

スイッチング・レギュレータで 電流モード制御が重要な理由

Frederik Dostal、パワー・マネージメント・エキスパート

市場には多数の様々なスイッチング・レギュレータが存在します。 選択の基になるのが仕様項目であり、例えば、入力電圧範囲、 出力電圧能力、最大出力電流といった多くのパラメータです。本 稿では、データシートに通常記載され、差別化要因となる特徴の 1つでもある電流モード、およびそのメリットとデメリットにつ いて説明します。

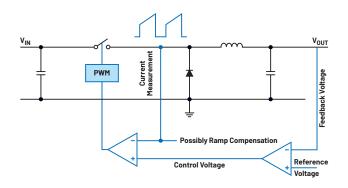


図1 電流モード・レギュレータの基本的な動作原理。

電流モード・レギュレータの説明

図1は、電流モード・レギュレータの基本的な動作原理を示して います。この回路では、帰還電圧は単に内部電圧リファレンスと 比較されるだけではなく、パワー・スイッチに必要なPWM信号 を生成するための鋸波電圧ランプとも比較されます。このランプ の傾きは、電圧モード・レギュレータでは一定です。電流モード・ レギュレータの場合は、この傾きはインダクタ電流によって変わ り、図1に示すスイッチ・ノードでの電流測定から求まります。 これが、電流モード・レギュレータと電圧モード・レギュレータ との違いです。電流モード・レギュレータがもたらすメリットは 多数あります。その1つは、インダクタ電流が入力電圧(図1の V_{IN}) の変化に即座に適応することです。したがって、出力電圧 (図1の V ουτ)がこの入力電圧の変化に追従する前でも、入力電 圧が変化したという情報が制御ループに直接取り込まれます。

電流モード制御のこのメリットは説得力が高いため、市販されて いるスイッチング・レギュレータICのほとんどは、この電流モー ド制御の原理に従って動作します。

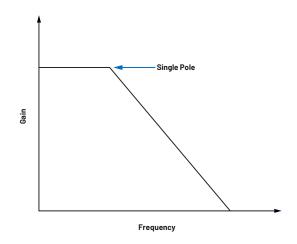


図2 電流モード制御による簡単な制御ループ補償が、 電力段に単純なポールが1つだけある状態でボーデ線図に示されている。

別の重要なメリットは、制御ループ補償が簡単になることです。 電圧モード・レギュレータのボーデ線図はダブル・ポールを示し ますが、電流モード・レギュレータの場合、この時点では電力段 の単純なポールが1つだけ発生します。これにより生じる位相の ずれは90°になり、ダブル・ポールの場合の180°とは異なりま す。したがって、電流モード・レギュレータの方がはるかに補償 しやすく、そのため安定しやすいと言えます。図2は、代表的な 電流モード・レギュレータの電力段の単純な伝達関数を示してい ます。

図3 スイッチ・ノード電圧:電流モード・レギュレータの分数調波振動。

しかし、上述したメリットと並んで、デメリットもいくつかあり ます。電流モード・レギュレータでは、スイッチング遷移の直後 に必要な電流測定を行うことができません。この時点では、か なりのノイズが測定に入り込んでしまうためです。スイッチング で生じたノイズが治まるには、数ナノ秒かかります。これを、ブ ランキング時間と言います。通常、このブランキング時間は電圧 モード・レギュレータの場合より多少長い最小オン時間仕様にな ります。電流モード・レギュレータの別のデメリットは、原理的 に、分数調波振動の可能性です。これを図3に示します。50%を 超えるデューティ・サイクルが必要な場合、電流モード・レギュ レータは、短いパルスと長いパルスを交互に実行することがあり ます。多くのアプリケーションでは、これを不安定とみなし、避 けなければなりません。この解決策として、図1に示す生成され た電流ランプに、ある程度のランプ補償を加えることができます。 こうすると、臨界デューティ・サイクルの閾値を、50%を優に超 えるところまで上げられるため、デューティ・サイクルを高くし ても分数調波振動は発生しません。

ブランキング時間とその結果として生じるデューティ・サイクル の制限を原因とする先に述べたこうした制約も、IC設計で回避す ることが可能です。例えば、1つの対策として、オン時間ではな くオフ時間にインダクタ電流を測定するローサイド電流検出を取 り入れることが挙げられます。

まとめ

総合的に見ると、スイッチング・レギュレータにおける電流モー ド制御のメリットは、ほとんどのアプリケーションにとってデメ リットに勝るものです。また、様々な回路上の新たな工夫や改良 でデメリットを回避することが可能です。その結果、現在ではス イッチング・レギュレータICのほとんどで、電流モード制御が使 われています。

著者について

Frederik Dostalは、この業界で20年以上の経験を持つパ ワー・マネージメント・エキスパートです。ドイツのエア ランゲン大学でマイクロエレクトロニクスを専攻後、2001 年にNational Semiconductorに入社し、フィールド・ア プリケーション・エンジニアとして勤務しながら、顧客プ ロジェクトにおけるパワー・マネージメント・ソリューショ ンの導入に関して多くの経験を積みました。その間、アリ ゾナ州フェニックス(米国)でも4年間過ごし、アプリケー ション・エンジニアとしてスイッチング・モード電源に取 り組みました。2009年にアナログ・デバイセズに入社し、 以降、製品ラインや欧州のテクニカル・サポートを担当す る様々なポジションに就き、現在はパワー・マネージメン ト・エキスパートとして、設計およびアプリケーションに 関する幅広い知識を活用しています。勤務先は、ドイツの ミュンヘンにあるアナログ・デバイセズのオフィスです。

EngineerZone® オンライン・サポート・コミュニティ

アナログ・デバイセズのオンライン・サポート・コミュ ニティに参加すれば、各種の分野を専門とする技術者と の連携を図ることができます。難易度の高い設計上の問 題について問い合わせを行ったり、FAQを参照したり、 ディスカッションに参加したりすることが可能です。

SUPPORT COMMUNITY

Visit ez.analoa.com

VISIT ANALOG.COM/JP

*英語版技術記事はこちらよりご覧いただけます。

com/jp/contact をご覧ください。