

JESD204B & AHEAD OF WHAT'S POSSIBLE™ シリアルLVDS: 広帯域データ・コンバータ・ アプリケーション用インターフェースに 関する検討

著者: George Diniz、製品ライン・マネージャ

概要

シリアル・インターフェースの業界標準であるJESD204A/ JESD204Bは、最新の広帯域データ・コンバータと他のシス テムICを、効率的かつコストのかからない方法で相互に接続 する際の問題に対処するために開発されたものです。その動機 となったのは、スケーラブルな高速シリアル・インターフェー スを使用することで、データ・コンバータとFPGA(フィール ド・プログラマブル・ゲート・アレイ)やSoC(システム・オン・ チップ) といった他のデバイスの間のデジタル入出力の数を減 らすことができるようなインターフェースを標準化することで した。

近年の傾向を見ると、新しいアプリケーションの出現や既存アプ リケーションの発展によって、サンプリング周波数とデータ分解 能を一層向上させた広帯域データ・コンバータの需要が高まって います。これらの広帯域コンバータとのデータのやり取りは、設 計上の重要な問題を提起します。既存のI/〇技術には帯域上の制 約があり、コンバータ製品のピン数を増やす必要が生じるからで す。結果として、システムのPCB設計は、相互接続の密度の点で ますます複雑なものとなっています。課題は、電気的ノイズに対 処しながら、大量の高速デジタル信号を配線することです。より 少ない相互接続でGSPSレベルのサンプリング周波数を実現する 広帯域データ・コンバータを使用することができれば、PCBレイ アウトに関する問題を緩和して、全体的なシステム性能に影響を 与えることなく、フォーム・ファクタをより小さくすることが可 能です。

市場は、与えられたシステムに対して常により多くの特徴と機能 を、そしてより高い性能を強く求めており、これがより高いデー タ処理能力への需要を喚起しています。高速A/Dコンバータお

よびD/AコンバータからFPGAへのインターフェースは、いく つかのシステムOEMが次世代のデータ集約的な需要を満たそう とする際の制限要因となっていました。JESD204Bシリアル・イ ンターフェース仕様は、この重要なデータ・リンクの問題に対応 することによって問題解決の助けとするために、特に策定された ものです。JESD204A/JESD204Bを使用した高速コンバータと FPGA 間の代表的な相互接続構成を図1に示します。

以下では、この仕様の普及を推進しているいくつかの重要なエ ンドシステム・アプリケーションについて述べ、更にシリアル LVDS(低電圧差動伝送)とJESD204Bを対比します。

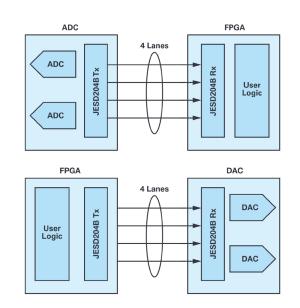


図1. JESD204A/JESD204Bインターフェースを使用した 高速コンバータとFPGA間の代表的な相互接続構成 (原典: Xilinx®)

JESD204Bの需要を喚起するアプリケーション

ワイヤレス・インフラストラクチャ用トランシーバー

LTEなど、今日のワイヤレス・インフラストラクチャ用トランシー バーに使われるOFDMベースの技術は、アンテナ・アレイ素子 を駆動するFPGAまたはSoCデバイストに実装されたDSPブ ロックを使用して、各加入者のハンドセット用にビームを生成し ます。それぞれのアレイ素子は、送信モードと受信モードの両方 において、FPGAとデータ・コンバータ間で1秒あたり数百メガ バイトのデータを移動しなければならないことがあります。

ソフトウェア無線

今日のソフトウェア無線は、随時その場で設定を変更してチャン ネル帯域幅を手早く拡大できる高度な変調方式を利用しており、 かつてないワイヤレス・データ・レートを実現します。アンテ ナ・パス内でFPGAとデータ・コンバータを結ぶ、効率的かつ消 費電力とピン数の少ないインターフェースは、その性能に重要な 役割を果たします。ソフトウェア無線アーキテクチャは、GSM、 EDGE、W-CDMA、LTE、CDMA2000、WiMAX、およびTD-SCDMAをサポートするマルチキャリア、マルチモードのワイヤ レス・ネットワーク用トランシーバー・インフラストラクチャに とって、不可欠なものとなっています。

医療用イメージング・システム

超音波、コンピュータ断層撮影(CT)スキャナ、磁気共鳴映像 法(MRI)などの医療用イメージング・システムは、多数のチャ ンネルからなるデータを生成し、これらのデータはデータ・コン バータを通じてFPGAやDSPに送られます。増え続けるI/O数 によって、FPGAとコンバータのピン配置を合わせるためのイン ターポーザを使用する必要が生じるため、コンポーネント数が増 加してPCBの構成が更に複雑になります。このためにシステム のコストが上がって複雑さも増しますが、これは、効率の優れた JESD204Bインターフェースによって解決することができます。

レーダーとセキュア通信

今日の先進的レーダー・レシーバーのパルス構造はますます高度 化しており、このために信号帯域幅が1GHz以上に押し広げられ ています。最新世代のアクティブ電子走査アレイ (AESA) 式レー ダー・システムを構成する素子の数は、数千個にも上ることがあ ります。アレイ素子のデータ・コンバータと、データの受信・送 信処理を行うFPGAまたはDSPを接続するには、広帯域SERDES ベースのシリアル・インターフェースが必要です。

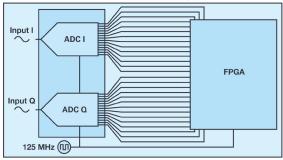
シリアルLVDSとJESD204B

シリアルLVDSとJESD204Bインターフェースの どちらを選ぶか

LVDSと各種JESD204シリアル・インターフェース仕様のどち らを採用したコンバータ製品を選択するかを決定するには、そ れぞれのインターフェースの機能と能力を比較することが有効 です。簡単な比較表を表1に示します。SERDESレベルにおける LVDSとJESD204の目立った違いは、レーン・データ・レート です。LVDSと比較して、JESD204はレーンあたり3倍以上のシ リアル・リンク速度をサポートしています。マルチデバイス同期、 確定的遅延、高調波クロッキングなどの高レベル機能で比較する と、JESD204Bはこれらの機能を備えた唯一のインターフェー スです。すべてのレーンとチャンネルで確定的遅延に敏感な広 帯域マルチチャンネル・コンバータを必要とするシステムでは、 LVDSやパラレルCMOSを効果的に使用することはできません。

表 1. シリアル LVDS と JESD 204 仕様の比較

機能	シリアル LVDS	JESD204	JESD204A	JESD204B
仕様の発表	2001年	2006年	2008年	2011年
最大レーン・ レートGbps)	1.0	3.125	3.125	12.5
複数レーン	非対応	非対応	対応	対応
レーン同期	非対応	非対応	対応	対応
マルチデバイス 同期	非対応	対応	対応	対応
確定的遅延	非対応	非対応	非対応	対応
高調波 クロッキング	非対応	非対応	非対応	対応


LVDSの概要

低電圧差動伝送 (LVDS) は、データ・コンバータとFPGAまた はDSPのインターフェースを取るために従来使われていた方法で す。LVDSは1994年に、既存のRS-422およびRS-485差動伝送 規格より広い帯域幅と低い消費電力を実現することを目標として 導入され、翌1995年のTIA/EIA-644の公開により規格化されま した。LVDSの採用は1990年代後半になって増加し、2001年に はTIA/EIA-644-Aの公開によって改訂されました。

LVDSでは、低電圧振幅の差動信号を高速データ転送に使用しま す。トランスミッタは代表値で±3.5mAを駆動します。極性は 100Ω抵抗を介して送信するロジック・レベルに一致し、レシー バー側で±350mVの電圧振幅を発生します。常時オンの電流 を異なる方向へ流すことで、ロジック1と0を生成しています。 LVDSのこの常時オン特性は、同時に発生するスイッチング・ノ イズ・スパイクと電磁干渉をなくす助けとなります。電磁干渉 は、シングルエンド構成でトランジスタをオン/オフしたとき に発生することがあります。LVDSは差動信号を使用しているの で、同相ノイズに対してもかなりの耐性を発揮します。TIA/EIA-644-A規格は、理想的な伝送媒体では1.9Gbps以上の速度まで 対応可能とされていますが、推奨される最大データ・レートは 655Mbpsです。

FPGAまたはDSPとコンバータの間のデータ・チャンネル数と速 度の大幅な増加は、LVDSインターフェースにいくつかの問題を もたらしました。特に、前述のアプリケーションでは大きな問題 となります (図2参照)。差動LVDS配線の帯域幅は、実際には 約1.0Gbpsに制限されます。このため、現在の多くのアプリケー ションでは多数の広帯域PCB相互接続が必要になりますが、これ らはすべて故障発生点になる可能性があります。また、パターン 数が増えればPCBも複雑化したり大型化したりすることになり、 設計コストと製造コストが増加します。アプリケーションによっ ては、データ・コンバータ・インターフェースが制限要素となっ て、広い帯域幅を必要とするアプリケーションに必要なシステム 性能を実現できない場合があります。

ADC with Conventional Parallel CMOS/LVDS Outputs

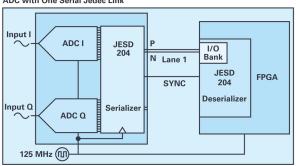
- Must Have Same Trace Lengths (28)
- High Complexity Routing Due to BGA
- Higher/Lower Converter Resolution Requires Total Hardware Redesign

図2. パラレルCMOSまたはLVDS使用時のシステム設計と 相互接続に関する課題

JESD204Bの概要

JESD204データ・コンバータ・シリアル・インターフェース規 格は、JEDEC半導体技術協会のインターフェース技術に関する JC-16委員会 (JEDEC Solid State Technology Association JC-16 Committee on Interface Technology) によって制定さ れたもので、その目標はデータ・コンバータ用の高速シリアル・ インターフェースを提供し、帯域幅を拡大して高速データ・コン バータと他のデバイスの間のデジタル入出力数を削減することに ありました。この規格はIBMが開発した8b/10bエンコーディン グ技術に基づくもので、フレーム・クロックとデータ・クロック を不要にし、1対の線による通信をはるかに高速で行うことを可 能にしました。

2006年、JEDECは、3.125Gbpsシングル・データ・レーンの JESD204仕様を公開しました。JESD204インターフェースは自 己同期方式なので、クロック・スキューを避けるためにPCBの配 線パターン長を補正する必要がありません。JESD204は、汎用 I/Oを解放するために、多くのFPGAが備えるSERDESポートを 利用します。


2008年に公開されたJESD204Aでは、複数のタイムアライン・ データ・レーンとレーン同期が新たにサポートされました。この 機能強化によって、より広帯域のデータ・コンバータの使用と、 同期された複数のデータ・コンバータ・チャンネルの使用が可 能になりました。これは、携帯電話基地局で使用されるワイヤレ ス・インフラストラクチャ用トランシーバーにとっては特に重要 です。また、JESD204Aはマルチデバイス同期もサポートしてい ます。この機能は、多数のADCを使用する医療用画像システム などの機器に有効です。

この仕様の3番目のレビジョンであるJESD204Bでは、最大 レーン・レートが12.5Gbpsに引き上げられています。また、 JESD204Bでは確定的遅延機能も追加され、レシーバーとトラ ンスミッタ間で同期ステータスをやり取りします。更に高調波ク ロッキングも導入されており、確定的位相整合によって低速の入 カクロックから高速のデータ・コンバータ・クロックを生成する ことができます。

まとめ

シリアル・インターフェースの業界標準であるJESD204Bは、高 速データ・コンバータとFPGAなどのデバイスの間のデジタル入 出力数を減らします。相互接続数が減るとレイアウトがシンプル になり、小型化を実現できます (図3参照)。これらの利点は、 ワイヤレス・インフラストラクチャ用トランシーバー、ソフトウェ ア無線、医療用画像システム、レーダー、セキュア通信など広範 な高速データ・コンバータ・アプリケーションにとって重要な意 味を持ちます。アナログ・デバイセズはJESD204規格委員会の 当初からの参加メンバーであり、その作業と並行して規格に準拠 したデータ・コンバータ技術やツールを開発し、広範な製品ロー ドマップを提案してきました。アナログ・デバイセズは、その最 先端のデータ・コンバータ技術とJESD204A/JESD204Bイン ターフェースを組み合わせた製品を提供することにより、お客様 がシステム設計上の問題を解決し、この大きなブレークスルーの 利点を利用できるようになることを期待しています。

ADC with One Serial Jedec Link

- Reduced Number of Traces (4)
- Very Low Complexity Routing
- Simplified Synchronization Protocol
- Migration to ADC with Higher/Lower Resolution without Hardware Modification, Only New Configuration File for the FPGA

図3. 高速シリアルI/O機能を備えたJESD204が システムPCBの複雑化に関する問題を解決

著者について

George Diniz

アナログ・デバイセズの高速D/Aコンバータ・グループ (ノースカロライナ州グリーンズボロ)の製品ライン・マ ネージャ。高速A/Dコンバータ製品と高速D/Aコンバー タ製品に組み込まれるJESD204Bレシーバーおよびトラン シーバーのインターフェース・コア開発を担当するチーム のリーダーを務める。半導体業界で25年の経験を有し、 設計エンジニアリングと製品ライン管理において様々な役 割を担当。アナログ・デバイセズ入社前はIBMの設計エン ジニアとして、PowerPCプロセッサのカスタムSRAMマ クロ、PLL機能、DLL機能のミックスド・シグナル設計に従 事。ノースカロライナ州立大学でMSEEを、マンハッタン・ カレッジでBSEEを取得。余暇にはアウトドア活動、自動車 の復元、ランニングを楽しむ。

連絡先: george.diniz@analog.com

EngineerZone® オンライン・サポート・コミュニティ

アナログ・デバイセズのオンライン・サポート・コミュ ニティに参加すれば、各種の分野を専門とする技術者と の連携を図ることができます。難易度の高い設計上の問 題について問い合わせを行ったり、FAQを参照したり、 ディスカッションに参加したりすることが可能です。

Visit ez.analog.com

*英語版技術記事はこちらよりご覧いただけます。

お住いの地域の本社、販売代理店などの情報は、analog.

com/jp/contact をご覧ください。