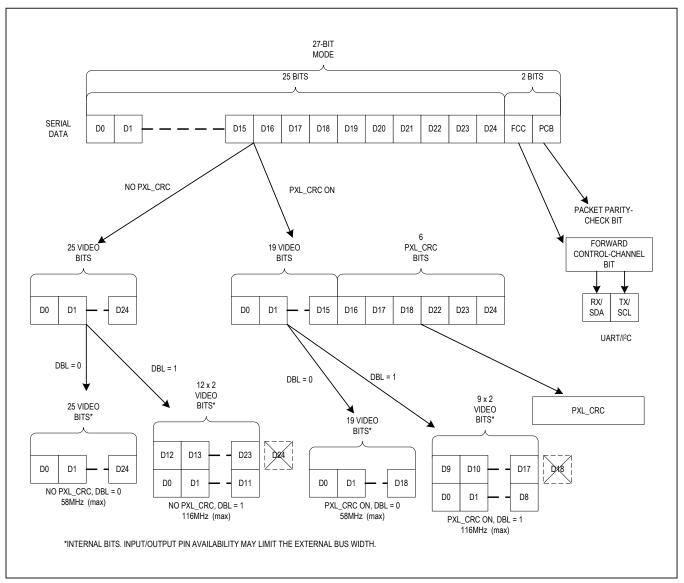


図14.27ビット広帯域幅モードのシリアルデータ形式

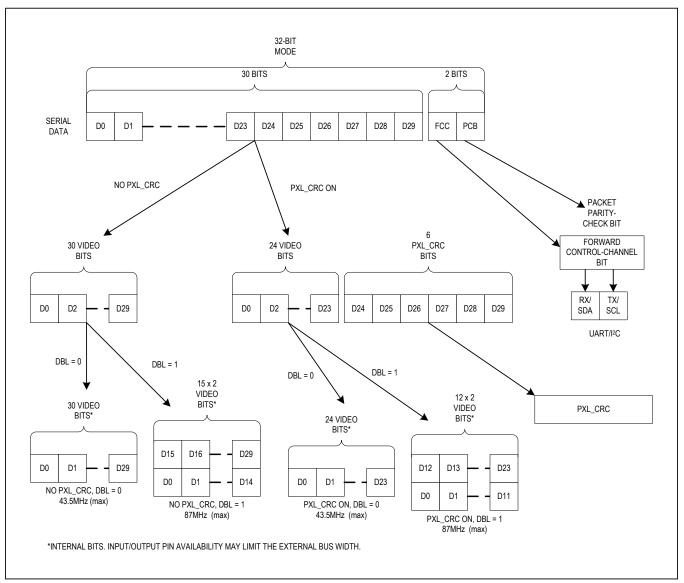


図15. 32ビットモードのシリアルデータ形式

制御チャネルおよびレジスタの設定

制御チャネルは、シリアライザ、デシリアライザ、および 接続されているペリフェラルを制御するための情報をシリ アルリンクで送信します。制御チャネルはシリアルリンク上 に多重化され、ビデオチャネルありまたはなしで利用可能 です。

順方向制御チャネル

シリアライザからデシリアライザに送信される制御データ は、順方向制御チャネルで送信されます。データは、順方 向高速リンクのシリアルビットの1つとして符号化されます。 デシリアライズ後、順方向制御チャネルのデータはシリア ルリンクから抽出されます。順方向制御チャネルの帯域幅 は最大外部制御データレートを上回り、順方向制御チャネ ルで送信される全データは数ビット時間の転送遅延後にリ モート側に現れます。

逆方向制御チャネル

デシリアライザからシリアライザに送信される制御データ は、逆方向制御チャネルで送信されます。データは一連の 1µsのパルスとして符号化され、最大生データレートは 1Mbpsです。高耐性モードが利用可能で、生ビットレート を500kbpsに低減して逆方向制御チャネルの堅牢性を高 めます。表1で、REV FASTビット = 1に設定するとこのレー トが1Mbpsに戻ります。 I^2C モードでは、(符号化後の)入 カデータレートが逆方向データレートを超えると、クロッ クストレッチングを介して入力クロックが保持され、内部 ビットレートに合わせて外部クロックが低下します。

UARTインタフェース

UARTインタフェースは全GMSLデバイスと互換性があり、 複数のUARTパケットを介してデバイスからデバイスにコ マンドを送信します。ベースモードとバイパスモードの2つ のモードが利用可能です。ベースモードは、UART-I²C変 換を使用してシリアライザ、デシリアライザ、およびI²Cペ リフェラルと通信するために使用されます。バイパスモード は、任意のUARTプロトコルを使用してペリフェラルとの フルデュプレックスUART通信を行うことが可能です。

I²Cインタフェース

シリアルリンクは制御チャネルを介してシリアライザとデシ リアライザのI²Cインタフェースを相互に接続します。I²Cマ スターがコマンドをリンクの1つの側(ローカル側)に送信す ると、制御チャネルはリンクのもう1つの側(リモート側)と の間でこの情報を転送し、1つのマイクロコントローラが シリアライザ、デシリアライザ、およびペリフェラルを設定 することを可能にします。マイクロコントローラは、シリア ライザ側(ディスプレイアプリケーション)およびデシリアラ イザ側(カメラアプリケーション)に配置することができます。 デュアルマイクロコントローラ動作には、ソフトウェアによ る調停を使用する限りにおいて対応します。シリアルリン クは、任意の時点で1つのマイクロコントローラのみがコ マンドを送信することを前提としています。

リモート端の動作

I²Cマスターがローカルスレーブデバイス(マスターに直接 接続されたシリアライザ/デシリアライザ)上で通信を開始 するとき、リモート側デバイスはローカル側デバイスから 転送されたデータを送信するマスターデバイスとして動作 し、そのリモート側デバイスに接続されているペリフェラ ルから受信したあらゆるデータを転送します。このリモー ト側マスターデバイスは、I²Cマスターの設定レジスタのタ イミング設定に従って動作します。マスターの設定は、外 部マイクロコントローラによって使用されるタイミング設 定と一致するように設定します。

クロックストレッチのタイミング

I²Cインタフェースは、クロックストレッチングを使用して、 シリアルリンクでデータが転送される時間を猶予します。 マスターマイクロコントローラは、接続されているペリフェ ラルとともに、GMSLデバイスのクロックストレッチング を受け入れる必要があります。

パケットベースのI²C

制御チャネルのエラー処理を強化するために、パケット ベースの制御チャネルが利用可能です。この制御チャネル 方式は、GPI/GPOとI²Cの同時転送に対応するとともに、 エラー検出および再送信を備えています。

表1. 逆方向制御チャネルのモード

HIM PIN SETTING	REVFAST BIT	REVERSE CONTROL-CHANNEL MODE	MAXIMUM UART/I ² C BIT RATE (kBPS)
Low	Х	Legacy reverse control-channel mode (compatible with all GMSL devices)	1000
	0	High-immunity mode	500
High	1	Fast high-immunity mode (requires HIBW = 0, serial-data rate > 1.25Gbps)	1000

X = 仟意

パケットプロトコルの概要

パケットベースの制御チャネルは、同期、シンボルベース のシステムを使って制御チャネルでデータを送信します。 制御チャネルで送信されるデータはシンボルに分割され、 送信キューに保存されたあと、リンクに送信されます。 GPIとI²Cの両方のデータを送信する必要がある場合(たと えば、I²C転送中のGPIの遷移など)、両方のコマンドのシン ボルがキューの中で組み合わされます。送信キューが空の 場合、アイドルパケットがリンクに送信されて制御チャ ネルのロックを維持します。受信されたI²Cパケットは、マ イクロコントローラのSCLレートによって決められる速度 (ローカルデバイス)または設定されたマスタービットレート (リモートデバイス)で出力されます。デバイスはリモート側 デバイスからのデータの受信が完了するまでSCLをローに 保持します(クロックストレッチ)。

制御チャネルのエラー検出およびパケット再送信

パケットベースの制御チャネルを使用する場合、CRCを介 して全パケットのエラーがチェックされます。CRCは1、5、 または8ビットを使用して、パケット内の1、3、または4 のランダムビットエラーを検出します。エラーが検出され た場合、トランスミッタはパケットを再送信します。再試 行の回数が設定されたスレッショルドを超えると、トラン スミッタはフラグをセットします。レシーバはエラーのあ るパケットを除去します。

GPO/GPI制御

シリアライザのGPOは、デシリアライザのGPIの遷移に追 従します。GPO/GPI機能を使用すると、サラウンドビュー カメラシステムのフレーム同期などの信号を送信することが できます(「フレーム同期の供給(カメラアプリケーション)」 の項を参照)。オプションで、レジスタビットによってGPO を直接設定することができます。

スペクトラム拡散

このシリアライザは、クロック周波数のピークを周波数ス ペクトラム全体に拡散させることによって放射レベルを低 減する、設定可能なスペクトラム拡散出力を搭載していま す。さらに、シリアライザおよびデシリアライザは拡散入 カクロックのトラッキングが可能なため、複数の拡散ク ロックは不要です。

ケーブルタイプ設定

ドライバ出力は、100Ωツイストペアと50Ω同軸の2種類の ケーブル用に設定可能です(75Ωケーブルと互換性のある デバイスについては、お問い合わせください)。同軸モードで は、OUT+をデシリアライザのIN+に接続します。未使用 のIN 端子は未接続のままにするか、電源ノイズ除去を高め るためのコンデンサと50Ωを介してグランドに接続します。 50Ω の抵抗を介してOUT-を V_{DD} に接続します(図16)。

クロスバースイッチ

クロスバースイッチは、パラレル入出力とSerDes間でデー 夕を経路設定します。任意-任意の経路設定によって、ビ デオの発生源と送信先のマッピングが保証されます。各ク ロスバー出力(XBO)に対して、入力マルチプレクサが CROSSBAR レジスタビットを使って利用可能なクロス バー入力(XBI_)から選択します(図17)。複数のクロスバー 出力が同じクロスバー入力を使うことができます。デフォ ルトでは、同期信号はビデオデータのMSBと同じ入力を 共有します。

ビデオタイミング発生器

このシリアライザは、入力同期信号の生成/タイミング変更 を行う、設定可能なビデオタイミング発生器を内蔵してい ます。タイミング発生器を使うと、カメラの入力タイミング の変更、同期信号のグリッチの除去、または必要な入力 同期信号の数の削減が可能です。各同期信号は、個別に タイミング変更または無変更のままにすることができます。 複数のレジスタによって、図18に示すタイミングパラメータ の長さ(PCLKサイクル数)が決まります。タイミングパラメー タには、ハイ/ロー期間の長さ、ライン数、および入力VS 信号からの遅延などがあります。

タイミング発生器は、トラッキング、シングルトリガ、およ びオートランの3種類のトリガモードを使用します。トラッ キングモードは入力VSYNCを監視し、3つの連続する同一 のVSYNC信号を受信するとロックします。次に、トラッカー は同じ同一の信号を出力し続け、VSYNCに現れるグリッ チを消去します。3つの連続する入力波形が、ロックされ ている信号と一致しない場合、トラッカーは新しい信号へ の再ロックを試みます。シングルトリガは、入力VSYNCの 各エッジに対して1つ生成されるフレームを生成します。オー トランは、VSYNCのハイ/ロー期間によって決まるレート で新しいフレームを生成します。シングルトリガまたはオー トランモードのいずれかで、フレームが完了する前に新し いVSYNC信号が現れた場合、新しいフレームが即座に開 始し、直前のフレームは短縮されます。

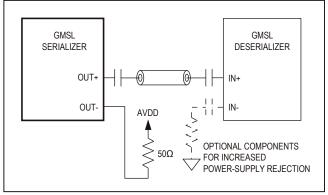


図16. 同軸接続

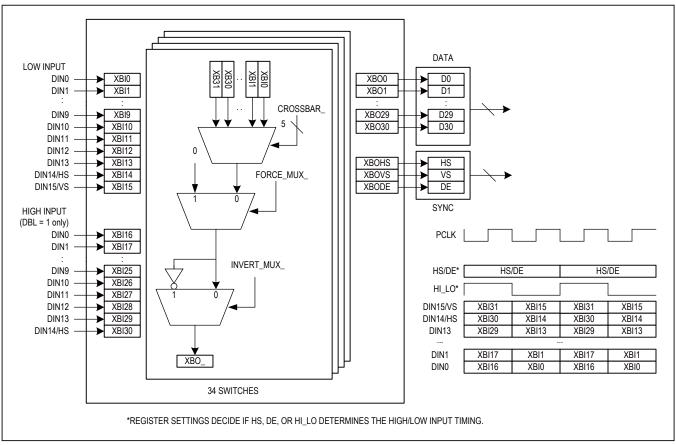


図17. クロスバースイッチのデータフロー

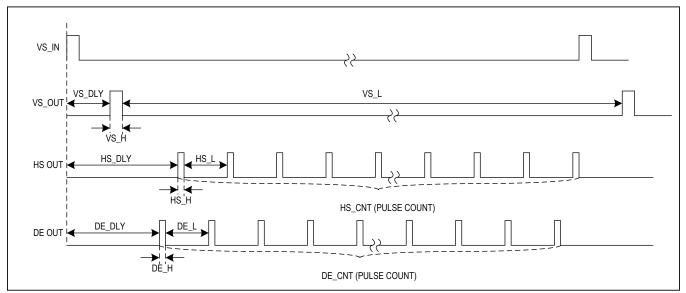


図18. ビデオタイミング生成用の同期信号フォーマット

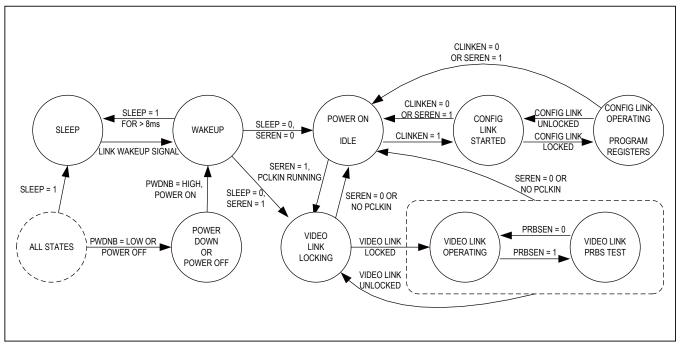


図19. 状態遷移図

シャットダウンモード/スリープモード

完全な動作が不要な場合、複数のスリープおよびシャット ダウンモードが利用可能です。

設定リンク

高速ビデオリンクが不要または利用不可の場合、代わりに設定リンクを使用することができます。設定リンクモードでは、パラレルデジタル入出力がディセーブルされ、LOCK端子はローのままになり、シリアルリンクは内部で固有のクロックを生成して制御チャネルの完全な動作を可能にします(UART/I²CおよびGPIO)。

シリアライズのディセーブル

シリアルリンクが不要な場合(下流のデバイスの電源がオフのときなど)、ユーザーはシリアライズをディセーブルすることができます。このモードでは、すべての順方向通信が

シャットダウンされます。ユーザーはローカルで、または 逆方向チャネルを介してシリアライズを再イネーブルする ことができます。

スリープモード

消費電力をさらに低減するために、デバイスをスリープモードに移行させることができます。このモードでは、全レジスタが設定された値を維持し、ローカル制御インタフェース上のウェイクアップディテクタおよびシリアルリンク以外のデバイスの全機能がパワーダウンされます。ウェイクアップディテクタによって何らかのアクティビティが検出されると、制御チャネルインタフェースが一時的にオンになります。この時間の間、マイクロコントローラはデバイスにスリープモードの終了を指示することができます。「シャットダウンモード/スリープモード」の項を参照してください。

パワーダウンモード

最も低消費電力のモードは、パワーダウンモードです。このモードでは、全機能がパワーダウンされ、全レジスタ値が失われます。

リンクのスタートアップ手順

表2に、画像・センシングアプリケーションのスタートアップ手順を示しています。ビデオリンクまたは設定リンクが確立された後に、制御チャネルが利用可能です。デシリアライザがシリアライザの後に起動した場合、制御チャネルはデシリアライザの起動後から2ms後まで利用不可になります。

表2. リンクのスタートアップ手順

NO.	μC	SERIALIZER	DESERIALIZER
_	μC Connected to Deserializer	Set Configuration Inputs	Set Configuration Inputs
1	Powers up (wait t _{PU}).	Powers up and loads default settings. Establishes video link when valid PCLK is available.	Powers up and loads default settings. Locks to video link signal if available.
1a	If no PCLK, programs CLINKEN, SEREN, and/or AUTOCLINK bits. Wait 5ms after each command.	Establishes configuration link.	Locks to configuration link if available.
1b	If not locked, sets any additional configuration bits that are mismatched between the serializer and deserializer (e.g., BWS, CX/TP). Wait 5ms for lock after each command.	Configuration changed. Reestablishes configuration/video link if needed.	Configuration changed. Locks to configuration/video link.
2	Sets register 0x07 configuration bits in the serializer (DBL, BWS, HIBW, EDC, etc.). Wait 2ms.	Configuration changed. Reestablishes configuration/video link if needed.	Loss-of-lock may occur.
3	Sets register 0x07 configuration bits in the deserializer (DBL, BWS, HIBW, EDC, etc.). Wait 5ms for lock to reestablish.	_	Configuration changed. Locks to configuration/video link.
4	Writes rest of serializer/deserializer configuration bits.	Configuration changed.	Configuration changed.
5	Writes camera/peripheral configuration bits.	Forwards commands from μC to serializer.	Forwards commands to camera/peripherals.
5a	If in configuration link, when PCLK is available, set SEREN = 1. Wait 5ms for lock.	Enables video link.	Locks to video link.

レジスタマップ

GMSL Register Map

OFFSET	NAME	MSB							LSB
0x00	seraddr[7:0]		SERADDR[6:0]						CFG- BLOCK
0x01	desaddr[7:0]			D	ESADDR[6:	:0]			RSVD
0x02	ss[7:0]		SS[2:0] RSVD PRNG[1:0] SRNG						G[1:0]
0x03	sdiv[7:0]	AUTOI	FM[1:0]			SDIV	/[5:0]		
0x04	main_control[7:0]	SEREN	CLINKEN	PRBSEN	SLEEP	INTTY	PE[1:0]	REVCCEN	FWDCCEN
0x05	prbs_len[7:0]	I2C- METHOD	RSVD	PRBS_L	_EN[1:0]	RSVD	RSVD	RSVD	RSVD
0x06	cmllvl_preemp[7:0]		CMLL	VL[3:0]			PREE	MP[3:0]	
0x07	config[7:0]	DBL	HIBW	BWS	ES	RSVD	HVEN	RSVD	PXL_CRC
0x08	rsvd_8[7:0]	RSVD	RSVD	RSVD	RSVD	RSVD	RSVD	RSVD	RSVD
0x09	i2c_source A[7:0]			120	C_SRC_A[6	5:0]			RSVD
0x0A	i2c_dest A[7:0]			120	C_DST_A[6	:0]			RSVD
0x0B	i2c_source B[7:0]			120	C_SRC_B[6	5:0]			RSVD
0x0C	i2c_dest B[7:0]			120	C_DST_B[6	:0]			RSVD
0x0D	i2c_config[7:0]	I2C_LOC_ ACK	I2C_SLV	'_SH[1:0]	I2C_MST_BT[2:0] I2C_SL			I2C_SLV	′_TO[1:0]
0x0E	gpio_en[7:0]	RSVD	RSVD	GPIO_ EN_5	GPIO_ EN_4	GPIO_ EN_3	GPIO_ EN_2	GPIO_ EN_1	RSVD
0x0F	gpio_out[7:0]	EN_SET_ GPO	RSVD	GPIO_ OUT_5	GPIO_ OUT_4	GPIO_ OUT_3	GPIO_ OUT_2	GPIO_ OUT_1	SET_GPO
0x10	gpio_in[7:0]	RSVD	RSVD	GPIO_ IN_5	GPIO_ IN_4	GPIO_ IN_3	GPIO_ IN_2	GPIO_ IN_1	GPO_L
0x11	errg[7:0]	ERRG_F	RATE[1:0]	ERRG_T	YPE[1:0]	ERRG_0	CNT[1:0]	ERRG_ PER	ERRG_EN
0x12	rsvd_12[7:0]	RSVD	RSVD	RSVD			RSVD[4:0]		
0x13	pd[7:0]	SOFT_PD	RSVD	RSVD	RSVD	RSVD	RSVD	RSVI	D[1:0]
0x14	pktcc_lock[7:0]	RSVI	D[1:0]	RSVD	RSVD	RSVD	RSVD	CC_ WBLOCK	REM_ CCLOCK
0x15	input_status[7:0]	CX_TP	RSVD	LCCEN	RSVD	RSVD	RSVD	OUT- PUTEN	PCLKDET
0x16	max_rt_err[7:0]	RSVD	MAX_RT_ ERR			RSVI	D[5:0]		
0x17	rsvd_17[7:0]				RSVI	D[7:0]			
0x18	crc 0[7:0]				CRC_VAL	UE_0[7:0]			
0x19	crc 1[7:0]				CRC_VAL	.UE_1[7:0]			
0x1A	crc 2[7:0]				CRC_VAL	UE_2[7:0]			
0x1B	crc 3[7:0]				CRC_VAL	UE_3[7:0]			
0x1C	cc_crc_errcnt[7:0]			(CC_CRC_E	RRCNT[7:0]		
0x1D	rsvd_1d[7:0]				RSVI	D[7:0]			

GMSL Register Map (continued)

OFFSET	NAME	MSB							LSB	
0x1E	id[7:0]				ID[7	7:0]				
0x1F	revision[7:0]	RSVD	RSVD	RSVD	HDCPCAP REVISION[3:0]					
0x20	crossbar 0[7:0]	RSVD	FORCE_ MUX_0	INVERT_ MUX_0	CROSSBAR_0[4:0]					
0x21	crossbar 1[7:0]	RSVD	FORCE_ MUX_1	INVERT_ MUX_1		CRO	OSSBAR_1	[4:0]		
0x22	crossbar 2[7:0]	RSVD	FORCE_ MUX_2	INVERT_ MUX_2		CRO	OSSBAR_2	[4:0]		
0x23	crossbar 3[7:0]	RSVD	FORCE_ MUX_3	INVERT_ MUX_3		CRO	OSSBAR_3	[4:0]		
0x24	crossbar 4[7:0]	RSVD	FORCE_ MUX_4	INVERT_ MUX_4		CRO	OSSBAR_4	[4:0]		
0x25	crossbar 5[7:0]	RSVD	FORCE_ MUX_5	INVERT_ MUX_5		CRO	OSSBAR_5	[4:0]		
0x26	crossbar 6[7:0]	RSVD	FORCE_ MUX_6	INVERT_ MUX_6		CRO	OSSBAR_6	[4:0]		
0x27	crossbar 7[7:0]	RSVD	FORCE_ MUX_7	INVERT_ MUX_7		CRO	OSSBAR_7	[4:0]		
0x28	crossbar 8[7:0]	RSVD	FORCE_ MUX_8	INVERT_ MUX_8		CRO	OSSBAR_8	[4:0]		
0x29	crossbar 9[7:0]	RSVD	FORCE_ MUX_9	INVERT_ MUX_9		CRO	OSSBAR_9	[4:0]		
0x2A	crossbar 10[7:0]	RSVD	FORCE_ MUX_10	INVERT_ MUX_10		CRC	SSBAR_1	0[4:0]		
0x2B	crossbar 11[7:0]	RSVD	FORCE_ MUX_11	INVERT_ MUX_11		CRC	SSBAR_1	1[4:0]		
0x2C	crossbar 12[7:0]	RSVD	FORCE_ MUX_12	INVERT_ MUX_12		CRC	SSBAR_12	2[4:0]		
0x2D	crossbar 13[7:0]	RSVD	FORCE_ MUX_13	INVERT_ MUX_13		CRC	SSBAR_1	3[4:0]		
0x2E	crossbar 14[7:0]	RSVD	FORCE_ MUX_14	INVERT_ MUX_14		CRC	SSBAR_1	4[4:0]		
0x2F	crossbar 15[7:0]	RSVD	FORCE_ MUX_15	INVERT_ MUX_15		CRC	SSBAR_1	5[4:0]		
0x30	crossbar 16[7:0]	RSVD	FORCE_ MUX_16	INVERT_ MUX_16		CRC	SSBAR_16	6[4:0]		
0x31	crossbar 17[7:0]	RSVD	FORCE_ MUX_17	INVERT_ MUX_17	- CROSSBAR 17[4:0]					
0x32	crossbar 18[7:0]	RSVD	FORCE_ MUX_18	INVERT_ MUX_18	- CROSSBAR 18[4:0]					
0x33	crossbar 19[7:0]	RSVD	FORCE_ MUX_19	INVERT_ MUX_19	CROSSBAR 19I4:01					
0x34	crossbar 20[7:0]	RSVD	FORCE_ MUX_20	INVERT_ MUX_20		CRC	SSBAR_2	0[4:0]		

GMSL Register Map (continued)

OFFSET	NAME	MSB							LSB
0x35	crossbar 21[7:0]	RSVD	FORCE_ MUX_21	INVERT_ MUX_21		CRC	SSBAR_21	[4:0]	
0x36	crossbar 22[7:0]	RSVD	FORCE_ MUX_22	INVERT_	CROSSBAR_22[4:0]				
0x37	crossbar 23[7:0]	RSVD	FORCE_ MUX_23	INVERT_		CRC	SSBAR_23	B[4:0]	
0x38	crossbar 24[7:0]	RSVD	FORCE_ MUX_24	INVERT_ MUX_24		CRC	SSBAR_24	! [4:0]	
0x39	crossbar 25[7:0]	RSVD	FORCE_ MUX_25	INVERT_ MUX_25		CRC	SSBAR_25	5[4:0]	
0x3A	crossbar 26[7:0]	RSVD	FORCE_ MUX_26	INVERT_ MUX_26		CRC	SSBAR_26	6[4:0]	
0x3B	crossbar 27[7:0]	RSVD	FORCE_ MUX_27	INVERT_ MUX_27		CRC	SSBAR_27	7[4:0]	
0x3C	crossbar 28[7:0]	RSVD	FORCE_ MUX_28	INVERT_ MUX_28		CRC	SSBAR_28	B[4:0]	
0x3D	crossbar 29[7:0]	RSVD	FORCE_ MUX_29	INVERT_ MUX_29		CRC	SSBAR_29	9[4:0]	
0x3E	crossbar 30[7:0]	RSVD	FORCE_ MUX_30	INVERT_ MUX_30	CROSSBAR_30[4:0]				
0x3F	crossbar_hs[7:0]	RSVD	FORCE_ MUX_HS	INVERT_ MUX_HS		CRO	OSSBARHS	[4:0]	
0x40	crossbar_vs[7:0]	RSVD	FORCE_ MUX_VS	INVERT_ MUX_VS		CRO	OSSBARVS	[4:0]	
0x41	crossbar_de[7:0]	RSVD	FORCE_ MUX_DE	INVERT_ MUX_DE		CRO	OSSBARDE	[4:0]	
0x42	link_config[7:0]		_CRC_ [1:0]	LINE_ CRC_EN	MAX_ RT_EN	RSVD	GPI_ COMP_ EN	GPI_RT_ EN	GPO_EN
0x43	sync_gen_config[7:0]	RSVD	RSVD	GEN_VS	GEN_HS	GEN_DE	VS_ TRIG	VTG_M	DDE[1:0]
0x44	vs_dly 2[7:0]				VS_DI	_Y[7:0]			
0x45	vs_dly 1[7:0]				VS_DI	_Y[7:0]			
0x46	vs_dly 0[7:0]				VS_DI	_Y[7:0]			
0x47	vs_h 2[7:0]		VS_H[7:0]						
0x48	vs_h 1[7:0]				VS_F				
0x49	vs_h 0[7:0]	VS_H[7:0]							
0x4A	vs_I 2[7:0]				VS_L				
0x4B	vs_I 1[7:0]					_[7:0]			
0x4C	vs_I 0[7:0]		VS_L[7:0]						
0x4D	cxtp[7:0]	RSVD	CXTP	RSVD	RSVD	VSYNC_ INV	HSYNC_ INV	DE_INV	RSVD
0x4E	hs_dly 2[7:0]				HS_DI	_Y[7:0]			

GMSL Register Map (continued)

OFFSET	NAME	MSB							LSB
0x4F	hs_dly 1[7:0]			,	HS_D	LY[7:0]	,	,	
0x50	hs_dly 0[7:0]		HS_DLY[7:0]						
0x51	rsvd[7:0]	RSVD	RSVD	RSVD	RSVD	RSVD	RSVD	RSVD	RSVD
0x52	rsvd[7:0]	RSVD	RSVD	RSVD	RSVD	RSVD	RSVD	RSVD	RSVD
0x53	rsvd[7:0]	RSVD	RSVD	RSVD	RSVD	RSVD	RSVD	RSVD	RSVD
0x54	hs_h 1[7:0]				HS_I	H[7:0]			
0x55	hs_h 0[7:0]				HS_I	H[7:0]			
0x56	hs_I 1[7:0]				HS_I	_[7:0]			
0x57	hs_I 0[7:0]				HS_I	_[7:0]			
0x58	hs_cnt 1[7:0]				HS_CI	NT[7:0]			
0x59	hs_cnt 0[7:0]				HS_CI	NT[7:0]			
0x5A	de_dly 2[7:0]				DE_D	LY[7:0]			
0x5B	de_dly 1[7:0]				DE_D	LY[7:0]			
0x5C	de_dly 0[7:0]				DE_D	LY[7:0]			
0x5D	rsvd[7:0]	RSVD	RSVD	RSVD	RSVD	RSVD	RSVD	RSVD	RSVD
0x5E	rsvd[7:0]	RSVD	RSVD	RSVD	RSVD	RSVD	RSVD	RSVD	RSVD
0x5F	rsvd[7:0]	RSVD	RSVD	RSVD	RSVD	RSVD	RSVD	RSVD	RSVD
0x60	de_h 1[7:0]				DE_l	H[7:0]			
0x61	de_h 0[7:0]					H[7:0]			
0x62	de_I 1[7:0]				DE_I	_[7:0]			
0x63	de_I 0[7:0]				DE_I	_[7:0]			
0x64	de_cnt 1[7:0]					T_1[7:0]			
0x65	de_cnt 0[7:0]				DE_CN	T_0[7:0]		r	
0x66	prbs_type[7:0]	RSVI	D[1:0]	PRBS_ TYPE	REV_ FAST	DE_EN	DIS_ RWAKE	RSVD	CXSEL
0x67	dbl_align_to[7:0]	RSVI	SVD[1:0] AUTO_ CLINK RSVD			RSVD	DBL _.	_ALIGN_TC	[2:0]
0x68	cc_crc_length[7:0]	RSVD	D RSVD[2:0]			RSVI	D[1:0]		CRC_ [H[1:0]
0x69	hi_lo[7:0]	RSVD	EN_HI_ INVERT_ CROSSBAR_HI_LO[4:0]						

0x96	rsvd_96[7:0]	RSVD	RSVD	RSVD	RSVD	RSVD	RSVD	RSVD RSVD	
0x97	rsvd_97[7:0]	RSVD	RSVD	RSVD	RSVD	RSVD			
0x98	rsvd_98[7:0]	RSVI	D[1:0]		RSVD[2:0]		RSVD[2:0]		
0x99	rsvd_99[7:0]	RSVD	RSVD	RSVD	RSVD	RSVD	RSVD	RSVI	D[1:0]
0x9A	pktcc_en[7:0]	RSVI	D[1:0]	RSVI	D[1:0]	PKTCC_ EN	RSVD[1:0]		RSVD

GMSL Register Map (continued)

OFFSET	NAME	MSB							LSB
0xC8	rsvd_c8[7:0]	RSVD	RSVD	RSVD	RSVD	RSVD	RSVD	RSVD	RSVD
0xC9	rsvd_c9[7:0]	RSVD[7:0]							
0xFC	rsvd_fc[7:0]	RSVD	RSVD	RSVD	RSVD	RSVD	RSVD	RSVD	RSVD
0xFD	rsvd_fd[7:0]	RSVD[7:0]							
0xFE	rsvd_fe[7:0]	RSVD[3:0] RSVD[3:0]							
0xFF	rsvd_ff[7:0]	RSVD	RSVD	RSVD	RSVD	RSVD[3:0]			

seraddr (0x00)

BIT	7	6	5	4	3	2	1	0	
Field		SERADDR[6:0]							
Reset		1000000							
Access Type				Write, Read				Write, Read	

BITFIELD	BITS	DESCRIPTION	DECODE			
SERADDR	7:1	Serializer Address: Serializer device address	0000000: Write/read device address is 0x00/0x01 0000001: Write/read device address is 0x02/0x03 1111111: Write/read device address is 0xFE/0xFF			
CFG- BLOCK	0	Configuration Block: Set to 1 to make all registers read-only. Set PWDNB low, or a power-on reset to clear this bit.	O: Make all registers read/write 1: Make all registers read-only			

desaddr (0x01)

BIT	7	6	5	4	3	2	1	0	
Field	DESADDR[6:0]								
Reset		1001000b							
Access Type		Write, Read							

BITFIELD	BITS	DESCRIPTION	DECODE
DESADDR	7:1	Deserializer Address: Deserializer device address	0000000: Write/read device address is 0x00/0x01 0000001: Write/read device address is 0x02/0x03 1111111: Write/read device address is 0xFE/0xFF
RSVD	0	Reserved: Do not change from default value	0: Reserved

ss (0x02)

BIT	7	6	5	4	3	2	1	0
Field	SS[2:0]			RSVD	PRNG[1:0]		SRNG[1:0]	
Reset	000b		1b	1′	1b 11b		1b	
Access Type	Write, Read		Write, Read	Write, Read		Write, Read		

BITFIELD	BITS	DESCRIPTION	DECODE
SS	7:5	Spread Spectrum: Spread-spectrum setting	000: Spread is off 001: 0.5% Spread setting 010: 1.5% Spread setting 011: 2% Spread setting 100: Spread is off 101: 1% Spread setting 110: 3% Spread setting 111: 4% Spread setting
RSVD	4	Reserved: Do not change from default value	1: Reserved
PRNG	3:2	Pixel Clock Range: Pixel clock-range selection Stated ranges depend on DBL = setting	00: Select 12.5MHz to 25MHz (DBL = 0) or 25MHz to 50MHz (DBL = 1) pixel clock range 01: Select 25MHz to 58MHz (DBL = 0) or 50MHz to 116MHz (DBL = 1) pixel clock range 10: Automatically detect pixel clock range 11: Automatically detect pixel clock range.
SRNG	1:0	Serial-Data Rate Range	00: 0.5Gbps to 1Gbps serial-data range 01: 1Gbps to 1.74Gbps serial-data range 10: Automatically detect serial-data range 11: Automatically detect serial-data range

sdiv (0x03)

BIT	7	6	5	4	3	2	1	0			
Field	AUTOF	FM[1:0]	SDIV[5:0]								
Reset	00)b	000000b								
Access Type	Write,	Read	Write, Read								

BITFIELD	BITS	DESCRIPTION	DECODE			
AUTOFM	7:6	Automatic Frequency Modulation: Modulation- rate calibration interval	00: Calibration occurs once 01: Calibration occurs every 2ms 10: Calibration occurs every 16ms 11: Calibration occurs every 256ms			
SDIV	5:0	Sawtooth Divider: Sawtooth divider value 0x00 sets the sawtooth divider to autocalibrate mode	000000: Sawtooth divider automatically calibrates the divider value 000001: Sawtooth divider set to 1 111111: Sawtooth divider set to 63			

main_control (0x04)

BIT	7	6	5	4	3	2	1	0
Field	SEREN	CLINKEN	PRBSEN	SLEEP	INTTYPE[1:0]		REVCCEN	FWDCCEN
Reset	1b	0b	0b	0b	1b		1b	1b
Access Type	Write, Read		Write, Read	Write, Read				

BITFIELD	BITS	DESCRIPTION	DECODE
SEREN	7	Serialization Enable: Requires a valid PCLK for serialization	Disable serialization Enable serialization
CLINKEN	6	Configuration Link Enable: Configuration link enabled only when the video link is not enabled (SEREN = 1)	Disable configuration link Enable configuration link
PRBSEN	5	PRBS Test Enable: See the PRBS test section for more details	0: Disable PRBS test 1: Enable PRBS test
SLEEP	4	Sleep Mode Enable: Activates sleep mode (see the <u>Shutdown/Sleep Modes</u> section for more information)	0: Disable sleep mode 1: Enable sleep mode
INTTYPE	3:2	UART/I ² C Interface Type: Local control-channel interface when in UART/UART or UART/I ² C mode (I2CSEL = 0)	00: Device performs UART-to-I ² C conversion when functioning as the remote device 01: Device outputs UART packets when functioning as the remote device 10: Tx/Rx input/outputs disabled when functioning as the remote device 11: Tx/Rx input/outputs disabled when functioning as the remote device
REVCCEN	1	Reverse Control-Channel Enable: Enable reverse control-channel receiver (data from deserializer)	Disable reverse control-channel receiver Enable reverse control-channel receiver
FWDCCEN	0	Forward Control Channel Enable: Enable forward control channel receiver (data to deserializer)	Disable forward control channel transmitter Enable forward control channel transmitter

prbs_len (0x05)

BIT	7	6	5	4	3	2	1	0
Field	I2C- METHOD	RSVD	PRBS_LEN[1:0]		RSVD	RSVD	RSVD	RSVD
Reset	0b	0b	00b		0b	0b	0b	0b
Access Type	Write, Read	Write, Read	Write, Read		Write, Read	Write, Read	Write, Read	Write, Read

BITFIELD	BITS	DESCRIPTION	DECODE
I2CMETHOD	7	UART-to-l²C Method: When set, skip the sending of the register address when converting UART to l ² C (I2CSEL = 0).	Do not skip the sending of the register address Skip the sending of the register address
RSVD	6	Reserved: Do not change from default value.	0: Reserved
PRBS_LEN	5:4	PRBS Length: PRBS test pattern length	00: Continuous bit pattern (infinite length) 01: 9.8Mbit length 10: 167.1Mbit length 11: 1341.5Mbit length
RSVD	3	Reserved: Do not change from default value	0: Reserved
RSVD	2	Reserved: Do not change from default value.	0: Reserved
RSVD	1	Reserved: Do not change from default value.	0: Reserved
RSVD	0	Reserved: Do not change from default value.	0: Reserved

cmllvl_preemp (0x06)

BIT	7	6	5	4	3	2	1	0	
Field		CMLL	/L[3:0]		PREEMP[3:0]				
Reset		10>	(0b			000	00b		
Access Type		Write,	Read			Write,	Read		

BITFIELD	BITS	DESCRIPTION	DECODE
CMLLVL	7:4	CML Level: Output CML signal level = (register value) x 50mV Default level depends on cable type (CXTP)	0000: Do not use 0001: Do not use 0010: 100mV output 0011: 150mV output 0100: 200mV output 0101: 250mV output 0110: 300mV output 0111: 350mV output 1000: 400mV output (STP default) 1001: 450mV output 1010: 500mV output (coax default) 1011: Do not use 1101: Do not use 111X: Do not use
PREEMP	3:0	Preemphasis Level: Preemphasis setting Negative preemphasis levels denote deemphasis	0000: Preemphasis off 0001: 1.2dB deemphasis 0010: 2.5dB deemphasis 0011: 4.1dB deemphasis 0100: 6.0dB deemphasis 0101: Do not use 011X: Do not use 1000: 1.1dB preemphasis 1001: 2.2dB preemphasis 1010: 3.3dB preemphasis 1011: 4.4dB preemphasis 1100: 6.0dB preemphasis 1101: 8.0dB preemphasis 1111: 14.0dB preemphasis

config (0x07)

BIT	7	6	5	4	3	2	1	0
Field	DBL	HIBW	BWS	ES	RSVD	HVEN	RSVD	PXL_CRC
Reset	0b	0b	Xb	Xb	0b	0b	0b	0b
Access Type	Write, Read							

BITFIELD	BITS	DESCRIPTION	DECODE
DBL	7	Double-Input Mode Enable: Set high to enable double-input mode. Default setting is determined by LCCEN and TX/SCL/DBL pin setting at power-up.	0: Single-input mode 1: Double-input mode
HIBW	6	High-Bandwidth Mode Enable : High-bandwidth mode select (effective only when BWS = 0)	0: Use 24-bit mode when BWS = 0 1: Use high-bandwidth mode when BWS = 0
BWS	5	Bus-Width Select: Default value is determined by LCCEN and GPIO1/BWS pin setting at power-up.	0: 24-bit and high-bandwidth mode 1: 32-bit mode
ES	4	Edge Select: Default value is determined by CONF[1:0] pins at power-up	Parallel data clocked in on rising edge Parallel data clocked in on falling edge
RSVD	3	Reserved: Do not change from default value.	0: Reserved
HVEN	2	HSYNC/VSYNC Encoding Enable: Default value is determined by LCCEN and MS/HVEN pin setting at powerup	0: Disable HS/VS encoding 1: Enable HS/VS encoding
RSVD	1	Reserved: Do not change from default value.	0: Reserved
PXL_CRC	0	Pixel CRC Type: pixel error-detection type Effective only when HIBW = 0	0: Serial data uses 1-bit parity 1: Serial data uses 6-bit CRC

rsvd_8 (0x08)

	·							
BIT	7	6	5	4	3	2	1	0
Field	RSVD							
Reset	0b							
Access Type	Write, Read							

BITFIELD	BITS	DESCRIPTION	DECODE
RSVD	7	Reserved: Do not change from default value.	0: Reserved
RSVD	6	Reserved: Do not change from default value.	0: Reserved
RSVD	5	Reserved: Do not change from default value.	0: Reserved
RSVD	4	Reserved: Do not change from default value.	0: Reserved
RSVD	3	Reserved: Do not change from default value.	0: Reserved
RSVD	2	Reserved: Do not change from default value.	0: Reserved
RSVD	1	Reserved: Do not change from default value.	0: Reserved
RSVD	0	Reserved: Do not change from default value.	0: Reserved

i2c_source (0x09, 0x0B)

BIT	7	6	5	4	3	2	1	0	
Field		I2C_SRC[6:0]							
Reset		000000b							
Access Type				Write, Read				Write, Read	

BITFIELD	BITS	DESCRIPTION	DECODE
I2C_SRC	7:1	I2C Source: I2C address translator source	0000000: Write/read device address is 0x00/0x01 0000001: Write/read device address is 0x02/0x03 1111111: Write/read device address is 0xFE/0xFF
RSVD	0	Reserved: Do not change from default value.	0: Reserved

i2c_dest (0x0A, 0x0C)

						,	·		
BIT	7	6	5	4	3	2	1	0	
Field		I2C_DST[6:0]							
Reset				0000000b				0b	
Access Type				Write, Read				Write, Read	

BITFIELD	BITS	DESCRIPTION	DECODE
I2C_DST	7:1	I2C Destination: I2C address translator destination	0000000: Write/read device address is 0x00/0x01 0000001: Write/read device address is 0x02/0x03 1111111: Write/read device address is 0xFE/0xFF
RSVD	0	Reserved: Do not change from default value.	0: Reserved

i2c_config (0x0D)

BIT	7	6	5	4	3	2	1	0
Field	I2C_LOC_ ACK	I2C_SLV	/_SH[1:0]	I2C_MST_BT[2:0]		_TO[1:0]		
Reset	1b	0,	1b	101b		10b		
Access Type	Write, Read	Write,	Read		Write, Read		Write,	Read

BITFIELD	BITS	DESCRIPTION	DECODE
I2C_LOC_ ACK	7	I2C Local Acknowledge: I2C-to-I2C slave generates local acknowledge when forward channel is not available	O: Do not send local autoacknowledge when control channel is absent Send local autoacknowledge when control channel is absent
I2C_SLV_ SH	6:5	I ² C Slave Setup/Hold Time: I ² C-to-I ² C slave setup and hold-time setting (setup, hold) (typ)	00: (352ns, 117ns) setup/hold time 01: (469ns, 234ns) setup/hold time 10: (938ns, 352ns) setup/hold time 11: (1406ns, 469ns) setup/hold time
I2C_MST_ BT	4:2	I ² C Master Bit Rate: I ² C-to-I ² C master bit-rate setting (min, typ, max)	000: (6.61, 8.47, 9.92) kbps 001: (22.1, 28.3, 33.2) kbps 010: (66.1, 84.7, 99.2) kbps 011: (82, 105, 123) kbps 100: (136, 173, 203) kbps 101: (265, 339, 397) kbps 110: (417, 533, 625) kbps 111: (654, 837, 980) kbps
I2C_SLV_ TO	1:0	I ² C Slave Timeout: I ² C-to-I ² C slave remote-side timeout setting (typ).	00: 64µs slave timeout 01: 256µs slave timeout 10: 1024µs slave timeout 11: Slave timeout disabled

gpio_en (0x0E)

BIT	7	6	5	4	3	2	1	0
Field	RSVD	RSVD	GPIO_EN_5	GPIO_EN_4	GPIO_EN_3	GPIO_EN_2	GPIO_EN_1	RSVD
Reset	0b	0b	0b	0b	0b	0b	1b	0b
Access Type	Write, Read							

BITFIELD	BITS	DESCRIPTION	DECODE
RSVD	7	Reserved: Do not change from default value.	0: Reserved
RSVD	6	Reserved: Do not change from default value.	0: Reserved
GPIO_EN_5	5	GPIO Enable: Disabled by default	0: Pin functions as a parallel input 1: Pin functions as a GPIO
GPIO_EN_4	4	GPIO Enable: Disabled by default.	0: Pin functions as a parallel input 1: Pin functions as a GPIO
GPIO_EN_3	3	GPIO Enable: Disabled by default.	0: Pin functions as a parallel input 1: Pin functions as a GPIO
GPIO_EN_2	2	GPIO Enable: Disabled by default	O: Pin functions as a parallel input 1: Pin functions as a GPIO
GPIO_EN_1	1	GPIO Enable: Disabled by default	O: Pin functions as parallel input 1: Pin functions as GPIO
RSVD	0	Reserved: Do not change from default value	0: Reserved

gpio_out (0x0F)

BIT	7	6	5	4	3	2	1	0
Field	EN_SET_ GPO	RSVD	GPIO_ OUT_5	GPIO_ OUT_4	GPIO_ OUT_3	GPIO_ OUT_2	GPIO_ OUT_1	SET_GPO
Reset	1b	0b	1b	1b	1b	1b	1b	0b
Access Type	Write, Read	Write, Read	Write, Read	Write, Read	Write, Read	Write, Read	Write, Read	Write, Read

BITFIELD	BITS	DESCRIPTION	DECODE
EN_SET_GPO	7	Enable Set GPO: Set to 1 to enable setting of GPO from SET_GPO	Disable setting of GPO through SET_GPO Enable setting of GPO through SET_GPO
RSVD	6	Reserved: Do not change from default value	0: Reserved
GPIO_OUT_5	5	GPIO Output Level: Pull down GPIO when 0	0: Set GPIO output level low 1: Set GPIO output level high
GPIO_OUT_4	4	GPIO Output Level: Pull down GPIO when 0	0: Set GPIO output level lo 1: Set GPIO output level high
GPIO_OUT_3	3	GPIO Output Level: Pull down GPIO when 0	0: Set GPIO output leve 1: Set GPIO output level high
GPIO_OUT_2	2	GPIO Output Level: Pull down GPIO when 0	0: Set GPIO output level low 1: Set GPIO output level high
GPIO_OUT_1	1	GPIO Output Level: Pull down GPIO when 0	0: Set GPIO output level low 1: Set GPIO output level high
SET_GPO	0	Set GPO Level: Set GPO output high or low (when EN_SET_GPO = 1)	0: Set GPO output low 1: Set GPO output high

gpio_in (0x10)

BIT	7	6	5	4	3	2	1	0
Field	RSVD	RSVD	GPIO_IN_5	GPIO_IN_4	GPIO_IN_3	GPIO_IN_2	GPIO_IN_1	GPO_L
Reset	0b	0b	Xb	Xb	Xb	Xb	Xb	Xb
Access Type	Read Only							

BITFIELD	BITS	DESCRIPTION	DECODE
RSVD	7	Reserved	0: Reserved
RSVD	6	Reserved	0: Reserved
GPIO_IN_5	5	GPIO Input Level: Input pin level of GPIO	0: GPIO input is low 1: GPIO input is high
GPIO_IN_4	4	GPIO Input Level: Input pin level of GPIO	0: GPIO input is low 1: GPIO input is high
GPIO_IN_3	3	GPIO Input Level: Input pin level of GPIO	0: GPIO input is low 1: GPIO input is high
GPIO_IN_2	2	GPIO Input Level: Input pin level of GPIO	0: GPIO input is low 1: GPIO input is high
GPIO_IN_1	1	GPIO Input Level: Input pin level of GPIO	0: GPIO input is low 1: GPIO input is high
GPO_L	0	GPO Output Level	0: GPI output level is low 1: GPO output level is high

errg (0x11)

BIT	7	6	5	4	3	2	1	0
Field	ERRG_R	RATE[1:0]	1:0] ERRG_TYPE[1:0]		ERRG_CNT[1:0]		ERRG_PER	ERRG_EN
Reset	0	b	0b		0	b	0b	0b
Access Type	Write,	Read	Write,	Read	Write,	Read	Write, Read	Write, Read

BITFIELD	BITS	DESCRIPTION	DECODE
ERRG_RATE	7:6	Error-Generation Rate: Error-generation rate, on average	00: Generate errors every 2560 bits 01: Generate errors every 40,960 bits 10: Generate errors every 655,360 bits 11: Generate errors every 10,485,760 bits
ERRG_TYPE	5:4	Error-Generation Type: Type of generated errors	00: Single-bit errors 01: 2 8b/10b symbols 10: 3 8b/10b symbols 11: 4 8b/10b symbols
ERRG_CNT	3:2	Error-Generation Count: Number of generated errors	00: Generate errors continuously 01: Generate16 errors 10: Generate 128 errors 11: Generate 1024 errors
ERRG_PER	1	Periodic Error Generation Enable	O: Generator creates errors randomly (based on error rate) 1: Generator creates errors periodically (based on error rate)
ERRG_EN	0	Error Generator Enable	Disable error generator Enable error generator

rsvd_12 (0x12)

BIT	7	6	5	4	3	2	1	0
Field	RSVD	RSVD	RSVD	RSVD[4:0]				
Reset	0b	1b	0b			00000b		
Access Type	Write, Read	Write, Read	Write, Read	Write, Read				

BITFIELD	BITS	DESCRIPTION	DECODE
RSVD	7	Reserved: Do not change from default value	0: Reserved
RSVD	6	Reserved: Do not change from default value	1: Reserved
RSVD	5	Reserved: Do not change from default value	0: Reserved
RSVD	4:0	Reserved: Do not change from default value	00000: Reserved

pd (0x13)

BIT	7	6	5	4	3	2	1	0
Field	SOFT_PD	RSVD	RSVD	RSVD	RSVD	RSVD	RSVD[1:0]	
Reset	0b	0b	0b	0b	0b	0b	10)b
Access Type	Write 1 to Set, Read	Write, Read						

BITFIELD	BITS	DESCRIPTION	DECODE
SOFT_PD	7	Soft Power Down: Set this bit to 1 to reset the device; this bit is cleared after the device resets	Normal operation Reset the device (bit clears itself)
RSVD	6	Reserved: Do not change from default value	0: Reserved
RSVD	5	Reserved: Do not change from default value	0: Reserved
RSVD	4	Reserved: Do not change from default value	0: Reserved
RSVD	3	Reserved: Do not change from default value	0: Reserved
RSVD	2	Reserved: Do not change from default value	0: Reserved
RSVD	1:0	Reserved: Do not change from default value	10: Reserved

pktcc_lock (0x14)

BIT	7	6	5	4	3	2	1	0
Field	RSVD[1:0]		RSVD	RSVD	RSVD	RSVD	CC_ WBLOCK	REM_ CCLOCK
Reset	X	Xb	Xb	Xb	Xb	Xb	Xb	Xb
Access Type	Read Only		Read Only	Read Only	Read Clears All	Read Only	Read Only	Read Only

BITFIELD	BITS	DESCRIPTION	DECODE
RSVD	7:6	Reserved: Do not change from default value	XX: Reserved
RSVD	5	Reserved: Do not change from default value	X: Reserved
RSVD	4	Reserved: Do not change from default value	X: Reserved
RSVD	3	Reserved: Do not change from default value	X: Reserved
RSVD	2	Reserved: Do not change from default value	X: Reserved
CC_ WBLOCK	1	Control-Channel Word Boundary Locked	Control-channel word boundary is not locked Control-channel word boundary is locked
REM_ CCLOCK	0	Remote-Side Control Channel Locked	Remote side control channel is not locked Remote side control channel is locked

input_status (0x15)

BIT	7	6	5	4	3	2	1	0
Field	CX_TP	RSVD	LCCEN	RSVD	RSVD	RSVD	OUTPUTEN	PCLKDET
Reset	Xb	Xb	Xb	0b	0b	0b	Xb	Xb
Access Type	Read Only	Read Only	Write, Read	Read Only				

BITFIELD	BITS	DESCRIPTION	DECODE		
CX_TP	7	Coax/Twisted Pair level: CX_TP pin level	0: CX/TP input is low 1: CX/TP input is high		
RSVD	6	Reserved: Do not change from default value	X: Reserved		
LCCEN	5	Detected LCCEN pin level	0: Pin is input low 1: Pin is input high		
RSVD	4	Reserved	0: Reserved		
RSVD	3	Reserved	0: Reserved		
RSVD	2	Reserved	0: Reserved		
OUT- PUTEN	1	Output Enabled	0: Output disabled 1: Output enabled		
PCLKDET	0	PCLK Detected: Valid PCLK detected	0: No valid PCLK detected 1: Valid PCLK detected		

max_rt_err (0x16)

BIT	7	6	5	4	3	2	1	0
Field	RSVD	MAX_RT_ ERR	RSVD[5:0]					
Reset	0b	Xb			XXX	XXXb		
Access Type	Read Only	Read Clears All			Read	Only		

BITFIELD	BITS	DESCRIPTION	DECODE
RSVD	7	Reserved	0: Reserved
MAX_RT_ERR	6	Maximum Retransmission Error: maximum retransmission error bit Goes high if packet control channel hits maximum retransmission limit. Cleared when read.	Device has not reached maximum retransmission limit. Device has reached maximum retransmission limit.
RSVD	5:0	Reserved: Do not change from default value.	XXXXXX: Reserved

rsvd_17 (0x17)

BIT	7	6	5	4	3	2	1	0	
Field		RSVD[7:0]							
Reset				XXXX	XXXXb				
Access Type				Read	Only				

BITFIELD	BITS	DESCRIPTION	DECODE
RSVD	7:0	Reserved: Do not change from default value	XXXXXXXX: Reserved

crc (0x18 to 0x1B)

BIT	7	6	5	4	3	2	1	0	
Field		CRC_VALUE[7:0]							
Reset				XXXX	XXXXb				
Access Type				Read	Only				

BITFIELD	BITS	DESCRIPTION	DECODE
CRC_VALUE	7:0	CRC Value: CRC output for latest line CRC_VALUE_3 to CRC_VALUE_0 represents CRC[31:0]	00000000: Value is 0 00000001: Value is 1 11111111: Value is 255

cc_crc_errcnt (0x1C)

	. ,								
BIT	7	6	5	4	3	2	1	0	
Field		CC_CRC_ERRCNT[7:0]							
Reset		XXXXXXXb							
Access Type				Read	Only				

BITFIELD	BITS	DESCRIPTION	DECODE
CC_CRC_ ERRCNT	7:0	Control-Channel CRC Error Count: Packet- based control-channel CRC error counter	00000000: Value is 0 00000001: Value is 1 11111111: Value is 255

rsvd_1d (0x1D)

BIT	7	6	5	4	3	2	1	0		
Field		RSVD[7:0]								
Reset		XXXXXXXb								
Access Type				Read	Only					

BITFIELD	BITS	DESCRIPTION	DECODE
RSVD	7:0	Reserved: Do not change from default value	XXXXXXXX: Reserved

id (0x1E)

BIT	7	6	5	4	3	2	1	0	
Field		ID[7:0]							
Reset		XXXXXXXb							
Access Type				Read	Only				

BITFIELD	BITS	DESCRIPTION	DECODE		
ID	7:0	Device ID: 8-bit value depends on the GMSL device attached	01000001 Device is a MAX96705		

revision (0x1F)

BIT	7	6	5	4	3	2	1	0
Field	RSVD	RSVD	RSVD	HDCPCAP	REVISION[3:0]			
Reset	0b	0b	0b	Xb	XXXXb			
Access Type	Read Only							

BITFIELD	BITS	DESCRIPTION	DECODE
RSVD	7	Reserved	0: Reserved
RSVD	6	Reserved	0: Reserved
RSVD	5	Reserved	0: Reserved
HDCPCAP	4	HDCP Capability: 1 = HDCP capable	Device does not have HDCP Device is HDCP capable
REVISION	3:0	Device Revision	0000: Value is 0 0001: Value is 1 1111: Value is 15

crossbar (0x20 to 0x3E)

BIT	7	6	5	4	3	2	1	0
Field	RSVD	FORCE_ MUX	INVERT_ MUX	CROSSBAR[4:0]				
Reset	0b	0b	0b	XXXXXb				
Access Type	Write, Read	Write, Read	Write, Read	Write, Read				

BITFIELD	BITS	DESCRIPTION	DECODE
RSVD	7	Reserved: Do not change from default value	0: Reserved
FORCE_ MUX	6	Force Mux Output	0: Input mapped to mux output 1: Force mux output low
INVERT_ MUX	5	Invert Mux Output	0: Do not invert mux output 1: Invert mux output
CROSS- BAR	4:0	Crossbar Setting Select 1 of 32 input signals. Default values connect Mux N with input N for flow-through routing (i.e., DIN_ mapped to DOUT_).	00000: Mux outputs data from input 0 00001: Mux outputs data from input 1 11111: Mux outputs data from input 31

crossbar_hs (0x3F)

BIT	7	6	5	4	3	2	1	0
Field	RSVD	FORCE_ MUX_HS	INVERT_ MUX_HS	CROSSBARHS[4:0]				
Reset	0b	0b	0b	01110b				
Access Type	Write, Read	Write, Read	Write, Read	Write, Read				

BITFIELD	BITS	DESCRIPTION	DECODE		
RSVD	7	Reserved: Do not change from default value	0: Reserved		
FORCE_ MUX_HS	6	Force Mux Output	Input mapped to mux output Force mux output low		
INVERT_ MUX_HS	5	Invert Mux Output	0: Do not invert mux output 1: Invert mux output		
CROSS- BARHS	4:0	Crossbar Setting HS: Select 1 of 16 input pins for HS. Default values connect HS with the corresponding named input pin.	00000: Mux sync signal from DIN0 00001: Mux sync signal from DIN1 01111: Mux sync signal from DIN15 1XXXX: Do Not Use		

crossbar (0x40)

BIT	7	6	5	4	3	2	1	0
Field	RSVD	FORCE_ MUX_VS	INVERT_ MUX_VS	CROSSBARVS[4:0]				
Reset	0b	0b	0b	01111b				
Access Type	Write, Read	Write, Read	Write, Read	Write, Read				

BITFIELD	BITS	DESCRIPTION	DECODE
RSVD	7	Reserved: Do not change from default value	0: Reserved
FORCE_ MUX_VS	6	Force Mux Output	Input mapped to mux output Force mux output low
INVERT_ MUX_VS	5	Invert Mux Output	0: Do not invert mux output 1: Invert mux output
CROSS- BARVS	4:0	Crossbar Setting VS: Select 1 of 16 input pins for VS. Default values connect VS with the corresponding named input pin.	00000: Mux sync signal from DIN0 00001: Mux sync signal from DIN1 01111: Mux sync signal from DIN15 1XXXX: Do Not Use

crossbar_de (0x41)

BIT	7	6	5	4	3	2	1	0	
Field	RSVD	FORCE_ MUX_DE	INVERT_ MUX_DE	CROSSBARDE[4:0]					
Reset	0b	0b	0b	01101b					
Access Type	Write, Read	Write, Read	Write, Read	Write, Read					

BITFIELD	BITS	DESCRIPTION	DECODE
RSVD	7	Reserved: Do not change from default value	0: Reserved
FORCE_ MUX_DE	6	Force Mux Output	Input mapped to mux output. Force mux output low.
INVERT_ MUX_DE	5	Invert Mux Output	0: Do not invert mux output. 1: Invert mux output.
CROSS- BARDE	4:0	Crossbar Setting DE: Select 1 of 16 input pins for DE. Default values connect DE with DIN13.	00000: Mux sync signal from DIN0 00001: Mux sync signal from DIN1 01111: Mux sync signal from DIN15 1XXXX: Do Not Use

link_config (0x42)

BIT	7	6	5	4	3	2	1	0
Field	LINE_CRC	LINE_CRC_LOC[1:0]		MAX_RT_ EN	RSVD	GPI_ COMP_EN	GPI_RT_EN	GPO_EN
Reset	01b		0b	1b	1b	0b	1b	1b
Access Type	Write,	Read	Write, Read	Write, Read	Write, Read	Write, Read	Write, Read	Write, Read

BITFIELD	BITS	DESCRIPTION	DECODE
LINE_CRC_ LOC	7:6	Line CRC Location: Video line CRC insertion location	00: CRC insertion at [14] 01: CRC insertion at [58] 10: CRC insertion at [912] 11: CRC insertion at [1316]
LINE_CRC_ EN	5	Line CRC Enable: Video line CRC enable	0: Disable CRC 1: Enable CRC
MAX_RT_EN	4	Maximum Retransmission Limit Enable	Disable maximum retransmission limit Enable maximum retransmission limit
RSVD	3	Reserved: Do not change from default value	1: Reserved
GPI_COMP_ EN	2	GPI Compensation Enable	0: Disable GPI compensation 1: Enable GPI compensation
GPI_RT_EN	1	GPI Retransmission Enable	Disable GPI retransmission Enable GPI retransmission
GPO_EN	0	GPO Enable: Enable GPO pin	0: Disable GPO pin 1: Enable GPO pin

sync_gen_config (0x43)

BIT	7	6	5	4	3	2	1	0
Field	RSVD	RSVD	GEN_VS	GEN_HS	GEN_DE	VS_TRIG	VTG_MODE[1:0]	
Reset	0b	0b	0b	0b	0b	1b	01	lb
Access Type	Write, Read	Write,	Read					

BITFIELD	BITS	DESCRIPTION	DECODE		
RSVD	7	Reserved: Do not change from default value	0: Reserved		
RSVD	6	Reserved: Do not change from default value	0: Reserved		
GEN_VS	5	VSYNC Generation: Enable to generate VS output according to the timing definition	O: Disable VS output generation (VS used from input) 1: Enable VS output generation (VS internally generated)		
GEN_HS	4	HSYNC Generation: Enable to generate HS utput according to the timing definition	0: Disable HS output generation (HS used from input) 1: Enable HS output generation (HS internally generated)		
GEN_DE	DE Generation: Enable to generate DE output according to the timing definition		0: Disable DE output generation (DE used from input) 1: Enable DE output generation (DE internally generated)		
VS_TRIG	2	VSYNC Trigger Edge Select	0: VS trigger uses falling edge 1: VS trigger uses rising edge		
VTG_ MODE	1:0	Video Timing Generator Mode	00: VS input is tracked and then locked after three consecutive matches (three consecutive mismatches unlock tracking) 01: VS edge triggers one VS frame (current frame is extended/cut short to adjust timing to next trigger) 10: VS edge triggers VS generation (current frame is extended/cut short to adjust timing to next trigger) 11: Same as above		

vs_dly (0x44 to 0x46)

BIT	7	6	5	4	3	2	1	0	
Field		VS_DLY[7:0]							
Reset		0000000b							
Access Type				Write,	Read				

BITFIELD	BITS	DESCRIPTION	DECODE		
			00000000: Value is 0		
VS_DLY	7:0	the output VS delay by VS_DELAY cycles from the	00000001: Value is 1		
		input VS.	11111111: Value is 255		

vs_h (0x47 to 0x49)

BIT	7	6	5	4	3	2	1	0		
Field		VS_H[7:0]								
Reset				00000	0000b					
Access Type				Write,	Read					

BITFIELD	BITS	DESCRIPTION	DECODE
VS_H	7:0	VSYNC High: VS high period in terms of PCLK cycles.	00000000: Value is 0 00000001: Value is 1 11111111: Value is 255

vs_I (0x4A to 0x4C)

BIT	7	6	5	4	3	2	1	0	
Field		VS_L[7:0]							
Reset		0000000b							
Access Type				Write,	Read				

BITFIELD	BITS	DESCRIPTION	DECODE
VS_L	7:0	VSYNC Low: VS low period in terms of PCLK cycles	00000000: Value is 0 00000001: Value is 1 11111111: Value is 255

cxtp (0x4D)

BIT	7	6	5	4	3	2	1	0
Field	RSVD	CXTP	RSVD	RSVD	VSYNC_ INV	HSYNC_ INV	DE_INV	RSVD
Reset	Xb	0b	0b	0b	0b	0b	0b	0b
Access Type	Write, Read	Write, Read	Write, Read	Write, Read				

BITFIELD	BITS	DESCRIPTION	DECODE
RSVD	7	Reserved: Do not change from default value	X: Reserved
CXTP	6	Coax/Twisted Pair Select Default value depends on the state of the CONF0, CONF1 inputs	0: Use differential output (STP mode) 1: Use dual single ended outputs (coax)
RSVD	5	Reserved: Do not change from default value	0: Reserved
RSVD	4	Reserved: Do not change from default value	0: Reserved
VSYNC_ INV	3	VSYNC Inversion: Invert output VSYNC in TIMING GEN	Do not invert VS in timing generator Invert VS in timing generator
HSYNC_ INV	2	HSYNC Inversion: Invert output HSYNC in TIMING GEN	00: Value is zero 01: Value is two 10 11
DE_INV	1	DE Inversion: Invert output DE in TIMING GEN	00: Value is zero 01: Value is two 10 11
RSVD	0	Reserved: Do not change from default value	0: Reserved

hs_dly (0x4E to 0x50)

BIT	7	6	5	4	3	2	1	0		
Field		HS_DLY[7:0]								
Reset				00000	0000b					
Access Type				Write,	Read					

BITFIELD	BITS	DESCRIPTION	DECODE
HS_DLY	7:0	VSYNC to HSYNC Delay: VS edge to the rising edge of the first HS in terms of PCLK cycles (bits [15:8])	00000000: Value is 0 00000001: Value is 1 11111111: Value is 255

rsvd (0x51 to 0x53, 0x5D to 0x5F)

BIT	7	6	5	4	3	2	1	0
Field	RSVD							
Reset	0b							
Access Type	Write, Read							

BITFIELD	BITS	DESCRIPTION	DECODE
RSVD	7	Reserved: Do not change from default value	0: Reserved
RSVD	6	Reserved: Do not change from default value	0: Reserved
RSVD	5	Reserved: Do not change from default value	0: Reserved
RSVD	4	Reserved: Do not change from default value	0: Reserved
RSVD	3	Reserved: Do not change from default value	0: Reserved
RSVD	2	Reserved: Do not change from default value.	0: Reserved
RSVD	1	Reserved: Do not change from default value	0: Reserved
RSVD	0	Reserved: Do not change from default value	0: Reserved

hs_h (0x54, 0x55)

BIT	7	6	5	4	3	2	1	0	
Field		HS_H[7:0]							
Reset				00000	0000b				
Access Type				Write,	Read				

BITFIELD	BITS	DESCRIPTION	DECODE
нѕ_н	7:0	HSYNC High Period: HS high period in terms of PCLK cycles	00000000: Value is 0 00000001: Value is 1 11111111: Value is 255

hs_I (0x56, 0x57)

BIT	7	6	5	4	3	2	1	0		
Field		HS_L[7:0]								
Reset				00000	0000b					
Access Type				Write,	Read					

BITFIELD	BITS	DESCRIPTION	DECODE
HS_L	7:0	HSYNC Low Period: HS low period in terms of PCLK cycles.	00000000: Value is 0 00000001: Value is 1 11111111: Value is 255

hs_cnt (0x58, 0x59)

	, ,									
BIT	7	6	5	4	3	2	1	0		
Field		HS_CNT[7:0]								
Reset				00000	0000b					
Access Type				Write,	Read					

BITFIELD	BITS	DESCRIPTION	DECODE		
HS_CNT	7:0	HSYNC Count: Lines per panel (bits [7:0]).	00000000: Value is 0 00000001: Value is 1 11111111: Value is 255		

de_dly (0x5A to 0x5C)

BIT	7	6	5	4	3	2	1	0	
Field		DE_DLY[7:0]							
Reset		0000000b							
Access Type				Write,	Read				

BITFIELD	BITS	DESCRIPTION	DECODE
DE_DLY	7:0	VSYNC to DE VS falling edge to the rising edge of the first DE in terms of PCLK cycles.	00000000: Value is 0. 00000001: Value is 1. 11111111: Value is 255.

de_h (0x60, 0x61)

BIT	7	6	5	4	3	2	1	0	
Field		DE_H[7:0]							
Reset				00000	0000b				
Access Type				Write,	Read				

BITFIELD	BITS	DESCRIPTION	DECODE
DE_H	7:0	DE High Period: DE high period in terms of PCLK cycles.	00000000: Value is 0 00000001: Value is 1 11111111: Value is 255

de_I (0x62, 0x63)

BIT	7	6	5	4	3	2	1	0		
Field		DE_L[7:0]								
Reset				00000	0000b					
Access Type				Write,	Read					

BITFIELD	BITS	DESCRIPTION	DECODE
DE_L	7:0	DE Low Period: DE low period in terms of PCLK cycles	00000000: Value is 0 00000001: Value is 1 11111111: Value is 255

de_cnt (0x64, 0x65)

BIT	7	6	5	4	3	2	1	0		
Field		DE_CNT[7:0]								
Reset		0000000b								
Access Type				Write,	Read					

BITFIELD	BITS	DESCRIPTION	DECODE
DE_CNT	7:0	DE Count: Active lines per panel	00000000: Value is 0 00000001: Value is 1 11111111: Value is 255

prbs_type (0x66)

BIT	7	6	5	4	3	2	1	0
Field	RSVD[1:0]		PRBS_ TYPE	REV_FAST	DE_EN	DIS_ RWAKE	RSVD	CXSEL
Reset	01b		1b	0b	0b	0b	0b	1b
Access Type	Write,	Read	Write, Read	Write, Read	Write, Read	Write, Read	Write, Read	Write, Read

BITFIELD	BITS	DESCRIPTION	DECODE		
RSVD	7:6	Reserved: Do not change from default value	01: Reserved		
PRBS_ TYPE	5	PRBS Type: PRBS type select	0: Select legacy PRBS mode 1: Select MAX9271–MAX9273 PRBS mode		
REV_ FAST	4	Reverse Channel Fast-Mode Enable	Disable reverse channel fast mode Enable reverse channel fast mode		
DE_EN	3	DE Enable: Enable processing separate HS and DE signals	Disable separate processing of HS and DE signals Enable separate processing of HS and DE signals		
DIS_ RWAKE	2	Disable Remote Wake-Up: Disable wake-up receiver	Do not disable remote wake-up receiver Disable remote wake-up receiver		
RSVD	1	Reserved: Do not change from default value	0: Reserved		
CXSEL	0	Coax Select	Coax cable connected to inverting output Coax cable connected to noninverting output		

dbl_align_to (0x67)

BIT	7	6	5	4	3	2	1	0
Field	RSVI	D[1:0]	AUTO_ CLINK	RSVD	RSVD	DBL_ALIGN_TO[2:0]		2:0]
Reset	11b		0b	0b	0b		111b	
Access Type	Write,	Read	Write, Read	Write, Read	Write, Read		Write, Read	

BITFIELD	BITS	DESCRIPTION	DECODE
RSVD	7:6	Reserved: Do not change from default value	11: Reserved
AUTO_ CLINK	5	Auto Configuration Link: Automatic control of configuration link	0: Enable configuration link only when CLINKEN = 1 and SEREN = 0 1: Automatically enable configuration link when SEREN = 1 and PCLKDET = 0
RSVD	4	Reserved: Do not change from default value	0: Reserved
RSVD	3	Reserved: Do not change from default value	0: Reserved
DBL_ ALIGN_TO	2:0	Double Alignment Mode: Sets the alignment mode when DBL = 1 in the serializer and DBL = 0 in the deserializer. Set DBL_ALIGN_TO = 000 when an external high-low signal is used (EN_HI_LO =1).	000: Align at each rising edge of HS. Turn off alignment after HS is low (MAX9286). Use this setting when an external high/low signal is used. 001: Do not use 010: Force align 011: Do not use 100: Align at each rising edge of HS 101: Align at each rising edge of DE 110: Force align 111: No alignment done while in DBL mode

cc_crc_length (0x68)

BIT	7	6	5	4	3	2	1	0	
Field	RSVD		RSVD[2:0]			RSVD[1:0]		CC_CRC_LENGTH[1:0]	
Reset	0b		001b		10b		0.	1b	
Access Type	Write, Read		Write, Read		Write, Read		Write, Read		

BITFIELD	BITS	DESCRIPTION	DECODE
RSVD	7	Reserved: Do not change from default value	0: Reserved
RSVD	6:4	Reserved: Do not change from default value	001: Reserved
RSVD	3:2	Reserved: Do not change from default value	10: Reserved
CC_CRC_ LENGTH	1:0	Control-Channel CRC Length	00: 1-bit CC CRC length 01: 5-bit CC CRC length 10: 8-bit CC CRC length 11: Do not use

hi_lo (0x69)

BIT	7	6	5	4	3	2	1	0
Field	RSVD	EN_HI_LO	INVERT_ HI_LO	CROSSBAR_HI_LO[4:0]				
Reset	0b	0b	0b	01111b				
Access Type	Write, Read	Write, Read	Write, Read	Write, Read				

BITFIELD	BITS	DESCRIPTION	DECODE
RSVD	7	Reserved: Do not change from default value	0: Reserved
EN_HI_LO	6	Enable High/Low Signal Alignment	0: Do not align using a Hi-Lo signal 1: Use a Hi-Lo signal to align input data
INVERT_ HI_LO	5	Invert High/Low Signal Alignment	0: Do not invert Hi-Lo signal 1: Invert Hi-Lo signal
CROSS- BAR_HI_ LO	4:0	Crossbar High Low: Select 1 of 16 input pins for the Hi-Lo signal. Default values connect the Hi-Lo signal to the VS input pin (effective when DBL_ALIGN_TO = 000).	00000: Mux Hi-Lo signal from DIN0 00001: Mux Hi-Lo signal from DIN1 01111: Mux Hi-Lo signal from DIN15 1XXXX: Do Not Use

rsvd_96 (0x96)

BIT	7	6	5	4	3	2	1	0
Field	RSVD	RSVD	RSVD	RSVD	RSVD	RSVD	RSVD[1:0]	
Reset	0b	0b	0b	0b	0b	0b	10b	
Access Type	Write, Read							

BITFIELD	BITS	DESCRIPTION	DECODE
RSVD	7	Reserved: Do not change from default value	0: Reserved
RSVD	6	Reserved: Do not change from default value	0: Reserved
RSVD	5	Reserved: Do not change from default value	0: Reserved
RSVD	4	Reserved: Do not change from default value	0: Reserved
RSVD	3	Reserved: Do not change from default value	0: Reserved
RSVD	2	Reserved: Do not change from default value	0: Reserved
RSVD	1:0	Reserved: Do not change from default value	10: Reserved

rsvd_97 (0x97)

BIT	7	6	5	4	3	2	1	0
Field	RSVD	RSVD	RSVD	RSVD	RSVD		RSVD[2:0]	
Reset	0b	0b	0b	1b	1b	111b		
Access Type	Write, Read							

BITFIELD	BITS	DESCRIPTION	DECODE
RSVD	7	Reserved: Do not change from default value	0: Reserved
RSVD	6	Reserved: Do not change from default value	0: Reserved
RSVD	5	Reserved: Do not change from default value	0: Reserved
RSVD	4	Reserved: Do not change from default value	1: Reserved
RSVD	3	Reserved: Do not change from default value	1: Reserved
RSVD	2:0	Reserved: Do not change from default value	111: Reserved

rsvd_98 (0x98)

	I -	1		1			I	1
BIT	7	6	5	4	3	2	1	0
Field	RSVI	D[1:0]	RSVD[2:0]			RSVD[2:0]		
Reset	0.	1b	001b 010b					
Access Type	Write,	Read		Write, Read		Write, Read		

BITFIELD	BITS	DESCRIPTION	DECODE
RSVD	7:6	Reserved: Do not change from default value	01: Reserved
RSVD	5:3	Reserved: Do not change from default value	001: Reserved
RSVD	2:0	Reserved: Do not change from default value	010: Reserved

rsvd_99 (0x99)

BIT	7	6	5	4	3	2	1	0
Field	RSVD	RSVD	RSVD	RSVD	RSVD	RSVD	RSVD[1:0]	
Reset	0b	0b	0b	0b	1b	1b	01b	
Access Type	Write, Read							

BITFIELD	BITS	DESCRIPTION	DECODE
RSVD	7	Reserved: Do not change from default value	0: Reserved
RSVD	6	Reserved: Do not change from default value	0: Reserved
RSVD	5	Reserved: Do not change from default value	0: Reserved
RSVD	4	Reserved: Do not change from default value	0: Reserved
RSVD	3	Reserved: Do not change from default value	1: Reserved
RSVD	2	Reserved: Do not change from default value	1: Reserved
RSVD	1:0	Reserved: Do not change from default value	01: Reserved

pktcc_en (0x9A)

BIT	7	6	5	4	3	2	1	0
Field	RSVI	D[1:0]	RSVD[1:0] I		PKTCC_EN	RSVD[1:0]		RSVD
Reset	00	00b		1b	0b	00)b	0b
Access Type	Write,	Read	Write, Read		Write, Read	Write,	Read	Write, Read

BITFIELD	BITS	DESCRIPTION	DECODE
RSVD	7:6	Reserved: Do not change from default value	00: Reserved
RSVD	5:4	Reserved: Do not change from default value	01: Reserved
PKTCC_ EN	3	Packet-Based Control-Channel-Mode Enable	Disable packet-based control-channel mode Enable packet-based control-channel mode
RSVD	2:1	Reserved: Do not change from default value	00: Reserved
RSVD	0	Reserved: Do not change from default value	0: Reserved

rsvd_C8 (0xC8)

BIT	7	6	5	4	3	2	1	0
Field	RSVD	RSVD	RSVD	RSVD	RSVD	RSVD	RSVD	RSVD
Reset	0b	Xb	Xb	Xb	0b	0b	0b	0b
Access Type	Write, Read	Read Only	Read Only	Read Only	Write, Read	Read Only	Write, Read	Read Only

BITFIELD	BITS	DESCRIPTION	DECODE
RSVD	7	Reserved: Do not change from default value	0: Reserved
RSVD	6	Reserved: Do not change from default value	X: Reserved
RSVD	5	Reserved: Do not change from default value	X: Reserved
RSVD	4	Reserved: Do not change from default value	X: Reserved
RSVD	3	Reserved: Do not change from default va	0: Reserved
RSVD	2	Reserved	0: Reserved
RSVD	1	Reserved: Do not change from default value	0: Reserved
RSVD	0	Reserved	0: Reserved

rsvd_c9 (0xC9)

BIT	7	6	5	4	3	2	1	0
Field		RSVD[7:0]						
Reset		XXXXXXXb						
Access Type				Read	Only			

BITFIELD	BITS	DESCRIPTION	DECODE
RSVD	7:0	Reserved: Do not change from default value	XXXXXXXX: Reserved

rsvd_fc (0xFC)

BIT	7	6	5	4	3	2	1	0
Field	RSVD							
Reset	0b							
Access Type	Write, Read							

BITFIELD	BITS	DESCRIPTION	DECODE
RSVD	7	Reserved: Do not change from default value	0: Reserved
RSVD	6	Reserved: Do not change from default value	0: Reserved
RSVD	5	Reserved: Do not change from default value	0: Reserved
RSVD	4	Reserved: Do not change from default value	0: Reserved
RSVD	3	Reserved: Do not change from default value	0: Reserved
RSVD	2	Reserved: Do not change from default value	0: Reserved
RSVD	1	Reserved: Do not change from default value	0: Reserved
RSVD	0	Reserved: Do not change from default value	0: Reserved

rsvd_fd (0xFD)

BIT	7	6	5	4	3	2	1	0	
Field		RSVD[7:0]							
Reset		0000000b							
Access Type				Write,	Read				

BITFIELD	BITS	DESCRIPTION	DECODE
RSVD	7:0	Reserved: Do not change from default value	00000000: Reserved

rsvd_fe (0xFE)

BIT	7	6	5	4	3	2	1	0	
Field		RSVI	D[3:0]		RSVD[3:0]				
Reset		000	00b		0000b				
Access Type		Write,	Read			Write,	Read		

BITFIELD	BITS	DESCRIPTION	DECODE
RSVD	7:4	Reserved: Do not change from default value	0000: Reserved
RSVD	3:0	Reserved: Do not change from default value	0000: Reserved

rsvd_ff (0xFF)

BIT	7	6	5	4	3	2	1	0				
Field	RSVD	RSVD	RSVD	RSVD	RSVD[3:0]							
Reset	0b	0b	0b	0b		XXX	XXb					
Access Type	Write, Read	Write, Read	Write, Read	Write, Read	ead Only							

BITFIELD	BITS	DESCRIPTION	DECODE
RSVD	7	Reserved: Do not change from default value	0: Reserved
RSVD	6	Reserved: Do not change from default value	0: Reserved
RSVD	5	Reserved: Do not change from default value	0: Reserved
RSVD	4	Reserved: Do not change from default value	0: Reserved
RSVD	3:0	Reserved: Do not change from default value	XXXX: Reserved

アプリケーション情報

パラレルインタフェース

CMOSパラレルインタフェースのデータ幅は、プログラマ ブルでアプリケーションに依存します。より大きい幅(BWS = 1)を使用するとピクセルクロックレートが低下するのに 対し、より小さい幅(BWS = 0)ではより高いピクセルクロッ クレートが可能です。

バスデータ幅

バスデータ幅は、選択したモードによって異なります。エ ラー検出使用時またはダブルモード時(DBL = 1)は、利用 可能なバス幅が減少します。表3に、各種モードで利用可 能なビット幅およびデフォルトのマッピングを示します。

バスデータレート

バスデータレートは、BWSおよびDBLの設定によって異な ります。表4に、各種バス幅設定で利用可能なPCLKレー トを示します。より低いPCLKレートにする場合は、DBL = 0に設定します(シリアライザとデシリアライザの両方で DBL = 1の場合)。

表3. 入力データ幅の選択

	REGIS	TER BIT SET	TINGS		INPUT MAPPING	INPUT MAPPING
DBL	BWS	HIBW	PXL_CRC	HVEN	(WITH 96706)	(WITH OTHER)
1	1	_	1	1	DIN11:0, HS, VS	DIN11:0, HS, VS
1	1	_	1	0	DIN11:0	DIN11:0
1	1	_	0	1	DIN11:0**, HS, VS	DIN13:0*, HS, VS
1	1	_	0	0	DIN13:0**	DIN14:0
1	0	1	1	_	DIN8:0, HS, VS	DIN8:0, HS, VS
1	0	1	0	_	DIN11:0, HS, VS	DIN11:0, HS, VS
1	0	0	1	1	DIN7:0, HS, VS	DIN7:0, HS, VS
1	0	0	1	0	DIN7:0	DIN7:0
1	0	0	0	1	DIN10:0, HS, VS	DIN10:0, HS, VS
1	0	0	0	0	DIN10:0	DIN10:0
0	1	_	1	1	DIN11:0**, HS, VS	DIN13:0*, HS, VS
0	1	_	1	0	DIN13:0**	DIN15:0*
0	1	_	0	1	DIN11:0**, HS, VS	DIN13:0*, HS, VS
0	1	_	0	0	DIN13:0*	DIN15:0*
0	0	1	-	_	DIN11:0**, HS, VS	DIN13:0*, HS, VS
0	0	0	1	1	DIN11:0**, HS, VS	DIN13:0*, HS, VS
0	0	0	1	0	DIN13:0**	DIN15:0*
0	0	0	0	1	DIN11:0**, HS, VS	DIN13:0*, HS, VS
0	0	0	0	0	DIN13:0**	DIN15:0*

^{*}入力ビット幅は利用可能な入力の数によって制限されます。

表4. データレートの選択

DBL	BWS	HIBW	PCLK RANGE (MHz)
1	1	0	25 to 87
1	0	0	33.3 to 116
1	0	1	73.3 to 116
0	1	0	12.5 to 43.5
0	0	0	16.7 to 58
0	0	1	36.6 to 58

^{**}入力ビット幅はデシリアライザで利用可能な出力の数によって制限されます。

クロスバースイッチ

デフォルトでは、クロスバースイッチはシリアライザの入力端子DIN_およびHS/VS (HVの符号化使用時)を、対応するデシリアライザの出力端子DOUT_およびHS/VSに接続します。入力または出力端子の割り当てを変更する場合、またはDBL = 1モードを備えていないデバイスに接続する場合は、クロスバースイッチを再設定します。

クロスバースイッチの設定

各クロスバースイッチ出力は、16のDIN_入力のハイまたはローワード(DBL = 1の場合)から、合計32の可能な入力を選択することができます。複数の出力が同じ入力を共有することができます。HS、VS、およびDEは両方のハーフワードに対して同じままで、対応する端子のローワード入力を使用するように設定する必要があります。入力データビットを反転するには、それぞれのINVERT_MUX_ = 1に設定します。出力を強制的にローにする(および入力を無視する)には、FORCE_MUX_ビット = 1に設定します。出力を強制的にハイにするには、INVERT_MUX_とFORCE_MUX の両方を= 1に設定します。

推奨クロスバースイッチ設定手順

クロスバースイッチを設定する手順は、シリアライザとデシリアライザのDBLの設定によって異なります。ダブルモードのないデバイスは、DBL = 0であると見なすことができます。

• 両方のデバイスのDBLが同じ値に設定されている場合

- 1. DINO (XBOO、XBO16)と同等のクロスバー出力に対してマッピングする端子を選択します(たとえば、DIN4 → XBI4、XBI20)。
- 2. ローおよびハイ入力クロスバービット(CROSSBARO、CROSSBAR 16)を目的の選択したマッピング対象入力に設

定します(たとえば、CROSSBAR0 = 00100、CROSSBAR16 = 10100)。

- 3. ハイおよびローのクロスバー出力が同じクロスバー入力セットに割り当てられていることを確認しながら、他のクロスバー出力に対して繰り返します。一般に、XBO[i]およびXBI[j+16]に割り当ててください。
- 4. XBOHS、XBOVS、およびXBODEは、ロー入力端子を使用するようにクロスバーを設定します(CROSSBAR_ = 00000~01111)。HS、VS、およびDEはローとハイの両方の入力を使用することに注意してください。

• 両方のデバイスのDBLが一致しない場合

- 1. <u>表5</u>、<u>表6</u>、および<u>表7</u>に、どのクロスバー出力(XBO_) が各シリアルビットにマッピングされるかを示します。
- 2. 各クロスバー出力に対して、どの端子およびハイ/ロークロックサイクル(必要な場合)をマッピングするかを選択します(たとえば、DIN4ロー入力)。
- 3. クロスバービット(CROSSBAR_)を設定して目的の選択したマッピング対象入力を選択します(たとえば、CROSSBAR0 = 00100はDIN4ロー入力をXBO0にマッピングします)。
- 4. 他のクロスバー出力に対して繰り返します。未使用のシリアルビットは強制ローをそれぞれのクロスバー出力にマッピングしてください。
- 5. XBOHS、XBOVS、およびXBODEは、ロー入力端子を使用するようにクロスバーを設定します(CROSSBAR_ = $00000 \sim 01111$)。HS、VS、およびDEはローとハイの両方の入力を使用することに注意してください。

表5. クロスバー出力とシリアルリンクのマッピング(D23:0)

	В	IT SI	ETTI	NG			SERIAL BITS																						
DB	HV	вw	НВ	CR	DE	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
0	0	0	0	0	Χ	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	Z	Z	Z	Z	Z	Z	F	Р
0	0	0	0	1	Х	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	F	Е	Е	Е	Е	Е	Е	Р
0	0	0	1	0	Х	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	Z	Z	Z	Z	Z	Z	F	Р
0	0	0	1	1	Х	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	Z	Z	Z	F	Е	Е	Е	Р
0	0	1	0	0	Χ	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	Z	Z	Z	Z	Z	Z	Z	Z
0	0	1	0	1	Х	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	Z	Z	Z	Z	Z	Z	Z	Z
0	1	0	0	0	Х	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	Z	Ζ	Z	Z	Z	Z	F	Р
0	1	0	0	1	Χ	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	F	Е	Е	Е	Е	Е	Е	Р
0	1	1	0	0	Х	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	Z	Ζ	Z	Z	Z	Z	Z	Z
0	1	1	0	1	Χ	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	Z	Z	Z	Z	Z	Z	Z	Z
1	0	0	0	0	Χ	16	17	18	19	20	21	22	23	24	25	26	0	1	2	3	4	5	6	7	8	9	10	F	Р
1	0	0	0	1	Χ	16	17	18	19	20	21	22	23	0	1	2	3	4	5	6	7	F	Е	Е	Е	Е	Е	Е	Р
1	0	0	1	0	Χ	16	17	18	19	20	21	22	23	24	25	26	27	0	1	2	3	4	5	6	7	8	Z	F	Р

表5. クロスバー出力とシリアルリンクのマッピング(D23:0) (続き)

	В	IT SI	ΞΤΤΙ	NG			SERIAL BITS																						
DB	ΗV	BW	НВ	CR	DE	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
1	0	0	1	1	Χ	16	17	18	19	20	21	22	23	24	0	1	2	3	4	5	6	7	8	Z	F	Е	Е	Е	Р
1	0	1	0	0	Χ	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	0	1	2	3	4	5	6	7	8
1	0	1	0	1	1	16	17	18	19	20	21	22	23	24	25	26	DH	0	1	2	3	4	5	6	7	8	9	10	DL
1	0	1	0	1	0	16	17	18	19	20	21	22	23	24	25	26	27	0	1	2	3	4	5	6	7	8	9	10	11
1	1	0	0	0	1	16	17	18	19	20	21	22	23	24	25	DH	0	1	2	3	4	5	6	7	8	9	DL	F	Р
1	1	0	0	0	0	16	17	18	19	20	21	22	23	24	25	26	0	1	2	3	4	5	6	7	8	9	10	F	Р
1	1	0	0	1	1	16	17	18	19	20	21	22	DH	0	1	2	3	4	5	6	DL	F	Е	Е	Е	Е	Е	Е	Р
1	1	0	0	1	0	16	17	18	19	20	21	22	23	0	1	2	3	4	5	6	7	F	Е	Е	Е	Е	Е	Е	Р
1	1	1	0	0	Χ	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	0	1	2	3	4	5	6	7	8
1	1	1	0	1	1	16	17	18	19	20	21	22	23	24	25	26	DH	0	1	2	3	4	5	6	7	8	9	10	DL
1	1	1	0	1	0	16	17	18	19	20	21	22	23	24	25	26	27	0	1	2	3	4	5	6	7	8	9	10	11

表6. クロスバー出力とシリアルリンクのマッピング(D31:24および特殊パケット)

BIT SETTING SPECIAL PACKETS																				
DB	HV	BW	НВ	CR	DE	24	25	26	27	28	29	30	31	C0	C1	C2	С3	HS	VS	DE
0	0	0	0	0	Х	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
0	0	0	0	1	Х	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
0	0	0	1	0	Х	Z	Z	Z	_	_		_	_	Z	Z	Z	Z	Н	V	D
0	0	0	1	1	Х	Е	Е	Е	_	_	_	_	_	Z	Z	Z	Z	Н	V	D
0	0	1	0	0	Х	Z	Z	Z	Z	Z	Z	F	Р	_	_	_	_	_	_	_
0	0	1	0	1	Χ	F	Е	Е	Е	Е	Е	Е	Р	_	-	_	_	_	_	_
0	1	0	0	0	Х	_	_	_	_	_	_	_	_	_	_	_	_	Н	V	_
0	1	0	0	1	Х	_	_	_	_	_	_	_	_	_	_	_	_	Н	V	_
0	1	1	0	0	Х	Z	Z	Z	Z	Z	Z	F	Р	_	_	_	_	Н	V	
0	1	1	0	1	Х	F	E	E	E	Е	Е	Е	Р	_	_	_	_	Н	V	_
1	0	0	0	0	Х	_				_		_					_	_	_	_
1	0	0	0	1	Х	_					_	_	_		_		_	_	_	_
1	0	0	1	0	Χ	9	10	11	_	_	_	_		Α	Z	Α	Α	Н	V	D
1	0	0	1	1	Х	Е	Е	Е	_	_	_	_	_	Α	Z	Α	Α	Н	V	D
1	0	1	0	0	Х	9	10	11	12	13	14	F	Р	_	_	_	_	_	_	_
1	0	1	0	1	1	F	Е	Е	Е	Е	Е	Е	Р	_		_	_	_	_	
1	0	1	0	1	0	F	Е	Е	Е	Е	Е	Е	Р	_		_	_	_	_	_
1	1	0	0	0	1	_	_	_	_	_	_	_		_		_	_	HH/L	VH/L	_
1	1	0	0	0	0	_	_	_	_	_	_	_	_	_	_	_	_	HH/L	VH/L	
1	1	0	0	1	1												_	HH/L	VH/L	
1	1	0	0	1	0	_	_	_	_	_	_	_					_	HH/L	VH/L	
1	1	1	0	0	Х	9	10	11	12	13	14	F	Р	_				HH/L	VH/L	
1	1	1	0	1	1	F	Е	Е	Е	Е	Е	Е	Р				_	HH/L	VH/L	
1	1	1	0	1	0	F	Е	Е	Е	Е	Е	Е	Р	-	-	-	-	HH/L	VH/L	-

表7. 凡例

BIT SET	TINGS	MAP INF	PUTS
DB	Double-mode bit DBL	Н	HSYNC (when DBL = 0 or HIBW = 1)
HV	H/V Encoding bit HVEN	V	VSYNC (when DBL = 0 or HIBW = 1)
BW	BWS bit	D	DE (when DBL = 0 or HIBW = 1)
НВ	HIBW bit	HH	HSYNC (high word, DBL = 1)
CR	PXL_CRC bit	VH	VSYNC (high word, DBL = 1)
DE	DE = 1 when DEEN = 1 and not processed in RGB888 mode	DH	DE (high word, DBL = 1)
Х	1 or 0	HL	HSYNC (low word, DBL = 1)
SPECIA	L PACKETS	VL	VSYNC (low word, DBL = 1)
C0	CNT_0	DL	DE (low word, DBL = 1)
C1	CNT_1	#	XBO output from crossbar switch
C2	CNT_2	F	Internal forward control-channel bit
C3	CNT_3	Е	Internal pixel CRC bit
BIT COI	LOR	Р	Internal pixel parity bit
	Output bits from crossbar	_	Serial bit not sent
	Internal bits	Z	Zero
	Other output bits	Α	Internal alignment bit (used when HIBW=1)
	Output bits from sync		

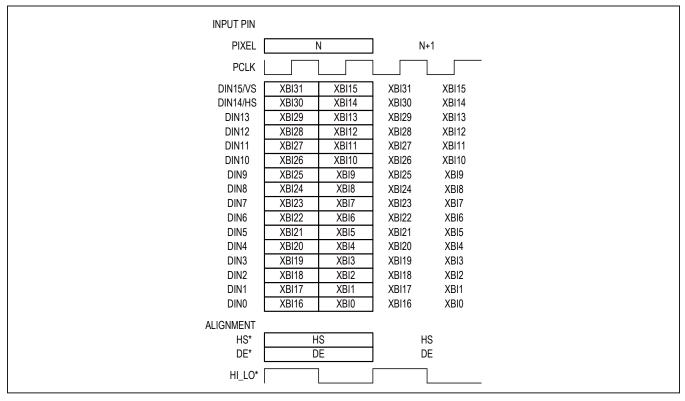


図20. クロスバースイッチのデフォルトマッピング

タイミング発生器の設定

タイミング発生器のパラメータは、PCLK期間の符号なし整数としてレジスタに保存されます。出力グリッチを防ぐために、デバイスが設定リンクモードの間、またはPCLKが印加されていない間にタイミング発生器の全パラメータを設定します。デフォルトでは、タイミング発生器はシングルトリガに設定され、ディセーブルされます。図18に、立上りエッジトリガ、非反転信号のデフォルト状態でのタイミング波形を示します。合計の長さがVSYNC期間の長さを超えるようにHSYNCまたはDE信号を設定しないでください(表8)。全遅延パラメータは正です。負の遅延を実装するには、VSYNC期間から引いた遅延の値を設定します(たとえば、遅延の値がVS_HIGH + VS_LOW - Nの場合、遅延は-N PCLKサイクルになります)。どの遅延長にもVSYNC期間より大きい値を設定しないでください。

ダブルモードのアライメント

シリアライザとデシリアライザの両方がDBL = 1の場合、GMSLは自動的にピクセルの正しい順序を維持します。シリアライザがDBL = 1でデシリアライザがDBL = 0 (または未サポート)の場合、ダブルモードのアライメントを使用します。ダブルモードのアライメントには、2つの異なる方法が利用可能です。

外部ハイ/ロー信号

外部アライメント信号を使用するには、 $EN_HI_LO = 1$ 、 $DBL_ALIGN_TO = 000$ に設定し、どの入力 $DIN_$ 端子を使用するかを $CROSSBAR_HI_LO$ ビットを設定することによって選択します。外部信号はそのクロックのワードがハイワードかローワードかを指定します(たとえば、ピクセルが[1H、1L、2H、2L…]の場合、ハイ/ロー信号は[1、0、1、0…]になります)。

HSまたはDEによるアライメント

同期信号によってアライメントするには、DBL_ALIGN_TOを設定して入力信号を選択します。このモードを使用する場合、アライメントに使用される信号がハイワードとローワードの両方に同じ値を使用することを確保してください(たとえば、ピクセルが[1H、1L、2H、2L…]の場合、DEでのアライメントには[DE1、DE1、DE2、DE2…]という値が必要です)。

制御チャネルインタフェース

I²C

I2CSEL = 1に設定すると、制御チャネルは $|^2$ C- $|^2$ Cに設定されます。このモードでは、制御チャネルはマイクロコントローラ側からGMSLリンクのもう一方の側に $|^2$ Cコマンドを転送します。リモートデバイスは、リモート側デバイスに接続されている他のペリフェラルに対する $|^2$ Cマスターとして機能します。 $|^2$ C- $|^2$ Cモードは、クロックストレッチングを使って、リンク上でのデータとアクノリッジまたは非アクノリッジの送信が完了するまでマイクロコントローラを保持します。

I²Cビットレート

 I^2 Cインタフェースは9.6kbps~1Mbpsのビットレートを受け付けます。ローカル I^2 Cレートはマイクロコントローラによって設定されます。リモート I^2 Cレートはリモートデバイスによって設定されます。デフォルトでは、制御チャネルは400kbpsの I^2 Cビットレートに設定されます。目的のマイクロコントローラ I^2 Cレートに一致するように I^2 CMSTBTおよびSLV_SHビット(レジスタ0x0D)を設定します。

表8. タイミング発生器のパラメータの制限

SIGNAL	SIZE (BITS)	MIN VALUE (HEX)	MAXIMUM VALUE RESTRICTION (HEX)
VS_HIGH	24	1	VS_HIGH + VS_LOW < 0xFFFFFF
VS_LOW	24	1	VS_HIGH + VS_LOW < 0xFFFFFF
VS_DLY	24	0	VS_DLY < VS_HIGH + VS_LOW
HS_HIGH	16	1	(HS_HIGH + HS_LOW) x HS_CNT < VS_HIGH + VS_LOW
HS_LOW	16	1	(HS_HIGH + HS_LOW) x HS_CNT < VS_HIGH + VS_LOW
HS_CNT	16	1	(HS_HIGH + HS_LOW) x HS_CNT < VS_HIGH + VS_LOW
HS_DLY	24	0	HS_DLY < VS_HIGH + VS_LOW
DE_HIGH	16	1	(DE_HIGH + DE_LOW) x DE_CNT < VS_HIGH + VS_LOW
DE_LOW	16	1	(DE_HIGH + DE_LOW) x DE_CNT < VS_HIGH + VS_LOW
DE_CNT	16	1	(DE_HIGH + DE_LOW) x DE_CNT < VS_HIGH + VS_LOW
DE_DLY	24	0	DE_DLY < VS_HIGH + VS_LOW

デバイスアドレスのソフトウェア設定

シリアライザおよびデシリアライザは、設定可能なデバイ スアドレスを備えています。これによって、複数のGMSLデ バイス(およびI²Cペリフェラル)が同じ制御チャネル上で共 存可能です。シリアライザのデバイスアドレスは各デバイ スのレジスタ0x00にあり、デシリアライザのデバイスアド レスは各デバイスのレジスタ0x01にあります。デバイスア ドレスを変更するには、まずアドレスを変更するデバイス に書込みを行います(シリアライザのデバイスアドレスを変 更する場合はシリアライザのレジスタ0x00、デシリアライ ザのデバイスアドレスを変更する場合はデシリアライザの レジスタ0x01)。次に、同じアドレスをもう一方のデバイ スの対応するレジスタに書き込みます(シリアライザのデバ イスアドレスを変更する場合はデシリアライザのレジスタ 0x00、デシリアライザのデバイスアドレスを変更する場合 はシリアライザのレジスタ0x01)。

I²Cアドレス変換

このデバイスは、最大2つのデバイスアドレスに対するI²C アドレス変換をサポートします。アドレス変換を使って、 I²Cアドレスに制限のあるペリフェラルに固有のデバイスア ドレスを割り当てます。ソースアドレス(変換元のアドレス) はレジスタ0x09および0x0Bに保存されます。デスティネー ションアドレス(変換先のアドレス)はレジスタ0xOAおよび 0x0Cに保存されます。

設定のブロック

このデバイスは、レジスタに対する変更をブロックするこ とができます。すべてのレジスタを読取り専用にするには、 CFGBLOCKをセットします。一度セットすると、電源が除 去されるか、またはPWDNBがローになるまでレジスタは ブロックされたままです。

カスケード/パラレルデバイス

GMSLは、I²Cを介したデバイスのカスケード接続とパラレ ル接続の両方をサポートします。カスケードまたはパラレ ルリンクを使用する場合、全I²Cコマンドは全リンクに転送 されます。各リンクは、リモート側デバイスからアクノリッ ジ/非アクノリッジを受信するまで制御チャネルを保持しよ うとします。タイムアウトを防ぐために、リンク間の制御チャ ネルをアクティブに保つことが重要です。リンクが未使用 の場合、設定リンクのオン、I²Cラインの切断、または未 使用デバイスのパワーダウンによって制御チャネルをクリ アに保ちます。

デュアルuC制御

ほとんどのシステムは1つのマイクロコントローラを使用し ますが、各側にµCが同時に存在して制御チャネルを交互 に実行することが可能です。両方のµCが同時に制御チャ ネルを使用しようとした場合は、競合が発生します。こう した競合は、ユーザーが上位のプロトコルを実装すること で防止する必要があります。さらに、制御チャネルでは、 リンクの両側にあるI²Cマスター間で調停が行われません。 競合によって通信が失敗すると、アクノリッジフレームが生 成されません。シリアルリンクでの通信が不要な場合、µC はシリアライザ/デシリアライザのFWDCCENビットと REVCCENビット(0x04、D[1:0])を使用して順方向と逆 方向の制御チャネルをディセーブルすることができます。 シリアルリンクでの通信が停止され、µC間で競合が発生す ることはありません。

UART

I2CSEL = 0に設定すると、制御チャネルはUARTまたは UART-I²Cモードに設定されます。このモードでは、制御 チャネルはマイクロコントローラ側からGMSLリンクのも う一方の側にUARTコマンドを転送します。INTTYPE = 00の場合、リモートデバイスはリモート側デバイスに接続 されている他のペリフェラルに対するI²Cマスターとして機 能します。UART-I²Cモードはクロックストレッチングを使 用するデバイスをサポートしません。

ベースモード

ベースモードでは、UARTパケットがシリアライザ、デシリア ライザ、および接続されているペリフェラルを制御します。

UARTのタイミング

ベースモードでは、UARTのアイドル状態は(プルアップ抵 抗を介した)ハイです。 各GMSL UARTバイトは、STARTビッ ト、8つのデータビット、偶数パリティビット、および STOPビットで構成されます(図21)。同じUARTパケット のバイト間のアイドル時間は、4ビット期間以下に保持しま す。GMSL-UARTプロトコルを図22に示します。書込みパ ケットは、SYNCバイト(図23)、デバイスアドレスバイト、 開始レジスタアドレスバイト、書き込むバイト数、および データバイトで構成されます。書込みが成功した場合、ス レーブデバイスはACKバイトで応答します(図24)。読取り パケットは、SYNCバイト、デバイスアドレスバイト、開始 レジスタアドレスバイト、および読み取るバイト数で構成 されます。スレーブデバイスはACKバイトで応答し、デー タバイトを読み取ります。

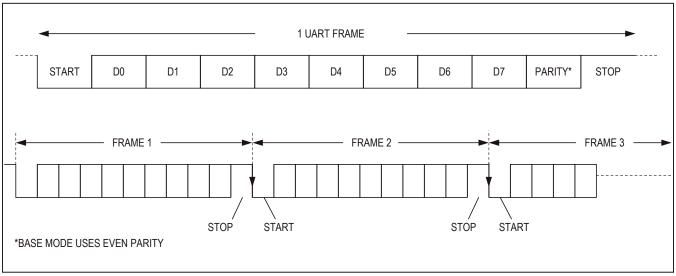


図21. ベースモードのGMSL-UARTデータ形式

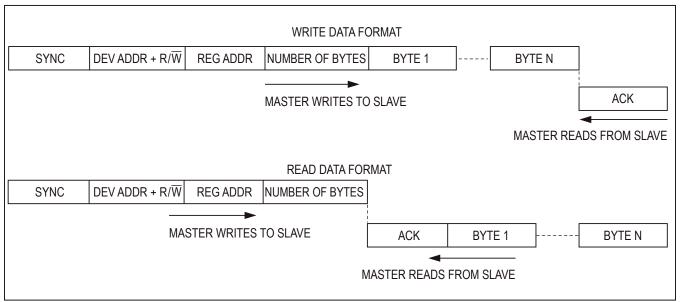


図22. ベースモードのGMSL-UARTプロトコル

図23. SYNC/バイト(0x79) 図24. ACK/バイト(0xC3)

UART-I²C変換

UART制御チャネルを使用する場合、リモート側デバイスはUART-I²C変換を介してI²Cペリフェラルと通信することができます。UART-I²C変換をアクティブ化するには、リモート側デバイスのINTTYPEビットを00に設定します。変換後のI²Cビットレートは、入力UARTビットレートと同じです。UART-I²C変換との互換性を維持するため、I²Cペリフェラルはクロックストレッチングを使用することはできません。

UARTを I^2 Cに変換するためにデバイスが使用することが可能な方法は2つあります。第1の方法(I^2 CMETHOD = 0)では、レジスタアドレスが I^2 C通信で送信されます(<u>図25</u>)。レジスタアドレスを使用しないデバイス(I^2 MAX7324など)の場合は、 I^2 METHOD = 1に設定し、レジスタアドレスの代わりにダミーバイトを送信します(<u>図26</u>)。この方法では、リモートデバイスはレジスタアドレスの送信を省略します。

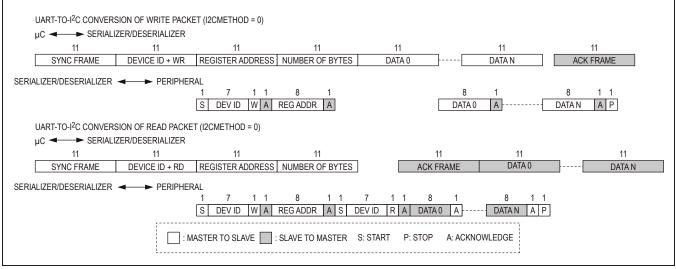


図25. レジスタアドレスによるGMSL UARTとI²C間の形式変換(I2CMETHOD = 0)

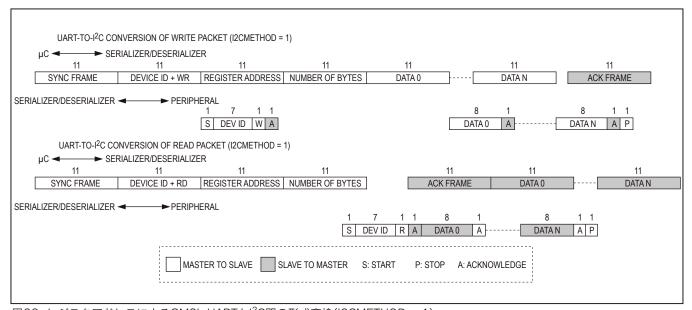


図26. レジスタアドレスによるGMSL UARTとI²C間の形式変換(I2CMETHOD = 1)

UARTバイパスモード

UARTバイパスモードでは、制御チャネルはフルデュプレッ クスの9.6kbps~1Mbpsのリンクとして動作し、パケット 自体には応答せずにシリアルリンクでUARTコマンドを転 送します。バイパスモードに移行するには、MSをハイに設 定します(µCがデシリアライザ側に接続されている場合は、 バイパスモードの設定後に1ms待ってください)。バイパス は9.6kbps~1Mbpsのビットレートを使用します。GPI/ GPOの機能を使用するときに100µs以上にわたってロジッ クローの値を送信しないでください。

デバイスアドレス

シリアライザ/デシリアライザの両方で、7ビット長のスレー ブアドレスがレジスタ0x00および0x01に保存されます。 7ビットのスレーブアドレスに続くビットはR/Wビットで、 書込みコマンドの場合はローで読取りコマンドの場合はハイ です。デフォルトのスレーブアドレスは0x80です。起動後、 マイクロコントローラは必要に応じてスレーブアドレスを 再設定することができます。

スペクトラム拡散

シリアライザでスペクトラム拡散をオンにするには、シリ アライザでSSビットを設定します(表9)。 シリアライザ によって駆動されるデシリアライザが設定可能なスペクト ラム拡散を備えている場合、相互作用によって利点が相殺 されるので、両方の拡散を同時にイネーブルしないでくだ さい。デシリアライザはシリアライザの拡散をトラッキン

グし、デシリアライザの出力に拡散を通過させます。一部 のスペクトラム拡散の振幅は、より低いPCLKIN周波数で のみ使用することができます(表10)。スペクトラム拡散が オンまたはオフになるとき、デシリアライザがロックを喪失 して新しいシリアルデータストリームに再ロックするように、 シリアルリンクは数usの間停止した後再始動します。スペ クトラム拡散の振幅を変更してもロックは失われません。

スペクトラム拡散分周器のマニュアル設定

デフォルトでは、PCLKINの動作範囲の自動検出によって、 スペクトラム拡散の変調周波数が20kHz~40kHzの範囲 内になることが保証されます。さらに、鋸歯分周器のマニュ アル設定(SDIV: 0x03、D[5:0])によって、PCLKINの周 波数に応じてユーザーが変調周波数(通常は20kHz)を設 定することも可能です。

式:

変調率とPCLKINの周波数の関係:

 $f_M = f_{PCLKIN}/(MOD \times SDIV)$

ここで、

f_M = 変調周波数

f_{PCLKIN} = PCLKINの周波数

MOD = 表11に示す変調係数

SDIV = µCによってマニュアル設定される6ビットのSDIV 設定値

表9. 出力の拡散

SS	SPREAD (%)
000	Power-up default (no spread spectrum)
001	±0.5% spread spectrum
010	±1.5% spread spectrum
011	±2% spread spectrum
100	No spread spectrum
101	±1% spread spectrum
110	±3% spread spectrum
111	±4% spread spectrum

表10. 拡散の制限

BWS = 0 MODE, PCLKIN FREQUENCY (MHz)	BWS = 1 MODE, PCLKIN FREQUENCY (MHz)	SERIAL LINK BIT RATE (MBPS)	AVAILABLE SPREAD RATES		
< 33.3 (DBL = 0)	< 25 (DBL = 0)	< 1000	All rates available		
< 66.6 (DBL = 1)	< 50 (DBL = 1)	< 1000	All fales available		
33.3 to 58 (DBL = 0)	25 to 43.5 (DBL = 0)	≥ 1000	1.5%, 1%, 0.5%		
66.6 to 116 (DBL = 1)	50 to 87 (DBL = 1)	≥ 1000	1.5%, 1%, 0.5%		

BWS	SPREAD- SPECTRUM SETTING (%)	MODULATION COEFFICIENT (DEC)	SDIV UPPER LIMIT (DEC)		
	1	104	40		
	0.5	104	63		
1	3	152	27		
'	1.5	152	54		
	4	204	15		
	2	204	30		
	1	80	52		
	0.5	80	63		
0	3	112	37		
	1.5	112	63		
	4	152	21		
	2	152	42		

表11. 変調係数と最大SDIV設定値

SDIV設定値を設定するには、まず目的のバス幅とスペクトラム拡散の設定に基づいて変調係数を選択します。目的のピクセルクロックと変調周波数を使用して、上記の式をSDIVについて解きます。計算したSDIVの値が表11に示すSDIVの許容最大値より大きい場合は、SDIVを最大値に設定します。

基板レイアウト

電源回路とバイパス処理

このシリアライザは、1.7V~1.9VのAVDDおよびDVDDを使用します。シリアル出力以外の全入力および出力は、1.7V~3.6VのIOVDDから電力を得ます。高周波数回路の安定性には適切な電圧電源バイパス処理が不可欠です。

高周波数信号

クロストークを防ぐため、LVCMOSロジック信号とCML/同軸高速信号を分離します。電源、グランド、CML/同軸、およびLVCMOSロジック信号用に個別の層を備えた4層 PCBを使用します。STP-PCBトレースは相互に接近させてレイアウトし、差動特性インピーダンスが100 Ω になるようにします。トレースのサイズは、使用するトレースのタイプ(マイクロストリップまたはストリップライン)によって異なります。

注:2つの50ΩのPCBトレースを相互に接近させた場合、 差動インピーダンスは100Ωになりません。トレースが接 近するほどインピーダンスは低下します。同軸を駆動する 場合、シングルエンド出力に50Ωのトレースを使用してく ださい。差動CMLのPCBトレースは平行に配線して、差動 特性インピーダンスを維持してください。ビアアレイは避 けてください。差動ペアを構成するPCBトレースは等しい 長さを維持し、差動ペア内のスキューを防いでください。

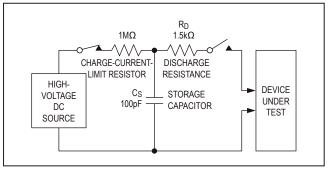


図27. ヒューマンボディモデルESDテスト回路

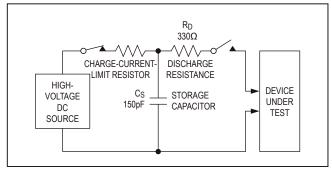


図28. IEC 61000-4-2接触放電ESDテスト回路

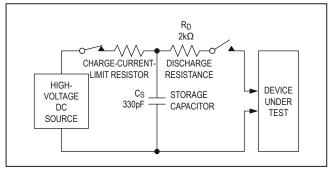


図29. ISO 10605接触放電ESDテスト回路

ESD保護

ESD耐性の定格は、ヒューマンボディモデル、IEC 61000-4-2、およびISO 10605に準拠しています。ISO 10605およびIEC 61000-4-2規格は、電子装置のESD 耐性を規定しています。シリアル出力は、ISO 10605の ESD保護とIEC 61000-4-2のESD保護に対して定格が定められています。すべての端子は、ヒューマンボディモデルに対してテストされています。ヒューマンボディモデルの放電コンポーネントは、CS = 100pFとRD = $1.5k\Omega$ です(図27)。IEC 61000-4-2の放電コンポーネントは、CS = 150pFとRD = 330Ω です(図28)。ISO 10605の放電コンポーネントは、CS = 330pFとRD = $2k\Omega$ です(図29)。

他のGMSLデバイスとの互換性

このデバイスはMAX96705~MAX96711ファミリのデバイスと組み合わせるように設計されていますが、任意のGMSLデバイスと相互運用可能です。動作上の制限事項については、表12を参照してください。

デバイスの設定および部品の選択

内蔵入力プルダウン

制御および設定入力(3レベル入力以外)は、GNDへのプルダウン抵抗を内蔵しています。外付けのプルダウン抵抗は不要です。

3レベル設定入力

CONF1およびCONF0は、シリアルインタフェースの設定および起動時のデフォルトを制御する3レベル入力です(表13)。CONF1またはCONF0は、ハイレベルを設定する場合はIOVDDに接続し、ローレベルを設定する場合はGNDに接続し、ミッドレベルを設定する場合はオープンにします。デジタル制御の場合は、3ステートのロジックを使用して3レベルのロジック入力を駆動します。CONF端

子の値は起動時またはパワーダウンモードからの復帰時に ラッチされます。

多機能入力

このデバイスは、複数の機能を果たす数個の入力/出力を備えています。GPO/HIMはGPO出力として、また設定端子として機能します。起動時、またはパワーダウン状態からの復帰時、これらの端子はHIM入力として機能します。入力の状態をラッチしたあと、端子はGPO出力になります。ハイレベルに設定するには、30kΩの抵抗を介して設定入力をIOVDDに接続します。ローレベルに設定するには、設定入力をオープンのままにします。

さらに、一部の多機能端子はLCCEN入力によって制御されます。LCCEN = 1の場合、ローカル制御チャネル(RX/SDA、TX/SCL)がアクティブで、GPIO1/BWSおよびMS/HVEN端子はそれぞれGPIO1およびMS入力として動作します。LCCEN = 0の場合、ローカル制御チャネルはディセーブルされ、これらの端子はそれぞれの代替機能(DBL、BWS、HVEN入力)として動作します。

表12. 機能上の互換性

SERIALIZER FEATURE	GMSL DESERIALIZER	
HSYNC/VSYNC Encoding	If feature not supported in the deserializer, turn off in the serializer.	
I ² C to I ² C	If feature not supported in the deserializer, use UART to I ² C or UART to UART.	
Packet Control Channel	If feature not supported in the deserializer, use legacy control channel.	
CRC Error Detection	If feature not supported in the deserializer, turn off in the serializer.	
Double Input	If feature not supported in the deserializer, data is output as a single word at half the input frequency. Use crossbar switch to correct input mapping.	
Coax	If feature not supported in the deserializer, connect unused serial input through 200nF and 50Ω in series to AVDD, and set the reverse control-channel amplitude to 100mV.	
I ² S Encoding	If supported in the deserializer, disable I ² S in the deserializer.	
High-Bandwidth Mode	If feature not supported in the deserializer, turn off in the serializer.	
High-Immunity Mode	If feature not supported in the deserializer, turn off in the serializer.	
Low-Speed Mode	If supported in the deserializer, set DRS to 0 in the deserializer.	

表13. 3レベル設定入力マップ

CONF1	CONF0	CXTP (OUT+/OUT- OUTPUT TYPE)	ES (PCLKIN LATCH EDGE)	I2CSEL (CONTROL-CHANNEL TYPE)
Low	Low	1 (coax)	1 (falling)	1 (I ² C o I ² C)
Low	Mid	1 (coax)	1 (falling)	0 (UART to I ² C/UART)
Low	High	1 (coax)	0 (rising)	1 (I ² C to I ² C)
Mid	Low	1 (coax)	0 (rising)	0 (UART to I ² C/UART)
Mid	Mid	0 (STP)	1 (falling)	1 (I ² C to I ² C)
Mid	High	0 (STP)	1 (falling)	0 (UART to I ² C/UART)
High	Low	0 (STP)	0 (rising)	1 (I ² C to I ² C)
High	Mid	0 (STP)	0 (rising)	0 (UART to I ² C/UART)
High	High	Do not use	Do not use	Do not use

VENDOR	CONNECTOR	CABLE	TYPE	
Rosenberger	59S2AX-400A5-Y	Dacar 302	Coax	
Rosenberger	D4S10A-40ML5-Z	Dacar 538	STP	
Nissei	GT11L-2S	F-2WME AWG28	STP	
JAE	MX38-FF	A-BW-Lxxxx	STP	

表14. GMSLの推奨コネクタおよびケーブル

I²C/UARTのプルアップ抵抗

I²CとUARTのオープンドレインのラインは、ロジックハイ レベルを提供するためにプルアップ抵抗を必要とします。 消費電力と速度はトレードオフの関係にあるため、プル アップ抵抗値を選択する際に妥協が必要になることがあり ます。バスに接続されたすべてのデバイスによって、デバ イスが動作していないときでもある程度の容量が付加され ます。I²Cでは、最大400kbpsのデータレートで定義される ファーストモードについて、立上り時間(30%から70%)を 300nsと規定しています(詳細については、「AC Electrical Characteristics (ACの電気的特性)」の表に記載された 「I²C/UART Port Timing」の項を参照)。ファーストモード の立上り時間の要件を満たすため、立上り時間tR = 0.85 x Rpullup x Crus < 300nsとなるプルアップ抵抗を選択 します。遷移時間が過度に長くなると、波形は認識されま せん。GMSLは、最大1Mbps (UART-I²Cモード)と 400kbps (I²C-I²Cモード)のI²C/UART速度をサポートし ています。

AC結合コンデンサ

電圧ドループと送信されるシンボルのDSV(デジタル総和 変動)が原因で、信号の遷移はさまざまな電圧レベルから 開始されます。遷移時間は固定されているため、信号の遷 移がさまざまな電圧レベルから開始されるとタイミング ジッタが発生します。AC結合されたリンクの時定数を、ド ループとジッタが許容可能なレベルまで減少するように選 択する必要があります。AC結合されたリンク用のRCネット ワークは、CML/同軸レシーバの終端抵抗(RTR)、CML/同 軸ドライバの終端抵抗(RTD)、および直列AC結合コンデン サ(C)で構成されます。同一の値の直列コンデンサ4つに よるRC時定数は、(Cx(R_{TD} + R_{TR}))/4です。R_{TD}とR_{TR}は、 伝送ラインのインピーダンスと整合させる必要があります (通常は 100Ω 差動と 50Ω シングルエンド)。したがって、 システムの時定数を変更する要素として残るのはコンデン サの選択です。より低速の逆方向制御チャネルの信号を通 過させるために、バッテリへの短絡に耐える十分な定格電 圧を備えた、0.2µF以上の高周波表面実装セラミックコン デンサを使用します。3.2mm x 1.6mmより小さいケース サイズのコンデンサを使用して、高速信号に対する寄生の 影響を低減します。

ケーブルおよびコネクタ

CML用の相互接続は、標準で100Ωの差動インピーダン スを備えています。差動インピーダンスが整合されたケー

ブルおよびコネクタを使用して、インピーダンスの不連続 性を最小限に抑えます。同軸ケーブルは、標準で50Ωの 特性インピーダンスを備えています(75Ωの動作について は、お問い合わせください)。表14に、GMSLリンクで使 用される推奨ケーブルおよびコネクタを示します。

PRBS

このシリアライザは、デシリアライザのビットエラー検証 と連携するPRBSパターン発生器を内蔵しています。PRBS テストを実行するには、まずデシリアライザ、次にシリア ライザの順で、PRBSEN = 1 (0x04、D5)に設定します。 PRBSテストを終了するには、シリアライザでPRBSEN = 0 (0x04、D5)に設定します。デシリアライザは自動的に PRBSチェックを終了し、PRBS OKビットをハイに設定し ます。PRBSモード時は、デシリアライザで自動アクノリッ ジがイネーブルされている場合にPRBSモードを終了する 以外、順方向制御チャネルは利用不可です。それ以外の場 合は、リモート制御チャネルは完全に利用不可です。

3GbpsのSerDesでPRBSを実行する場合、またはHIBW = 1の場合、最初にMAX967XXでPRBS TYPEビット = 0に設定します。次に、シリアライザ、デシリアライザの順 で、PRBSEN = 1 (0x04、D5)に設定します。PRBSテス トを終了するには、デシリアライザ、次にシリアライザの 順で、PRBSEN = 0 (0x04、D5)に設定します。

PRBSテスト時は、PRBSエラーのみを反映するように ERRBの機能が変化します。PRBSエラーが発生すると、 常にERRBはローになります。PRBS ERRが読み取られて PRBSエラーカウンタがリセットされると、ERRBはハイに なります。PRBSテストを終了すると、ERRBは通常の機能 に戻ります。

GPI/GPO

シリアライザのGPOは、デシリアライザのGPIの遷移に追 従します。デフォルトでは、GPI-GPO間の遅延は0.35ms (max)です。GPIの遷移間の時間を0.35ms以上に維持し てください。デシリアライザのGPI_INは、GPI入力の状態 を保存します。起動の後、GPOはローです。µCはSET GPOレジスタビットへの書込みによってGPOを設定すること ができます。適切なGPO/GPIの機能を確保するため、ベー スモードとバイパスモードのいずれでも100µsより長時間 にわたってデシリアライザのRX/SDA入力(UARTモード)に ロジックローの値を送信しないでください。

ロック喪失の高速検出

リンク品質の尺度として、同期喪失からの回復時間があり ます。ホストは、デシリアライザのLOCK出力をGPI入力に 接続することによって、ロック喪失の通知をすばやく受け 取ることができます(PKTCC EN = 0の場合)。 タッチスク リーンコントローラなどの他のソースでGPI入力を使用し ている場合、µCは同期喪失による割込みと通常の割込み を識別するルーチンを実装することができます。逆方向制 御チャネルの通信はアクティブな順方向リンクの動作を必 要とせず、GMSLリンクのLOCKステータスを正確に追跡 します。LOCKはビデオリンクについてのみアサートされ、 設定リンクについてはアサートされません。

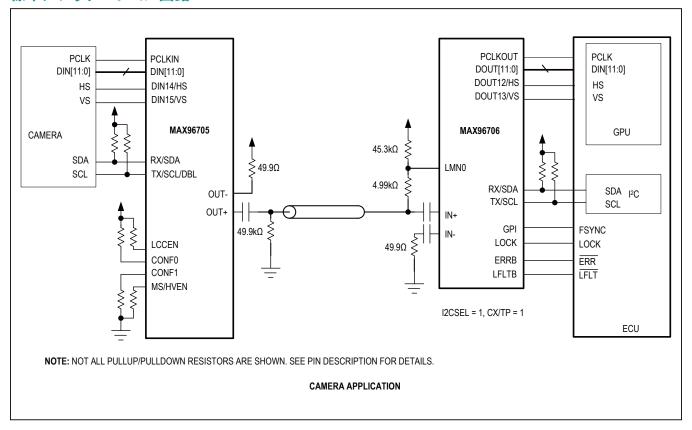
フレーム同期の供給(カメラアプリケーション)

GPIとGPOは、ECUからのフレーム同期信号を必要とする カメラアプリケーション(サラウンドビューシステムなど)に シンプルなソリューションを提供します。ECUのフレーム 同期信号をGPI入力に接続し、GPO出力をカメラのフレーム 同期入力に接続します。GPI/GPOの遅延はレガシーモード で275µs (typ)で、パケットモードで21µs (typ)です(5ビット のCRCを使用)。複数のGPI/GPOチャネル間のスキューは レガシーモードで115μs (max)で、パケットモードで21μs (max)です。レガシーモードで低スキューの信号が必要な 場合は、カメラのフレーム同期入力をシリアライザの GPIOの1つに接続し、I²Cのブロードキャスト書込みコマン ドを使用してGPIO出力の状態を変更します。この場合、使 用するI²Cビットレートに関係なく、スキューが1.5µs以下 になります。パケットベースの制御チャネルモードでGPI/ GPO補償をオンにするには、シリアライザとデシリアライ ザの両方でGPI COMP EN = 1に設定します。これによっ て、デバイス間のスキューが0.35µsに削減されます。

スリープモードの移行/終了

スリープモードの移行と終了の手順は、マイクロコントロー ラの位置と、使用する制御チャネルインタフェースのタイ プによって異なります。 リモート(デシリアライザ)側マイク ロコントローラからのウェイクアップが不要または目的と しない場合、DIS RWAKEビット = 1に設定してリモート ウェイクアップをシャットダウンすることによってさらなる 省電力が可能です。

レガシー制御チャネル:


スリープモードに移行するには、SLEEP = 1に設定します。 デバイスは8ms後にスリープします。デバイスをウェイク アップするには、任意の制御チャネルコマンドをシリアラ イザに送信し(シリアライザはアクノリッジを送信しません)、 チップの起動を5ms待った後、SLEEP = 0に設定してウェ イクアップを永続化します。

パケットベースの制御チャネル:

- uCがデシリアライザ側にある場合は、シリアライザで SLEEP = 1に設定します。次に、デシリアライザでREVCCEN = 0に設定してシリアライザへの逆方向制御転送を停止し ます。デバイスは8ms後にスリープします。
 - シリアライザをウェイクアップするには、最初にREVCCEN = 1に設定し、デバイスのウェイクアップを8ms待った後、 SLEEP = 0に設定してスリープモードを永続的に終了し
- µCがシリアライザ側にある場合は、最初にデシリアライザ でSLEEP = 1に設定します。デシリアライザがウェイク状 態のままである必要がある場合は、レガシー制御チャネル モードに切り替えます。次に、シリアライザでSLEEP = 1に 設定します。デバイスは8ms後にスリープします。

デバイスをウェイクアップするには、任意の制御チャネル コマンドをシリアライザに送信します(シリアライザはアク ノリッジを送信しません)。チップの起動を5ms待った後、 SLEEP = 0に設定してウェイクアップを永続化します。シリ アライズがイネーブルされるとデシリアライザはウェイク アップしてSLEEPビットをクリアし、シリアライザにロック します。

標準アプリケーション回路

型番

PART NUMBER		TEMP RANGE	PIN-PACKAGE	
	MAX96705GTJ/V+	-40°C to +115°C	32 TQFN-EP*	

/Vは車載認定製品を表します。

+は鉛(Pb)フリー/RoHS準拠パッケージを表します。

*EP = エクスポーズドパッド。

MAX96705

16ビットGMSLシリアライザ、高耐性/広帯域幅モードおよび同軸/STPケーブル駆動

改訂履歴

版数	改訂日	説明	改訂ページ
0	12/15	初版	

マキシム・ジャパン株式会社 〒141-0032 東京都品川区大崎1-6-4 大崎ニューシティ 4号館 20F TEL: 03-6893-6600

Maxim Integratedは完全にMaxim Integrated製品に組込まれた回路以外の回路の使用について一切責任を負いかねます。回路特許ライセンスは明言されていません。Maxim Integratedは随時予告なく回路及び仕様を変更する権利を留保します。「Electrical Characteristics (電気的特性)」の表に示すパラメータ値(min、maxの各制限値)は、このデータシートの他の場所で引用している値より優先されます。